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Abstract  10 

Groundwater age or residence time is important for identifying flow and contaminant pathways through groundwater systems. 

Typically, groundwater age and age distributions are inferred via lumped parameter models based on measured age tracer 

concentrations. However, due to cost and time constraints, age tracers are usually only sampled at a small percentage of the 

wells in a catchment. This paper describes and compares two methods to increase the number of groundwater age data points 

and assist with validating age distributions inferred from lumped parameter models. Two machine learning techniques with 15 

different strengths were applied to develop two independent metamodels that each aim to establish relationships between the 

hydrochemical parameters and the modelled groundwater age distributions in one test catchment. Ensemble medians from the 

best model realisations per age distribution percentile were used for comparison with the results from traditional lumped 

parameter models based on age tracers. Results show that both metamodelling techniques generally work well for predicting 

groundwater age distributions from hydrochemistry. Therefore, these techniques can be used to assist with the interpretation 20 

of lumped parameter models where age tracers have been sampled, and they can also be applied to predict groundwater age 

distributions for wells in a similar hydrogeological regime that have hydrochemistry data available, but no age tracer data.      

1. Introduction 

Groundwater age describes the residence time of a parcel of water within the aquifer system, i.e., the time elapsed since 

recharge. Water from different flow pathways converges at sampling points such as wells and springs. Thus, each sample is a 25 

mixture of different groundwater with varying sources and ages (Maloszewski and Zuber, 1996). Understanding the ages of 

water in the groundwater system is key to determining flow paths, recharge rates and recharge sources, as well as understanding 

the sustainability of groundwater abstraction, the movement of contaminants in water and the impacts of land use on water 

quality (Ginn et al., 2009; Daughney et al., 2010; Massoudieh et al., 2012; Morgenstern and Daughney, 2012). 

Groundwater age cannot be measured directly but rather must be evaluated using models. There are two main modelling 30 

methods used to infer groundwater age distribution and the mean age, or mean residence time. Commonly, groundwater age 

is inferred from age tracer concentrations, in combination with lumped parameter models (LPMs), to reflect mixing of water 

from different flow paths. LPMs are quick to use and allow the representation of different flow and mixing models, which are 

matched to the measured concentrations of environmental tracers, like tritium, sulphur hexafluoride (SF6) and 

chlorofluorocarbons (CFCs), in the groundwater sample (Maloszewski and Zuber, 1996; Morgenstern and Daughney, 2012). 35 

A disadvantage is that LPMs can only be fitted to locations at which tracer concentrations have been measured. In what can 

be considered either a strength or weakness depending on a particular study’s objectives, LPM-derived age interpretations for 

different sites are made individually and not coerced to be consistent within a wider groundwater flow regime. As an alternative 

to LPMs, physically based numerical flow and transport models can also be used to assess groundwater age and transit time 
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distributions. Some such investigations have focused on the mathematical descriptions of groundwater age and its dynamics 40 

(Ginn et al., 2009; Cornaton, 2012; Engdahl, 2017), whereas other investigations have evaluated the role of groundwater age 

and environmental tracer data in model calibration, alongside other data sources such as hydraulic heads and stream flow 

measurements (Portniaguine and Solomon; 1998; Zhu, 2000; Massoudieh et al., 2012). An advantage of the numerical 

modelling studies is that they can evaluate age distributions spatially and temporally across the entire model domain, and 

account for age distributions with more complex shapes than can be represented by simple LPMs. An effect of deriving age 45 

distributions from a spatiotemporally modelled groundwater flow field is that there is likely to be some correlation and possible 

carry-over of biases in between the age interpretations for sites that are near to each other, which is less likely for LPM-derived 

ages. A key disadvantage is that the development of numerical models typically requires much more time and effort compared 

to the simpler LPMs, even after accounting for the time and costs of measuring the environmental tracer concentrations at the 

sites of interest. Additionally, as outlined in Knowling et al. (2020), numerical models require appropriate structure and 50 

parameterisation to ensure that the information from age tracers can be robustly assimilated by the model. 

In recognition of the limitations of the above-listed methods, various less time and cost-intensive methods have previously 

been trialled to increase the amount of available groundwater age data in areas where no age tracers have been sampled and 

analysed, and where a numerical flow and transport model is not available. Typically, these alternative methods for estimating 

groundwater age rely on groundwater chemistry data, hydrogeological information (e.g. bore construction parameters, 55 

recharge, geology, etc.), or a combination thereof (Edmunds and Smedley, 2000; Daughney et al., 2010; Beyer et al., 2016; 

Marçais et al., 2018), linking groundwater chemistry and hydrogeological parameters to groundwater age and transit time of 

water through the aquifer. Most such previous studies have relied on statistical data analysis methods, i.e. discriminant analysis, 

principal component analysis, regression analysis etc., that were used independently or in combinations with each other to 

identify and model relationships between groundwater chemistry and age data (Daughney et al., 2010; Beyer et al., 2016). 60 

These methods have been shown to be reasonably successful in deriving mean groundwater age, either as an age category or 

absolute age, but did not provide estimates of the full groundwater age distributions, which are more meaningful for 

contaminant transport and drinking water security than mean age (Beyer et al., 2016; Weissmann et al., 2002; Suckow, 2014). 

This study builds on previous investigations of the use of groundwater chemistry as a proxy to infer groundwater age, with the 

aim of using metamodels to assess the full age distribution instead of just the mean age. Metamodels (also known as ‘surrogate’ 65 

or ‘data driven’ models) are statistical or machine learning-based ‘models of models’ that can be used to extrapolate 

relationships to enable predictions to be made at unsampled locations or times; metamodels are thus models that are trained 

on other models that themselves had been previously calibrated on observed data and (Fienen et al., 2015, 2016, 2018; Asher 

et al., 2015; Starn and Belitz, 2018; Starn et al. 2021). Therefore, metamodels provide a cost-efficient alternative to both 

physically based distributed numerical models or LPMs, whenever sufficient training data exists (Razavi et al., 2012). 70 

Alternatively, in more data-sparse contexts, they may be used in combination with numerical modelling efforts (Koch et al., 

2019; Reichstein et al., 2019). Metamodels can make relatively rapid predictions of system behaviour or characteristics based 

on the relationships that are established with observed data. Although metamodel predictions will typically have a higher 

uncertainty than numerical model predictions (due to the fact that they are trained on models which have their own 

uncertainties), they can be made more rapidly while efficiently dealing with high parameter dimensionality (Fienen et al., 75 

2016). Metamodels have been developed for various hydrogeological applications (Fienen et al., 2018; Nolan et al., 2018; 

Starn and Belitz, 2018; Asher et al., 2015), including the prediction of groundwater age distributions from hydrogeographic 

and bore-specific observations and features, or numerical flow model outputs (Fienen et al., 2016; Starn and Belitz, 2018). 

However, none of these metamodeling studies have investigated the use of hydrochemistry for the predictions of groundwater 

age. 80 
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Specifically, this study evaluates and compares the performance of two ensemble machine learning techniques with the goal 

of estimating groundwater age distributions from groundwater chemical composition. Symbolic regression (SR) is a machine 

learning technique that attempts to identify explicit mathematical expressions in an input dataset. It is initiated by developing 

a population of naïve random mathematical expressions that conform to a priori selected grammar rules. The initial 

mathematical expressions are then combined and evolved through an approach such as genetic programming, in order to 85 

develop a set of formulas that describe the relationship(s) of interest with sufficient accuracy (Gomes et al., 2019). Gradient 

boosted regression (GBR) is a machine learning method that aims to minimize the prediction error through a regression tree 

model - a sequence of regression trees. Each sequential addition of the new regression tree will minimize the prediction error 

made by the previous tree and thus decrease the overall prediction error. Whilst there are numerous possible machine learning 

methods that can be used for this purpose (e.g. Random Forest, Bagged decision trees, Neural Networks), we selected the 90 

Symbolic Regression (SR) and Gradient Boosted Regression (GBR) techniques based on the amount of available data, ease of 

use and adaptability, and/or proven potential in similar research. For example, unlike most other machine learning methods, 

SR provides the actual equation for the resulting model. This means that the user can directly see the calculation that is being 

performed, which in turn helps to check on the physical basis of the equation and also helps with transferring the model into 

other software like Microsoft Excel, making it more accessible to a wider user group. GBR, on the other hand, is a highly 95 

adaptive strong predictive model and has previously successfully been used in other studies to predict groundwater age from 

hydrophysical parameters (Fienen et al., 2018, 2016).  

