
We thank all four reviewers for their insightful and constructive comments, shown in black 
text below, to which we respond below using blue text.  

We have addressed all concerns and will action most suggestions in a revised manuscript, as 
detailed in our responses. As per the instructions of the journal, a revised manuscript has not 
been submitted at this stage.   

We have combined the review comments, and our responses, from all reviewers into one 
document and introduced numbered subheadings in the remainder of this document so that we 
can more easily cross reference our responses between the different reviewers who raised 
similar concerns. For each reviewer, we have identified the comments that we consider to be 
more substantive versus those that are relatively minor.  

In our view, the most substantive comments from the reviewers pertain to: 

• Whether the chemistry-based metamodels should have been trained by matching to 
LPM-derived age distributions as opposed to some other information source (Reviewer 
RC1, RC2 and RC4) 
 

• Whether the sites should have been segregated into different chemical clusters, then 
metamodels developed for each cluster separately (Reviewer RC1) 
 

• Our explanations of the drivers for the inferred age-hydrochemistry relationships 
(Reviewer RC3) 
 

• The appropriateness of the chaining approach we have employed (Reviewer RC4). 
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1.1 RC1 – Scott Wilson 

This paper makes an excellent and novel contribution to predicting transit times using a wider 
dataset than isotopic age tracers. I found the text enjoyable and easy to read, and the 
perspective is fairly balanced. I have two main comments on the approach taken, which have 
some bearing on the conclusions that can be derived from this work. 

1.1.1 Training chemistry-based metamodels on LPM-derived age distributions 

The main drawback of the approach taken is that the chemically based models use the lumped 
model age estimates as a response variable, ie training a model on another model which is 
acknowledged as having shortcomings, although this is the motivation for the paper. The 
difficulty is that this creates an ambiguity as to whether mismatches in the trained models are 
due to poor lumped model estimates, or poor local performance of the trained models, or 
both, or something else (eg parameter or model selection). As a suggestion, an alternative or 
complementary approach would be to firstly train models to predict the isotopic tracer 
con\centration. This would provide some prior information on the mismatch between the 
lumped model predictions, and ensemble predictions. This approach could perhaps inform 
how the lumped parameter estimates could be improved, which was suggested in 553.This is 
not a step necessary for this paper, but perhaps something that could be carried out in future 
work. 

This is a very good comment, which we interpret may have arisen in part because our original 
manuscript neglected to explicitly make the point that groundwater age and groundwater age 
distributions cannot be measured directly – they must be inferred using some form of model. 
Our original manuscript also laid out the two main options for modelling groundwater age – 
LPMs vs. numerical flow/transport models – and discussed their strengths and weaknesses. 

• We will change the original manuscript to make this point that groundwater ages must 
be derived from models.  

The reviewer commented that LPM-derived age estimates carry some uncertainty which 
would then be brought over into the metamodels. We agree, and this is of course also true if 
the age estimates had been derived from a numerical flow/transport model instead. We will 
modify the text to: 

• emphasise that metamodels will inherit the uncertainties of the models they were 
trained on. 

• make an additional point about potential spatiotemporal correlation and bias in the age 
estimates from LPMs vs. numerical flow/transport models.  The point is that both 
types of models contain uncertainties, but the LPM-derived ages may be less subject 
to spatially correlated biases. This can be a strength or weakness depending on the 
objectives of any given study, but we consider to be helpful for our present 
investigation, which we will note in the updated version of the manuscript. 

We acknowledge but disagree with the reviewer’s suggestion that our metamodels could have 
been trained directly on the measured concentrations of the individual age tracers, rather than 
on a single LPM-based age model based on a combination of all age tracer data. This is for 
several reasons. Firstly, the different age tracers have different age ranges over which they 
are valid. Secondly, some of the age tracers are gases whereas tritium is part of the water 



molecule, so are subject to different processes in the aquifer system (e.g. gas exchange). 
Thirdly, some of the age tracers can be subject to degradation or alteration in the aquifer, so 
the measured concentrations in the sample may not represent their concentrations in the 
original groundwater recharge. For all of these reasons, best practice in our lab and elsewhere 
is to carefully compare and evaluate the time-series measurements from all available age 
tracers and derive the most robust LPM interpretation consistent with them all. As a side 
note, we do agree with using the measured concentrations of the age tracers when calibrating 
a numerical flow/transport model, but that is not directly relevant to the present manuscript. 

• We will adjust the original manuscript to explain why the LPMs are developed by 
fitting to all available age tracer data for the relevant site. 

The reviewer is correct though, that we have considered that errors in the underlying LPM 
interpretation may be one reason why the metamodels fit more poorly at some sites. Indeed, a 
whole section of the original manuscript was dedicated to this idea (Section 4.3.2). 

• No modification of Section 4.3.2 is expected, because we consider that it already 
encapsulated the point being raised here by the reviewer. 

1.1.2 Segregating sites based on chemistry prior to developing metamodels 

The modelling approach applied here is to generate a global model from a subset of 
individual models, and it is assumed that the input data are spatially and temporally 
independent. However, the hydrochemical clustering results do indicate that the chemistry 
data have a predictable spatial and temporal variability. Some evidence of this infleunce is 
apparent in the results (eg Fig 6, T2_34), and hence in the applications section some spatial 
and temporal discrepancies are acknowledged. To overcome this, it may have been beneficial 
to train models on each hydrochemical cluster, although it has to be acknowledged that there 
is little data available for clusters 4 and 5. An alternative approach would be to introduce 
some additional predictive parameters in the model to account for spatial and temporal 
variability, eg elevation, depth, position, hydrochemical cluster. Some of these parameters 
have been used for validation, but they could also have been training parameters, or tested to 
see if they do inform model predictions. In doing so, one could have more confidence in the 
application of the models to areas with no age data.  

We agree that in some applications it can be helpful to pre-segregate observations and 
develop metamodels on the populations separately. Indeed, we had considered this approach 
as we were developing our own methodology. However, we opted to attempt to develop a 
single metamodel for the entire dataset, without pre-segregation, primarily to determine 
whether the SR and GBR algorithms could themselves account for any inherent differences in 
the age-chemistry relationships between sites. As shown, our results demonstrate that the 
models did perform well across all hydrochemical clusters. 

• At the start of the section in which the SR and GBR methodologies are described, we 
will insert a short paragraph to explain why we did not use pre-segregation of sites. 

• We will add a single sentence in the results section to explain that site-specific biases 
in model fit were not systematically related to the site’s cluster assignments shown in 
Figure 1, which justifies our approach of developing metamodels for all 
hydrochemical clusters simultaneously, 



We appreciate the reviewer’s suggestion that other datasets such as elevation, well depth, 
well location could also be used as input data, along with the site-specific hydrochemistry 
data. Indeed, assessing the information content of different input datasets is one of our 
research interests, and we are currently looking into using hydrophysical parameters in 
addition to the hydrochemistry. This is planned for a future paper.  

• We will add a sentence about future research in this direction to Section 5. 

1.1.3 Minor comments 

The paper would also benefit from some corections and the clarification of some points listed 
below. 

Title and line 60: SR and GBR methods are not metamodels per se. They are applied in this 
paper as metamodels because they are trained on the LPMs rather than raw observation data 

We agree and will change the introduction to clarify how we use the term metamodel in this 
paper.  

Line 97: Should be Heretaunga Plain not Plains (also elsewhere) 

No change will be made to the manuscript because “Heretaunga Plains” is the most common 
usage and is also being used by Hawke’s Bay Regional Council, the regional governing 
authority for this area (e.g., https://www.hbrc.govt.nz/environment/aquifers/, 
https://www.hbrc.govt.nz/home/article/851/the-plan-for-healthier-heretaunga-plains-
waterways?t=featured&s=1 ).  

Line 125: There are red lines on Fig 1 which are unreferenced. Are these flow barriers? It 
seems odd that there is a flow path towards a flow barrier (centre top) 

Good find. The red lines identify areas where Morgenstern et al. (2018) found indication that 
there is no surface water flow contributing to the main aquifers. We will add an explanation 
to the figure caption.  