The GBR and SR approaches were implemented to estimate selected percentiles in the LPM groundwater age distribution 

based on measured groundwater chemistry on a per-sample basis in a test catchment, the Heretaunga Plains, New Zealand. 

Although this study uses LPM-derived age distributions as the metamodel prediction targets, we note that our approach would 100 

also be applicable to the use of groundwater chemistry to predict the age distributions derived from a physically based 

numerical model, which is an additional research direction being pursued by our group to be reported elsewhere. As noted 

above, one potential advantage to using LPM-derived age estimates in the present study is that their errors may be more 

randomly distributed across sites and hence be well suited as input to metamodeling, compared to potential for site-to-site 

correlations in errors or biases in age estimates derived from numerical flow and transport model. 105 

2. Study Area 

The Heretaunga Plains is a 300km2 SW-NE trending fault-bounded depression located on the east coast of New Zealand’s 

North Island (Fig. 1). The Ngaruroro, Tutaekuri and Tukituki are the three main rivers that traverse the Heretaunga Plains, 

which have long-term median flows near the coast of 19.9, 8.5 and 21.8 m3/s, respectively (Waldron et al., 2019). The area 

has a temperate climate with average temperatures of 17°C in summer and 10°C in winter, and average annual rainfall of 110 

approximately 800 mm near the coast (Dravid and Brown, 1997). Land cover in the western portion of the catchment is 

comprised primarily of native forest, scrub, and tussock, whereas the eastern portion is primarily exotic grassland (mostly used 

for grazing sheep and beef cattle) with lesser areas of orchard, vineyard, and short-rotation cropland, along with urban areas 

located near the coast (Smith et al., 2020). 

2.1. Geology and hydrogeology 115 

Starting in the Miocene, tectonic activity associated with the Hikurangi Trough, which is part of the Australian-Pacific plate 

boundary, resulted in the development of an actively subsiding syncline (‘Napier Syncline’) in the area of the Heretaunga 

Plains (Fig. 1). The axis of this syncline is oriented subparallel to the orientation of the lengths of the plains, and the resulting 

depression has since been infilled by marine and alluvial deposits representing several glacial – interglacial cycles and 
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associated sea level fluctuations (Lee et al., 2014). The total depth of this depression is uncertain, but it has been estimated to 120 

be between 900 m (Dravid and Brown, 1997) and 1,600 m (Beanland et al., 1998).  

 

Figure 1: Bore locations and depth, hydrochemical cluster, geology, and inferred groundwater flow dynamics in the Heretaunga 
Plains (hydrochemical cluster and groundwater flow dynamics from Morgenstern et al. (2018); geology from Heron, 2020; rivers 
and lakes from LINZ, 2022). The length of the arrows is proportional to the estimated flow rate. The red lines identify areas where 125 
Morgenstern et al. (2018) found indication that there is no surface water flow contributing to the main aquifers. The stippled area 
shows the extent of fine (sand, silt, clay) estuarine and terrestrial deposits mapped at the ground surface (Lee et al. 2020). 

The main aquifers of the Heretaunga Plains are composed of highly transmissive, gravel-dominated fluvial deposits from the 

late Pleistocene (Maraekakaho Formation) and Holocene (Heretaunga Formation), deposited by the three major rivers in the 
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plains (Dravid and Brown, 1997). Lee et al. (2014) analysed 4051 lithological well logs provided by regional authorities and 130 

found that most of the primarily 20 – 50 m deep bores terminate in gravels deposited during the last glaciation (71 000–12 000 

years ago). Towards the coast, these gravel deposits are overlain by silt- and clay-dominated marine sediments, deposited 

during the Holocene marine transgression, which thicken towards the coast and act as a confining layer. Smaller gravel aquifers 

also occur at the coast. Further inland, Holocene terrestrial deposits, i.e., gravel, sand, clay, and silt, interfinger with the marine 

deposits, resulting in an interconnected confined-unconfined aquifer system of aquifers (Dravid and Brown, 1997). Thick 135 

Holocene gravel fans, associated with the Ngaruroro, Tukituki and Tutaekuri rivers, which have been mapped from bore logs, 

are likely hydraulically connected to the underlying Last Glacial gravels (Lee et al., 2014; Begg et al., 2022). 

Underlying the Pleistocene gravel deposits are Late Cretaceous to Pleistocene marine and terrestrial deposits (mudstone, 

melange and mudstone, sandstone, siltstone, limestone, and conglomerates). Based on their mapped occurrence outside of the 

Heretaunga Plains and seismic reflection data from within the plains, these deposits are expected to underlie the study area at 140 

depth. However, none of the groundwater bores reach these deposits, and the only bore data available is from a small number 

of petroleum exploration bores (Dravid and Brown, 1997; Lee et al., 2014).  

2.2. Groundwater flows 

Sources of groundwater recharge into the Heretaunga Plains aquifers have been inferred from river flow gauging surveys 

(Wilding, 2018), groundwater level monitoring (Smith et al., 2020), numerical modelling (Rakowski, 2018; Rakowski and 145 

Knowling, 2018), and assessments of water chemistry, stable isotopes, and age tracers (Morgenstern et al., 2018). These 

methods collectively indicate that losses from the main rivers occur in limited areas but contribute about two thirds of the total 

volume of groundwater recharge to the aquifer system (approx. 264M m3/year; Rakowski & Knowling 2018), with the 

remainder of recharge sourced from rainfall percolation through the soil zone across a wider area of the Heretaunga Plains 

(Fig. 1).   150 

The dominant groundwater flow direction is from west to east, following the topographic gradient towards the coast (Fig. 1). 

Artesian and sub-artesian conditions are observed in bores in the confined aquifer zone near the coast (Dravid and Brown, 

1997). Age tracer measurements indicate relatively rapid horizontal groundwater velocities of ca. 3-5 km/year in some parts 

of the Heretaunga Plains aquifer system, particularly in proximity to losing reaches of the main rivers (Morgenstern et al., 

2018). Bores as deep as 75 m below ground surface can have tritium concentrations similar to modern rainfall, indicating that 155 

vertical groundwater flow can also be relatively rapid in some areas. In contrast, the older groundwaters and slower flow 

velocities of ca. 0.1-0.2 km/year are inferred nearer the coast, which could result from widening of the aquifer cross section 

and/or decreasing hydraulic conductivity, e.g., reflecting the presence of finer-grained sediments of marine origin 

(Morgenstern et al., 2018).   

Approximately 40% of the discharge from the aquifer system is estimated to occur via seepage into streams and springs, with 160 

the remaining discharge evenly split between abstraction and flows across the coastal boundary (Rakowski and Knowling, 

2018). Total abstraction has approximately doubled in the last 30 years, with an average annual increase of approximately 

3.5%, due primarily to increases in irrigation and industrial use of groundwater (Rakowski and Knowling, 2018). This increase 

in total abstraction is inferred to be the cause of long-term declines of summer groundwater levels (average rate ca. 5 cm/year 

between 1989 and 2018), which are observed in some unconfined parts of the aquifer system (Smith et al., 2020).  165 

2.3. Hydrochemistry 

Groundwaters in the Heretaunga Plains have a range of hydrochemistry (Fig. 1), arising from the spatially variable processes 

of human impact and natural geochemical evolution, as observed elsewhere in New Zealand (Daughney et al., 2012; 

Morgenstern and Daughney, 2012). Generally, natural geochemical evolution is expected to affect the redox state, with 
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younger groundwaters more likely to be oxic than anoxic, thereby affecting the concentrations of redox-sensitive substances 170 

such as dissolved oxygen (DO), NO3-N, NH3-N, Fe, Mn and SO4 (Tesoriero and Puckett, 2011; Daughney et al., 2010) (see 

list of chemical abbreviations and units in the Supplementary Material Table S1). Natural water-rock-interaction also typically 

causes the concentrations of the major ions to increase with time and distance along a groundwater flow path (Morgenstern 

and Daughney, 2012). Human influence on groundwater chemistry in New Zealand is primarily indicated by elevated 

concentrations of NO3-N, sometimes co-occurring with elevated concentrations of Na, K, Mg and/or Cl (Daughney et al., 175 

2012; Morgenstern and Daughney, 2012). The dominant recharge source also influences hydrochemistry, with groundwaters 

sourced primarily from rainfall seepage through the soil zone tending to have higher total dissolved solids (TDS) and higher 

concentrations of the parameters associated with human activity compared to groundwaters sourced from river seepage 

(Morgenstern and Daughney, 2012). These general drivers of hydrochemistry can lead to reasonably strong correlations among 

the levels of several parameters, as is observed for the groundwaters in the Heretaunga Plains (Fig. 2). The following 180 

paragraphs summarise the key correlations and patterns among the hydrochemical variables based on facies identified by 

hierarchical clustering as previously reported by Morgenstern et al. (2018).  

Oxic groundwaters inferred to be recharged from rivers are found across much of the study area (denoted as Cluster 1 in Fig. 

1). These groundwaters typically have Ca and HCO3 as the dominant cation and anion, with concentrations of ca. 20-30 mg/L 

and 50-100 mg/L, respectively (Morgenstern et al., 2018). Due to their redox status, such groundwaters have concentrations 185 

of DO, NO3-N and SO4 above their respective analytical detection limits, but concentrations of Fe, Mn and NH3-N are usually 

below detection. These groundwaters display relatively little indication of land-use impacts: concentrations of NO3-N are 

typically below 1 mg/L, and microbial pathogens and pesticides are generally not detected (Smith et al., 2020). In some 

locations, particularly near the margins of the plains, these river-recharged groundwaters can display concentrations of Ca and 

HCO3 that are 2-3 times higher than elsewhere, likely due to the influence of carbonate-rich geologies in the surrounding hills 190 

(denoted as Cluster 2 in Fig. 1). 

Oxic groundwaters inferred to be recharged from rainfall occur in a small number of areas of the plains (denoted as Cluster 3 

in Fig. 1). These groundwaters also typically have HCO3 as the dominant anion but can have either Ca or Na as the dominant 

cation (Morgenstern et al., 2018). Otherwise, these groundwaters are generally hydrochemically similar to the oxic river-

recharged groundwaters described above, except for having slightly higher concentrations of NO3-N, typically in the range 2-195 

2.5 mg/L, as a result of modest land use impacts, along with slightly higher concentrations of Ca, Mg, Na, K and/or SiO2 due 

to their accumulation during passage of recharge water through the soil zone (see Daughney and Morgenstern, 2012). 

Anoxic groundwaters occur in a small number of wells (denoted as Cluster 4 in Fig. 1). Depending on their redox state, these 

groundwaters typically have detectable concentrations of Fe, Mn and/or NH3-N but low or non-detectable concentrations of 

DO, NO3-N and/or SO4. Concentrations of PO4-P are also observed to be higher in anoxic than oxic groundwaters, likely due 200 

to solubilisation associated with reductive dissolution of iron oxide minerals in the aquifer (Langmuir, 1997). A small number 

of wells have NH3-N concentrations roughly twice as high as elsewhere, which may indicate contamination by wastewater 

(denoted as Cluster 5 in Fig. 1). 
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 205 

Figure 2: Pearson R correlation matrix among hydrochemical parameters and groundwater age, estimated via the LPM at the 50th 
percentile of the age distribution, across all Heretaunga Plains groundwater samples used in this study (n=76). 

Groundwater chemistry shows complex relationships to groundwater age in the Heretaunga Plains (Morgenstern et al., 2018). 

Generally, shallow groundwaters within the Holocene unconfined gravels are estimated to have median residence time of 0-

10 years, with a progressive increase in median residence times to the range 40-80 years for deeper groundwaters near the 210 

coast (Fig. 3).  

Younger groundwaters are more likely to be oxic, whereas deeper groundwaters are more likely to be anoxic, which affects 

the location and depth profiles of DO, NO3-N, NH3-N, Fe, Mn, SO4 and PO4-P.  However, these relationships between age, 

location, depth, and groundwater chemistry are complex, for example because there are locations where young groundwaters 

are found at depth and older groundwaters are found near the surface, as a result of the complex flow paths in the Heretaunga 215 

Plains aquifer system. Accordingly, Morgenstern et al. (2018) did not report any predictive relationships between groundwater 

chemistry and groundwater age. Moreover, the relationships among the redox-sensitive hydrochemical parameters such as DO, 
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NO3-N, NH3-N, Fe, Mn and SO4 are themselves known to be non-linear because they are mediated by step-wise microbial 

respiration reactions (Langmuir, 1997; McMahon and Chapelle, 2008).  

 220 

Figure 3: Locations of sites used for the model development and predictions showing the LPM, SR, and GBR modelled ages for the 
50th percentile. The geological formations shown on the background map (Heron, 2020) are explained in Fig. 1. Labels correspond 
to mapIDs for each site: Grey: sites used in the development of the metamodels (mapIDs 1-76); Pink: sites without LPM data, used 
for predictions (mapIDs 77-82). 

3. Methods 225 

3.1. Data 

This study used hydrochemical data from Morgenstern et al. (2018) (Supplementary Material Table S2) as predictor variables 

for the modelling approaches. The dataset is comprised of 76 groundwater samples collected from 69 sites in the Heretaunga 

Plains (Fig. 1). Bore depths ranged from 8 to 147 metres below ground surface (m bgs) (25th, 50th and 75th percentiles were 30, 

46 and 71 m bgs, respectively).  These hydrochemical samples were mainly collected during sampling campaigns in 2014, 230 

2016 and 2019.  Most samples (75%) were collected in the period April to June, with approximately even proportions of the 

remaining samples collected in the periods January to March or November to December. All sites were sampled according to 

standard protocols involving purging of bores and stabilisation of pH, DO, electrical conductivity (EC) and temperature (T) as 

measured in the field using portable meters prior to sample collection (Daughney et al., 2007). Censored and uncensored results 

below the highest censoring threshold for each parameter were replaced with the corresponding analytical detection limit 235 

(Helsel et al., 2020) in order to allow application of the machine learning methods in this study. 
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As response variables for the modelling, this study used groundwater age distributions based on age tracer data from 

Morgenstern & van der Raaij (2019).. The age tracers tritium (3H), CFCs and SF6 were selected for their appropriateness for 

the relatively young groundwaters found in many New Zealand aquifer systems (Stewart and Morgenstern, 2001). One set of 

age tracer samples was collected from each site at the same times as the above-mentioned samples that were analysed for 240 

hydrochemistry. Additionally, at 39 of the 76 sites, between two and 12 additional sets of age tracer samples had been collected 

for other investigations extending back as early as 1995. We point out that, in New Zealand and the Southern Hemisphere in 

general, bomb tritium has now fully dispersed, removing any ambiguity from fitting LPMs and increasing the reliability of 

tritium-based age interpretations. This is not yet the case for the Northern Hemisphere, where bomb tritium is still present in 

significant amounts within the groundwater systems still causing ambiguity in the age interpretations (Stewart et al., 2021). 245 