Line 154: The clustering detailed in the hydrochemistry section provides some background 
context, but is not used in the modelling or subsequent analysis. 

See our reply in subsection 1.1.2 above. As noted, we now explain why the hydrochemical 
clusters are not used as input to the metamodeling, and we discuss the implication of this 
approach in our results section.  

Line 219: It’s good practice to state that this is the response variable for the statistical 
modelling, and the hydrochemistry data are the predictor variables 

Good point. We will amend the text to include this. 

Line 247-249: How much error is the distance to these input signal datasets likely to 
introduce to the age estimates, and how would that compare to the error introduced by the 
EPM? 

https://www.hbrc.govt.nz/environment/aquifers/
https://www.hbrc.govt.nz/home/article/851/the-plan-for-healthier-heretaunga-plains-waterways?t=featured&s=1
https://www.hbrc.govt.nz/home/article/851/the-plan-for-healthier-heretaunga-plains-waterways?t=featured&s=1


We agree that if a different model was used, that spatial correlations within their error 
functions can be explored, however in this project we adopted an average error term for 
simplicity. Spatial correlation within error functions could be investigated in future work. 
However, we believe that this choice doesn’t undermine the general conclusions of this work. 
Generally, the model simplification error introduced by the LPM would tend to create larger 
errors than the spatial distance to the input signals. As also discussed in Section 1.2.1 in this 
document, a detailed analysis of the possible errors and their propagation through to the age 
distribution estimates is a complex topic and beyond the scope of this paper.  

Line 269: Were not was 

This seems to refer to this sentence: “SR grammar rules permitted arithmetic, exponential 
and logarithmic functions; permission of conditionals (e.g. if/then statements) was also 
assessed in terms of ability to improve model fits.” We consider that the original grammar 
was correct because the word ‘was’ refers to the word ‘permission’, which is singular. 

Line 273: The primary aim of tuning is to improve model performance, not assist 
convergence 

Agree. We will change the text accordingly, as follows: ‘The hyperparameters were tuned to 
find the optimal parameters (tree depth = 4, sample split = 2 and learning rate = 0.05) that 
result in the best performance of the models.’ 

Line 278: The terms ‘chained’ and ‘unchained’ models is unorthodox, and perhaps not an apt 
description of what the models represent. Perhaps these would be better referred to as 
‘independent’ (see line 276) or ‘individual models’, and the chained models as ‘ensemble 
models’ 

No change has been made in response to this reviewer comment, though we do acknowledge 
that the terminology is tricky, given the complexity of the methods we have used.  

The terms for ‘unchained’ and ‘chained’ models are based on the “chained regression” 
modelling approach, which is for example used in the RegressorChain scikit.learn class that 
we are employing in the GBR models. This terminology is widely used.  

We do not favour the reviewer’s suggestion to replace the term ‘unchained’ with a term such 
as ‘independent’ because for clarity we repeatedly use the latter term to emphasise that 
unchained models are constructed individually (i.e. independently) for each of the modelled 
percentiles (the chained models are too). To use the term ‘independent’ in more than one way 
would make the manuscript more difficult to follow.  

We also do not favour referring to the chained models as ‘ensemble models’ because we in 
fact applied an ensemble model approach with both the ‘unchained’ and the ‘chained’ 
models. We believe this is already adequately explained in the text and depicted in Figure 4. 

Line 286: Why do the train/test splits differ for the two models? This approach doesn’t enable 
a clear comparison of modelling performance between the two models to be made 

We compared a range of test/train split ratios based on typical approaches used by 
practitioners of these modelling methods. We will amend the text to point this out and will 



also modify the same paragraph to explain that the final selection of test/train split was based 
on these tests that we had conducted. 

For GBR, we found that a 10/90 % test/train split (i.e. K = 10-folds) achieved a better, more 
consistent performance with our smaller data set (76 inputs) compared to larger split ratios 
(e.g. 20/80% and 30/70%). When we decreased K (e.g., K=5 etc.), we provide a smaller 
training set for GBR models to learn from, and the performance of the GBR models is limited 
by the amount of data. 