All age tracer analyses were performed at the GNS Science Water Dating Lab. Tritium was analysed in a 1 L unfiltered, 

unpreserved sample using 95-fold electrolytic enrichment followed by ultra-low-level liquid scintillation spectrometry 

(Morgenstern and Taylor, 2009). The detection limit was 0.02 tritium units (TU), and the reproducibility of a standard 

enrichment was 1% via deuterium calibration. Samples for analysis of CFCs and SF6 were collected in strict isolation from the 

atmosphere, as described by Daughney et al. (2007), using 125 mL and 1 L bottles, respectively. Concentrations of CFCs 250 

(CFC-11 and CFC-12) and SF6 were analysed at GNS Science by gas chromatography (GC) using an electron capture detector 

as described by Busenberg and Plummer (1992) and van der Raaij (2003). Detection limits were 3×10-15 mol kg-1 for CFCs 

and 2×10-17 mol kg-1 for SF6. Dissolved argon and nitrogen concentrations were measured simultaneously with CFCs by GC 

using a thermal conductivity detector (analytical accuracy is 1% and 3%, respectively). The argon and nitrogen concentrations 

were used to estimate the temperature at the time of recharge and the excess air concentration as described by Heaton and 255 

Vogel (1981), which allowed calculation of the atmospheric partial pressure (ppt) of CFCs and SF6 at the time of recharge. 

This study made use of all available age tracer data to constrain the LPM for the relevant site. Use of data from several different 

tracers allows their applicable age ranges and behaviours in the aquifer system to be accounted for, enabling derivation of the 

most robust LPM interpretation consistent with them all (Stewart and Morgenstern, 2001). Evaluation of the groundwater age 

distribution involved fitting of a LPM to the age tracer data using the TracerLPM workbook (Jurgens et al., 2012), following 260 

the approaches of Daughney et al. (2010) and Morgenstern et al. (2015). This involved use of the convolution integral to 

compare the measured tracer concentration at the sampling point (Cout) with its concentration in rainfall at the time of recharge 

(Cin), calculated following Eq. (1):   

𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜(𝑡𝑡) = ∫ 𝐶𝐶𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏)∞
0 𝑒𝑒−l𝑜𝑜𝑔𝑔(𝜏𝜏)𝑑𝑑𝜏𝜏         (1) 

where t is the time of observation, τ is the transit time (groundwater age), e-λτ is the decay term with λ = ln(2)/T1/2 (i.e. 265 

radioactive decay term for tritium with half-life T1/2 = 12.32 years) and g(τ) is the system response function (Zuber et al., 

2005). The time-series Cin for tritium input via rainfall was based on concentrations measured monthly at Kaitoke, near 

Wellington, New Zealand, since the 1960s (Morgenstern and Taylor, 2009), whereas the time-series for inputs of CFCs and 

SF6 were based on measured and reconstructed data from Cape Grim, Australia, and other southern hemisphere sites (Cunnold 

et al., 1997; Maiss and Brenninkmeijer, 1998; Prinn et al., 2000; Thompson et al., 2004). The system response function defines 270 

the shape of the distribution of ages within the water sample, for example, as arising from convergence and mixing of 

groundwater flow paths at the well during sampling. System response functions comprised by a singular or binary exponential 

piston flow model (EPM) have been shown to provide good matches to time-series age tracer data for a wide range of New 

Zealand groundwater systems (Daughney et al., 2010; Morgenstern and Daughney, 2012; Morgenstern et al., 2015), including 

in the Heretaunga Plains, a relatively homogeneous groundwater system with an unconfined zone upgradient and a confined 275 

zone downgradient (Morgenstern et al. 2018; Morgenstern & van der Raaij, 2019).  A singular EPM has two unknowns, T and 

f: 
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𝑔𝑔 = 0 for 𝜏𝜏 < 𝑇𝑇(1 − 𝑓𝑓)           (2) 

𝑔𝑔 = 1
𝑇𝑇𝑇𝑇
𝑒𝑒�−

𝜏𝜏
𝑇𝑇𝑇𝑇+

1
𝑇𝑇−1� for 𝜏𝜏 ≥ 𝑇𝑇(1 − 𝑓𝑓)         (3) 

where T is the mean residence time (MRT) and f is the ratio of the volume of exponential flow to the total flow volume at the 280 

groundwater discharge point, with T(1-f) being the time it takes for groundwater to flow through the piston flow section of the 

aquifer. A binary EPM combines two singular EPMs and hence has five unknowns: T1 and f1 for the first EPM, T2 and f2 for 

the second EPM, and r, the ratio of the two single EPMs in an overall system response function used to model the final water 

age distribution. For six of the sites considered in this study, the age tracer data could not be fitted by a single LPM, indicating 

that the age distribution had changed over time, and hence different age distributions were retained and treated as separate 285 

samples in the input dataset.   

3.2. Symbolic Regression and Gradient Boosted Regression Models 

SR and GBR models were developed using data from all sites in a single group; in other words, sites were not pre-segregated 

into different groups based e.g. on hydrochemical cluster, well depth, or any other characteristic. While we acknowledge that 

pre-segregation of input data followed by development of separate machine learning models is used in some studies, one goal 290 

of our investigation was to determine whether the SR and GBR algorithms could themselves account for any inherent 

differences in the age-chemistry relationships between sites, without pre-segregation. The effect of this approach is discussed 

in Section 4.1. 

SR models were developed using HeuristicsLab version 3.3.16.17186 (Wagner et al., 2014). SR settings allowed a maximum 

tree depth and length of 15 and 150, respectively, based on a multi-symbolic expression crossover with internal crossover point 295 

probability of 90%. SR grammar rules permitted arithmetic, exponential and logarithmic functions; permission of conditionals 

(e.g. if/then statements) was also assessed in terms of ability to improve model fits.  

GBR models were developed using the GBR package that is available with the open-source scikit-learn library in Python 

(Pedregosa et al., 2011). The hyperparameters were tuned to find the optimal parameters (tree depth = 4, sample split = 2 and 

learning rate = 0.05) that result in the best performance of the models. A stopping criterion was applied to determine the 300 

number of estimators (regression trees) required (if the model score was not improved by at least 0.01 in the last 50 iterations 

then the model was considered to have converged) and, in most of the cases, the models achieved their optimal solution at 

around 50 –75 estimators (boosting iterations).  

The first stage in developing the SR and GBR models was to generate an ensemble of independent models for each of nine 

selected percentiles (5th, 10th, 20th, 33rd, 50th, 66th, 80th, 90th, 95th) in the LPM-derived water age distributions. Hereafter these 305 

are referred to as ‘unchained models’ to differentiate them from the ‘chained models’ described below. The input dataset for 

the unchained models consisted of the sample-specific values for 21 hydrochemical parameters: Ca, Mg, Na, K, HCO3, Cl, 

SO4, Fe, Mn, SiO2, NO3-N, NH3-N, PO4-P, pH, EC, δ2H and δ18O (all measured in the lab), along with T and DO (measured 

in the field). The purpose of developing these unchained models for individual percentiles was to enable testing the validity of 

the shapes of the age distributions produced by the LPMs. For example, a site with an unrealistic LPM-derived age distribution 310 

might be identified by unchained SR or GBR models that perform well for some percentiles but not others.  

For both the SR and GBR methods, for each age percentile, ten data split realizations were generated by dividing the input 

data into testing and training subsets. We tested a range of test/train split ratios for each method, based on typical approaches 

used by practitioners use of these modelling methods. One hundred repeat models were constructed for each split realization. 

For the SR method, each split realization was constructed through independent and random division of ten input data 315 

duplicates, with a test/train split ratio of 33/66 found to deliver good stability for metamodel development. For the GBR 
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method, the input data was divided into ten folds in a 10-fold cross-validation procedure, and a test/train split ratio of 10/90 

was determined to be optimal. In the cross-validation procedure, each fold was sequentially “held-out” in the testing data with 

the remaining nine folds comprising the training data set; this was repeated 100 times with some shuffling of the data between 

folds, for each repeat. Then, for both SR and GBR, from the total of 100 models produced at each split realization or fold, we 320 

selected the four best performing models. The best performing models were indicated by the highest Pearson R2, as long as 

R2
Training ≥ 0.7 and ABS(R2

Training – R2
Testing) ≤ 0.2, ensuring adequately and similarly high goodness of fit across the training 

and testing datasets, analogously to the Akaike Information Criterion (Gomes et al., 2019).  We note that these criteria do not 

discuss model performance beyond model-to-measurement fits, and that selection of such criteria may result in biased model 

rankings, as discussed by Schöniger et al. (2014); however, these criteria are commonly adopted and appropriate in most 325 

contexts that data-driven modelling is used. 

Overall, for both SR and GBR, this approach produced a final group of 40 independent models for each of the nine above-

listed age percentiles (Fig. 4). These resulting model ensembles were summarized using the average, median, median absolute 

deviation (MAD), and standard deviation (SD) of the predictions for each of the nine percentiles in the age distributions. The 

SR and GBR methods also automatically determined the influence of each of the above-listed input variables with respect to 330 

model predictions for each age percentile, providing a quantification of the relative importance of each input variable for the 

prediction of groundwater age distributions.  

 

Figure 4: Schematic of workflow used for SR and GBR modelling. 

The second stage in developing the SR and GBR models was to implement a chaining approach that connected the models for 335 

the unchained percentiles in the age distributions. This was done to ensure that the separately simulated percentiles had an 

appropriate relationship to each other, e.g., that the value for the 10th percentile in the age distribution for any sample had to 

be greater than or equal to the 5th percentile in the age distribution at the same sample. The implementation of the chaining 

approaches for the SR and GBR models varied slightly. For the SR method, independent models were first developed for each 

of the nine percentiles in the age distribution as described above, then the model for each individual percentile was re-modelled 340 

based on the ensemble median value from all age percentiles; for example, the chained model estimate for the 5th percentile in 

the age distribution was based on the unchained models for all nine percentiles. For the GBR method, the first step was to use 

the hydrochemical data to develop an unchained model to simulate the 5th percentile in the age distribution across all samples, 

as described above. Then this model for the 5th percentile in the age distribution was subsequently used as input, along with 

the hydrochemical data, to develop a second model to simulate the 10th percentile in the age distribution across all samples, 345 

which in turn was used in conjunction with the hydrochemical data to develop a third model to simulate the 20th percentiles 

across all sites, and so on. For both the SR and the GBR approaches, the chained model development followed the same split 

and validation procedure as were used for the development of the unchained models. 
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4. Results and Discussion 

4.1. SR and GBR Model Performance 350 

The range in performance of the individual unchained models is illustrated for selected sites and percentiles in Fig. 5. Recall 

that each of the investigated percentiles was evaluated using its own suite of 40 individual models, each of which was applied 

to all samples in the input dataset. For all nine of the investigated percentiles and for the majority of sites, the individual 

unchained models produced a normal or near-normal distribution of ages with relative standard deviation of approximately 

45%. However, a multi-modal distribution of age estimates was produced by model ensembles for some sites and/or 355 

percentiles, e.g. as seen with the SR for the 10th percentile at the Waipatu site (mapID 36) in Fig. 5. Moreover, for a small 

number of sites within the test dataset, a few of the unchained models yielded very high and inaccurate age estimates that 

strongly biased the ensemble average, as shown by mean ≠ median, even though the individual model’s overall R2 remained 

high. To avoid this biasing for the few cases where it occurred, we characterised the central tendency and width of each 40-

member ensemble using the median and MAD instead of the average and SD.  360 

 

Figure 5: Range in predictions from ensembles of 40 individual unchained SR and GBR models for three different percentiles (10th, 
50th and 90th) and two selected sites. Solid and dashed vertical lines indicate ensemble means and medians, respectively. MapIDs in 
brackets link to the location of the sites on the map in Fig. 3. 

In general, the machine learning models provided good matches to the LPM age distributions (Fig. 6, Supplementary Table 365 

S1, and Supplementary figures S1-S4). Across all samples and all nine percentiles in the age distribution, the ensembles of 
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unchained SR models had average R2 of 0.83 and median absolute error (MAE) of 7.5 years, and the ensembles of GBR models 

had average R2 of 0.98 and MAE of 1.16 years. The chaining procedure provided improved fits for both the SR and GBR 

algorithms. The ensembles of chained SR models had average R2 of 0.94 and MAE of 4.4 years, and the ensembles of GBR 

models had average R2 of 0.95and MAE of 2.16 years, across all samples and all nine percentiles in the age distribution. The 370 

goodness of model fits obtained indicates that the hydrochemical dataset is well suited to estimation of the selected percentiles 

in the LPM-derived groundwater age distributions in this study area. 

 

Figure 6: Age distributions for selected samples based on LPMs (Morgenstern et al. 2018) compared to the chained SR and GBR 
models developed in this study (bars represent ensemble MAD). The legend in the upper left sub-figure is representative for all sub-375 
figures. The map ID following the underscore links with the location of the site on Fig. 3. Age distribution parameters shown are: 
MRT (MRT1, MRT2) and the fraction (f1, f2) of exponential to total flow volume for each EPM; EPM1/EMP2 is the ratio between 
two EPMs in a BMM; and MRTtot is the MRT between the two EPMs in a BMM. 

Within their overall performance, the SR and GBR models had slight variations in the goodness of fit across the nine modelled 

percentiles in the age distributions (Supplementary Table S1). For the unchained models, the ensemble mean R2 values for the 380 

SR and GBR algorithms are highest for the 50th percentile and decrease slightly towards both the lowest and highest percentiles, 

which represent the youngest and oldest water in the age distributions, respectively. The chained models also displayed this 

relationship between goodness of fit and the percentile being modelled, though to a less pronounced degree than for the 

unchained models. This finding may reflect that the youngest and oldest age fractions are most likely to have censored 

hydrochemical results for certain parameters, i.e. concentrations reported as being below the analytical detection limit. For 385 

example, as discussed in Section 2.3, young groundwaters are more likely to be oxic and hence contain near- or below-detection 

concentrations of Fe, Mn and NH3-N, whereas older groundwaters are more likely to be anoxic and therefore contain near- or 

below-detection concentrations of DO and NO3-N (Daughney et al., 2010; Morgenstern and Daughney, 2012). Thus, the 

approach taken in this study of replacing all censored concentrations with their corresponding analytical detection limits may 
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have impacted the ability of the metamodelling methods to discriminate or simulate the lowest and highest percentiles in the 390 

age distributions. Overall, the slightly poorer model fits produced by both the SR and GBR algorithms at the extremes of the 

age distribution suggest that caution should be exercised when using hydrochemistry-age relationships to evaluate the potential 

for the presence of contaminants such as pathogens, which tend to occur in the youngest age fraction of a water sample, or 

geogenic substances such as Fe or Mn, which are more likely to occur in oldest age fractions. 

The goodness of the SR and GBR fits also varied across the study area in relation to sampling location and bore depth (Fig. 7).  395 

 

Figure 7: Ensemble average MAE for each site across all nine modelled percentiles vs. bore depth (top graphs) and site location 
(bottom figures) for chained SR models (left figures) and GBR models (right figures). On the bottom maps, colours represent MAE 
and symbol size is scaled to bore depth. 

For the SR model, the poorer fits (MAE > 7 year) were confined to samples from bore depths < 70m. This relationship was 400 

not evident for GBR predictions. The model fits were also related to site location in a way that could not be entirely explained 

by the spatial variations in bore depth (e.g. deeper bores typically located nearer the coast). Site 4362 (mapID 4), which is 

located upstream of the plains shows good fits of MAE < 3 years with both SR and GBR. This is of interest as this site is the 

westernmost site used in this study, with the highest distance from all other sites. However, it is a shallow bore located in an 

area where Last Glacial gravel deposits have been mapped at the ground surface. No other bore is located where these deposits 405 

have been mapped on the surface, however, the Last Glacial gravels represent the main productive aquifer unit in the plains, 

and the majority of bores in this study source their water from this aquifer. These aspects of spatial and depth bias in model fit 

are inferred to arise from spatial variations in hydrochemistry caused by groundwater-surface water interaction and 

groundwater flow paths through the aquifer. However, such hydrochemistry-related biases in model fit were not systematically 
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related to the site cluster assignments shown in Figure 1, which justifies our approach of developing metamodels for all 410 

hydrochemical clusters simultaneously (Section 3.2). Moreover, there were few sites for which clear errors in the shape of the 

LPM-derived age distribution could be identified based on differences in the quality of fit of unchained model fits across 

different percentiles, so we conclude that the LPMs applied in this investigation are generally appropriate to represent the age 

distributions in the study area.  

Based on the results above, the SR and GBR methods are seen to produce equivalently good fits for the application in this 415 

study. This is in agreement with studies that successfully predicted groundwater age from hydrophysical data using 

metamodels (Fienen et al., 2016, 2018; Starn and Belitz, 2018; Starn et al., 2021), in particular with Fienen et al. (2016), who 

produced comparable results predicting groundwater age using three different machine learning approaches with the same 

input dataset.  Both, SR and GBR have their advantages and disadvantages with regard to model construction, transparency, 

adaptability to new parameters or applications, etc. For example, SR provides an explicit model equation as output, which is 420 

more transparent and straightforward to apply in other applications but may be subject to injection of bias by the modeller’s 

decisions for the allowable SR grammar rules. GBR is less transparent but may be less subject to the injection of modeller 

biases.  Both SR and GBR can be adapted to new parameters and modelling settings rapidly. Performance and accuracy of the 

two methods are very similar, and the results show that either metamodelling method can successfully be used to predict 

groundwater age distributions from hydrochemistry.   425 

4.2. Relationships between Hydrochemistry and Groundwater Age Distribution 

The hydrochemical parameters with most influence on the SR and GBR models were identified by scaling the relative variable 

weights for each model from 0 to 1, then determining the median and MAD of these weightings within each 40-member 

ensemble at each of the nine modelled percentiles in the age distribution. Sensitivity analysis was undertaken with the SR 

models, whereby the value for a given hydrochemical variable was increased or decreased by 10% while the values for all 430 

other variables were held constant. Variable weightings and sensitivity analysis for the unchained models were similar to those 

of the chained models, so the following discussion focusses on the chained models. 

PO4-P (DRP), NH3-N, DO and T (groundwater temperature) were found to be the parameters with greatest overall influence 

on the unchained models, having median weights across all age percentiles of 0.74, 0.55, 0.46 and 0.48 respectively, for the 

SR, and 0.37, 0.98, 0.17 and 0.20 for the GBR, respectively. All other hydrochemical parameters had median weights of less 435 

than 0.4 and most had median weights of less than 0.2 for the SR. Median weights for all other hydrochemical parameters for 

the GBR were below 0.2 (Fig. 8). Sensitivity analysis showed that, when the values of all other hydrochemical variables were 

held constant, a 10% increase in PO4-P or NH3-N resulted in a median increase in the estimated age of 3% and 1%, respectively, 

across all simulated age percentiles, whereas a 10% increase in DO caused a 1% decrease in the simulated age, but only for 

the 5th to 20th percentiles. Temperature was the most sensitive parameter, with a 10% increase in T causing the estimated age 440 

to decrease by approximately 20% across all percentiles. Sensitivity analysis showed that, for all other variables, a 10% 

increase in value resulted in a change of less than 1% in the estimated age for any percentile. This indicates, that for the specific 

case of this study area, reasonable estimates of site-specific age distributions can be generated with fewer hydrochemical 

parameters as input into the metamodels, though this could not have been known a priori. 



16 
 

 445 

Figure 8: Ensemble median variable weights (scaled from 0 to 1) from unchained SR and GBR models, for selected percentiles in 
the age distribution (10th, 33rd, 50th in red, 66th and 90th, shown from left to right for each variable).  Error bars represent the 
ensemble median absolute deviation. 

The importance of most hydrochemical parameters varied substantially within the individual models of each 40-member 

ensemble, as shown by relative MADs (MAD/median) of up to 60% (Fig. 8). This shows that, for a given age percentile, a 450 

particular hydrochemical variable could have high weighting in some models but low weightings for other models. This result 

likely reflects the high correlation among some hydrochemical variables (Fig. 2). Due to this correlation, if a particular variable 

is randomly selected for inclusion in the initiation of the SR or GBR algorithm, those variables to which it is correlated provide 

relatively little improvement in model predictions so tend to be excluded. For example, a model that includes K would be 

relatively unlikely to include Na, due to the correlation between them. However, because the SR and GBR algorithms are 455 

seeded randomly, models that include K (but likely not Na) as well as models that include Na (but likely not K) can be produced 

within a single 40-member ensemble – resulting in an overall higher MAD and lower median weighting for such variables 

across the ensemble. This interpretation is supported by the fact that the variables such as PO4-P, NH3-N, DO and T have 

relatively low correlations to other variables (Fig 2).  

4.2.1. Organic matter oxidation 460 

Consistent with a decrease in redox potential over time, the SR and GBR models identify that the concentrations of NH3-N, 

Fe and Mn all tend to increase with groundwater age, whereas concentrations of DO and NO3-N tend to decrease. These 

patterns are anticipated, based on observations of other New Zealand groundwater systems (Daughney et al., 2012; 

Morgenstern and Daughney, 2012) and the known sequence of energetics in the oxidation of organic matter in aquifers 

(McMahon and Chapelle, 2008). The strong positive weightings of PO4-P in the age models (Fig. 8) are inferred to reflect its 465 

release into solution concomitant with reductive dissolution of iron and/or manganese oxide minerals (e.g. Hongve, 1997; 

Johnson and Loeppert, 2006). Of note, PO4-P is retained as a predictor variable in over 90% of the individual SR models 

developed across all percentiles, indicating that the geochemical processes that control its concentration are omnipresent across 

the study area. The SR and GBR models do not identify a strong negative correlation between SO4 concentration and 

groundwater age (Fig. 8), suggesting that redox potential has not declined to sulphate-reducing conditions at a sufficient 470 

number of sites for this relationship to be prevalent in the dataset. Likewise, the SR and GBR models detect only weak 

relationships between groundwater age and HCO3 or pH, suggesting that the concentrations of these variables are not 
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exclusively controlled by previously reported relationships between organic matter oxidation, alkalinity and acidity (Scott and 

Morgan, 1990; Sverdrup et al., 2019). 

The results of this study can only at best provide semi-quantitative insights into the geochemical kinetics of organic matter 475 

oxidation in the Heretaunga Plains aquifer system, based on the rate of decline in redox potential as indicated by changing 

concentrations of the above-listed redox-sensitive parameters. Evaluation of the concentrations of DO, NO3-N, Fe and Mn 

indicates that the oxidative capacity of the Heretaunga Plains groundwater is dominated by DO (cf. Scott and Morgan, 1990). 

As noted above, the models in this study indicate that a 10% increase in DO concentration corresponds to a median decrease 

of approximately 1% in the estimated groundwater age.  Noting that different types of organic matter may oxidise at different 480 

rates (Westrich and Berner, 1984), for simplicity we assume that all organic matter in the study area is equally reactive 

(Middelburg, 1989) and that its oxidation is described by first-order kinetics (Tarutis Jr, 1993), such as ln[DOt] = (ln[DOt=0] – 

kt) (Langmuir, 1997). As an indicative result only, making the assumption that initial DO and organic matter concentrations 

were 8 mg/L and within the range 3-8 mg/L, respectively, across all sites, the models developed in this study indicate an 

average rate constant of logk (1/y) = -0.6, which is comparable to the values reported by Westrich and Berner (1984) and 485 

Middelburg (1989), albeit for marine sediments instead of for aquifers. Greater insight into the rate of organic matter oxidation 

in the Heretaunga Plains could be gained if future studies make measurements of the concentrations and reactivities of 

dissolved and solid-phase organic matter.  

4.2.2. Water-rock interaction 

Aside from reductive dissolution of iron and manganese oxides discussed in the previous section, water-rock interaction is 490 

expected to increase the dissolved concentrations of mineral-forming elements such as Ca, Mg, Na, K or SiO2 (Sverdrup et al., 

2019). These five hydrochemical parameters have low median weightings in the SR and GBR models developed in this study 

(Fig. 8), suggesting that they are not important predictors of groundwater age at the majority of sites. However, these same 

five parameters were retained in close to half of all models across all percentiles, suggesting that they are important predictors 

of age for at least some sites.  495 

We infer that the concentrations of Ca, Mg, Na, K and SiO2 are retained in the SR and GBR models primarily as a means of 

differentiating rainfall-recharged groundwaters from river-recharged groundwaters, which then allows the algorithms to apply 

appropriate age estimations depending on the relevant recharge source. As noted in Section 2.3, river-recharged groundwaters 

typically have slightly lower concentrations of Ca, Mg, Na, K and/or SiO2 compared to rainfall-recharged groundwaters, which 

results from the relatively faster accumulation of these substances during the passage of water through the soil zone, likely due 500 

to mineral dissolution (e.g. of carbonates), ion exchange and evaporation (Morgenstern et al., 2018). This inference is 

supported by the fact that the age estimates for the subset of rainfall-recharged sites are generally more sensitive to the 

concentrations of Ca, Mg, Na, K and SiO2 used as input to the models. This inference would be usefully tested through future 

investigations that evaluate the respective roles of silicate mineral weathering, ion exchange and evaporation during the 

passage of recharge through the soil zone in the Heretaunga Plains. 505 

4.2.3. Human impacts 

The SR and GBR models do not identify strong relationships between groundwater age and any of the commonly analysed 

indicators of human impact on groundwater quality. In New Zealand, human impacts on groundwater quality are most readily 

identified by elevated concentrations of NO3-N, sometimes co-occurring with elevated concentrations of Na, K, Mg and/or Cl 

(Daughney et al., 2012; Morgenstern and Daughney, 2012). That NO3-N is not a strong predictor of groundwater age in the 510 

Heretaunga Plains likely reflects that many of the sites are recharged from rivers, which have lower NO3-N concentrations 

compared to groundwaters that are recharged from rainfall (Section 2.2), and/or that the degree of impact evident in the 

recharge water has not changed substantially over time. Elevated concentrations of PO4-P in New Zealand groundwater can 
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arise from dairying land use, especially over gravel or sand aquifers (McDowell et al., 2015), but such land use is not common 

in the Heretaunga Plains (Smith et al., 2020), and hence PO4-P concentrations are instead inferred to reflect geogenic origin 515 

(Section 4.2.1). Concentrations of pesticides, emerging contaminants or microbial pathogens can also reveal human impact on 

groundwater quality but were not analysed in this study. 

4.2.4. Temperature 

The SR and GBR models reveal a strong inverse relationship between T and estimated groundwater age, i.e. as T increases, 

the modelled groundwater age decreases. Particularly for the higher age percentiles, T is among the variables with the highest 520 

median weightings across the model ensembles (Fig. 8). The available data from this study do not permit elucidation of the 

cause(s) of the strong inverse relationship between T and estimated groundwater age, but the following paragraphs present two 

concepts that could be explored through further investigations.  

One possibility is that an increase in temperature causes an increase in geochemical reaction rates, such that groundwaters 

interpreted to be younger based on the models developed in this study are also seen to be warmer. The relationship between 525 

T, reaction rates and estimated groundwater age can be semi-quantitatively evaluated using the Arrhenius expression (Eq. 4):  

𝑑𝑑 log 𝑘𝑘
d𝑇𝑇

= 𝐸𝐸𝑎𝑎
2.303𝑅𝑅𝑇𝑇2

              (4) 

where k is the rate constant, Ea is the activation energy, R is the gas constant, and T is expressed in the Kelvin scale. For the 

comparison of reaction rates k1 and k2 at two temperatures T1 and T2, the above expression can be arranged (Langmuir, 1997) 

as Eq. (5): 530 

log 𝑘𝑘1
𝑘𝑘2

= 𝐸𝐸𝑎𝑎
2.303𝑅𝑅

� 1
𝑇𝑇2
− 1

𝑇𝑇1
�           (5) 

In the application to the present study the above equation is aggregated across all reaction types because there is no available 

means of identifying specific types of reactions that may be more important than others. On this basis, the above equation 

suggests that the average Ea, aggregated across all reaction types, is approximately 25 kcal/mol, derived from T1 = 15°C = 

288K (the median across all samples), T2 = 16.5°C (a 10% increase above the median) = 289.5K, and k1/k2 = 0.8 (because the 535 

models developed in this study indicate that a 10% increase in T causes a median decrease of approximately 20% in the 

estimated age). This estimated value for Ea is in the range expected for mineral dissolution reactions (8-36 kcal/mol) and ion 

exchange (>20 kcal/mol) (Lasaga, 2018) and for organic matter decomposition (ca. 20-30 kcal/mol) (Leifeld and von Lützow, 

2014). The correspondence between these previously published values of Ea and the estimate derived in this study suggests 

that the effect of T on modelled groundwater age may indeed be driven by increases in the rates of reactions such as organic 540 

matter oxidation and water-rock interaction as discussed above. Accordingly, we surmise that T is retained in the models as 

an important modifier of the effects of such reactions on hydrochemistry. However, further research is required to rigorously 

test this possibility. 

Another possibility is that T may affect the estimated groundwater ages through hydrologic factors, rather than through 

geochemical kinetics as described above. For example, one possibility is that there is a significant difference in the temperature 545 

of slower-moving groundwaters that are recharged from rainfall compared to faster-moving groundwaters that are recharged 

primarily from river seepage (see Fig. 1). This hypothesis is not supported by the measured values of T, which show no 

significant differences arising from the inferred groundwater recharge source. Moreover, it is probable that river-recharged 

groundwaters, being sourced from higher altitude precipitation, would be cooler than rainfall-recharged groundwaters, which 

would lead to a relationship between temperature and age that is opposite to observed in this study. However, this study is 550 

limited by a relatively small number of samples, so further investigation with collection of samples across a wider range of 
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seasons and recharge conditions would be beneficial to elucidate any hydrological controls on the observed relationships 

between T and groundwater age.    

4.3. Applications 

4.3.1. Estimation of groundwater age distributions without age tracer data 555 

The SR and GBR models developed in this study can be used to estimate the values for the nine specific percentiles in the age 

distributions solely on the basis of groundwater chemistry, i.e. for sites and samples for which age tracer data are not available. 

To illustrate this application, we make use of data collected through the Hawke’s Bay Regional Council groundwater quality 

monitoring programme (Supplementary Material Table S3). These samples are collected using the same protocols and analysed 

with very similar procedures for the same variables as described in Section 3.1, so are considered suitable for use with the SR 560 

and GBR models developed in this study. The only exception is for B, F, δ2H and δ18O, which are not routinely measured by 

the regional council; however, these four variables all have low influence in the SR and GBR models (Fig. 8), and so we 

applied average values derived from all other sites, which we conclude would have had little influence for this application.  

The spatial variations in groundwater age for sites without available age tracer data are shown in (Fig. 3). In some areas, the 

SR and GBR estimates provide infilling of modelled age in between the locations where LPMs are currently available. For 565 

example, the SR and GBR age estimates can improve the understanding of the demarcation between the zones of younger 

river-recharged groundwater in contrast to older rainfall-recharged groundwaters (Fig. 1). The SR and GBR models can also 

estimate groundwater age quite distant from the nearest sites having available LPMs, thereby providing useful information for 

groundwater management where such information was previously lacking. 

The temporal variations in groundwater age can also be assessed using the SR and GBR models at sites for which time series 570 

groundwater chemistry data are available (Fig. 9). Application in this study suggests that the temporal shifts in the groundwater 

age distribution at a single site can be substantially larger than the ensemble MAD for a single sampling date. This suggests 

that temporal or seasonal variations in the groundwater age distribution can be reasonably large at some sites. This inference 

is supported by the age tracer results for the few sites that had been sampled on more than one occasion. For these sites, there 

were cases where the LPM age distributions were inferred to vary temporally or seasonally, based on observed shifts in the 575 

concentrations of the age tracers; these sites also displayed temporally variable hydrochemistry. Thus, it is reasonable to 

anticipate that seasonal or longer-term variations in recharge and/or abstraction on groundwater flows that are known to affect 

groundwater age distributions (Engdahl et al., 2016; Toews et al., 2016; Yang et al., 2018) may be indicated by temporal shifts 

in groundwater chemistry. The SR and GBR models developed in this study indicate such shifts in groundwater age 

distribution. Moreover, different percentiles in the age distribution at a single site can display quite different temporal patterns, 580 

as shown by a relatively constant 50th percentile but more variable 10th percentile at Site 413 (mapID 20), or the opposite 

pattern at Site 611 (mapID 77) (Fig. 9).  

We acknowledge that the SR and GBR models developed in this study were based primarily on samples collected in the period 

April to June and the years 2014-2019 (Section 3.1), hence caution must be exercised for their application to other seasons or 

time periods. We also acknowledge that the metamodels described in this paper are specific to the training region.  While the 585 

same metamodelling approaches may be used elsewhere where there is sufficient groundwater chemistry data, the same 

metamodel hyperparameters are unlikely to apply in other regions (Doherty and Moore, 2021). Therefore, age tracer training 

data sets would be required also for other regions. However, within a single hydrogeological setting, the metamodeling 

approach enables a space-for-time substitution while preserving the key processes that relate groundwater chemistry to 

groundwater age. We therefore conclude that the SR and GBR models can offer useful insights to spatial and temporal patterns 590 
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in groundwater age distribution based on chemistry and therefore assist sustainable groundwater management if age tracer data 

are not available.   

 

Figure 9: Temporal patterns in the estimated values for selected age percentiles at two sites based on SR models (left) and GBR 
models (right). Points and error bars represent the median and MAD for the relevant 40-member model ensemble, respectively. 595 
MapIDs in brackets link to the location of the sites on the map in Fig. 3. 

4.3.2. Constraining LPMs 

The approach taken in this study is to treat the LPM-based age distribution as truth, which the SR and GBR models are 

subsequently developed to reproduce. The SR and GBR models are therefore acting to generalise the relationships between 

chemistry and the LPM age percentiles based on a set of independent samples from a range of sites. That the SR and GBR 600 

models perform well across the Heretaunga Plains dataset indicates that there are generalisable relationships between 

groundwater chemistry and LPM age. Thus, samples for which the SR and GBR models perform poorly may indicate that the 

LPM age distribution is in fact in error and could be better constrained if outputs from the SR and GBR models were taken 

into account. 

The SR and GBR models may assist the choice of mixing model to be used when fitting an LPM to age tracer data. In the 605 

absence of any other information, the general practice is to select the simplest LPM mixing model that provides an adequate 

fit to the available age tracer data, in accordance with the principle of parsimony. Thus, an EPM (having just two optimisable 

parameters) is typically the mixing model applied for sites that have been sampled for age tracers on only one occasion, because 

a more complex BMM (with five optimisable parameters) would be under-constrained and therefore unjustifiably complex. 

However, the age distribution inferred from groundwater chemistry may indicate sites for which a BMM is more appropriate, 610 

even if the available age tracer data can be adequately fitted by an EPM. This case is illustrated for Site 1940 (mapID 75), 

which has only been sampled for age tracers on one occasion, but for which the SR and GBR models imply a more complex 

age distribution more consistent with a BMM than an EPM (Fig. 6). While we recommend that the fitting of the LPM should 

be based on the age tracer data, we suggest that the SR and GBR models can usefully guide which LPM mixing model(s) may 

be appropriate. 615 
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The SR and GBR models may also help to constrain the LPM parameter values, in particular in the Northern Hemisphere, 

where tritium age interpretations are still ambiguous. Depending on groundwater age, and time and frequency of age tracer 

sampling, for some sites, the age distribution parameters can robustly be constrained. These could be used for training the 

metamodels which could then be used to help estimate the parameters for the sites where age tracers are insufficient to constrain 

all model parameters.  Specific applications could also be to use the metamodels to constrain the second LPM model parameter 620 

where only one age tracer measurement in time is available, and to demonstrate variable ages in a well where lots of 

hydrochemistry data is available (e.g. quarterly monitoring) but only few age tracer samples.    

5. Conclusions and Future Work 

Overall, this study has shown that SR and GBR are useful approaches for codifying the relationships between hydrochemistry 

and groundwater age at the aquifer scale. This finding is consistent with previous studies that have identified statistical or first-625 

principles relationships between groundwater chemistry and age (e.g. Daughney et al., 2012; Morgenstern et al., 2012; Beyer 

et al., 2016, Sverdrup et al., 2019). The key advance in this study is to extend these hydrochemistry-age relationships to specific 

percentiles in the age distribution, thereby providing greater insights for groundwater management, such as the potential for 

occurrence of young or old groundwater fractions that may be associated with specific types of contaminants. 

We identify three avenues for extension of this study. First, the SR and GBR approaches could be extended to the estimations 630 

of groundwater age distributions from hydrochemistry in other aquifers, or even at the national and international scales. Such 

work would serve to identify, or otherwise, the universality and transferability of the age-hydrochemistry relationships and the 

models that encode them. A related opportunity is to investigate the utility of other datasets alongside hydrochemistry, e.g. 

well location, depth, elevation, etc., which may improve the elucidation of age-chemistry relationships identified in this study. 

A second opportunity for further work is to apply the age-hydrochemistry relationships to improve or calibrate kinetics models 635 

of water-rock interaction or biogeochemical processes (e.g. Sverdrup et al., 2019). A third opportunity for further work is to 

apply the age-hydrochemistry relationships in real-world groundwater management contexts. This could include assessments 

of the security of groundwater supplies in a changing climate, the occurrence and transport of contaminants, and the moderation 

of groundwater abstraction regimes. 

 640 
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