For SR, a test/train ratio of 33/66 provided good stability. Due to the random sampling 
procedure in the SR technique, we understand that even if we had followed the same split 
ratio, there could be some method specific small discrepancies in the test/train sample 
selection procedures between SR and GBR procedures.  

286: As a comment, a 10/90 split is quite heavy-handed and could lead to overfitting. The 
unchained GBR R2 values are very high, although this is also true for the SR R2 values 

No change has been made in response to this comment. Here, the split (K) is defined by the 
kfold cross-validation procedure, and this 10-fold cross-validation resulted in 10/90 % test-
train split. 10/90 % test-train split in GBR achieved a better, more consistent performance 
with our small data set (76 inputs) compared to larger split ratios (e.g. 20/80% and 30/70%). 
Scikit learn cross-validation usually uses 10-fold as the default value and it is known that this 
10-fold work well with smaller data sets as the models are trained with 90% of data, resulting 
in lower bias in estimates. Also, by using a strict model selection criterion we have 
minimised the effects of overfitting. Also see response to previous comment. 

Line 290: There seems to be an error in the Pearson formulas 

Good catch. Symbols must have been converted between versions. We will correct this in the 
updated document. 

Line 375: Last Glacial (is a noun) 

Good point. Will change this. 

Line 399: The third value is 1.7 (ie >1) 

Also a good catch. Will correct this with 0.17. 

Line 405: Perhaps the models could achieve good age distributions with substantially less 
parameters? 

We agree that our results demonstrate that good estimates of the age distributions can be 
achieved with fewer chemical parameters as input. While this is implicit in the discussion in 
our original manuscript, we didn’t say so directly so will amend that. 

Line 410: It might have been more informative to plot the cluster results here rather than the 
ensemble weights, since the most informative parameters are already described in the text. As 
a reader, I’m intrigued by the relationship between the model performance and the clusters. 



No additional change has been made in response to this comment. We opted to present the 
results according to parameter weights in order to demonstrate the hydrochemical variables 
that exert greatest influence in the model fits across all sites. As per subsection 1.1.2 above, 
we will already add a sentence to explain that there were no strong differences in model fit 
for the different clusters, at Line 378. Indeed, some of the clusters contain very few sites so 
we would not likely expect to distinguish statistically different parameter weights if 
metamodels were developed for clusters individually.   

Line 434: Perhaps water chemistry has some influence of the source rock, which wouldn’t 
necessarily be reflected in the age estimates 

No change has been made in response to this comment because we consider that it is 
consistent with what the original manuscript already reported. We agree that the chemistry at 
any point reflects the water-rock interaction both from the point of recharge and along the 
whole flow path to the sampling point. There are other factors that would also affect the 
evolution of chemistry over time, such as microbial processes. As noted in subsection 1.1.2 
above, our approach in this study was to attempt to develop metamodels for all sites 
simultaneously, to determine whether they could identify these age-chemistry relationships 
themselves.  Our methods were shown to be effective in this context, but metamodels would 
need to be retrained if these same methods are to be applied in a different catchment. Line 
517: It’s ambiguous how these parameters were treated. Were their values set to the detection 
limit? 

As the parameters B, F, oxygen-18 and deuterium are not routinely monitored, we used 
dummy values equal to the average across all samples in the predictor dataset. Due to the 
generally low weighting of these parameters, there should be very limited impact from this on 
the results. We will clarify this in the text.  

Line 522: I think this claim is a bit of a stretch since there are no spatial aspects to this study. 
The model is aspatial, and global, and appears to generalise well to most, but not all the data. 
The model has the potential to be applied to other areas with confidence if the successful or 
unsuccessful predictions could be identified as having an association with something eg a 
particular cluster. NB this comment also applies to the last sentence of the abstract. 

We accept this comment. We will remove the term ‘spatial extrapolation’, but we maintain 
that the SR and GBR models can produce estimates of age distribution in areas of similar 
hydrogeological regimes even where no age tracer measurements have been made. The 
application described in Section 4.3.1 illustrates that doing so provides rich information about 
age distributions in areas where they would not have otherwise been available. 

Line 543-547: I don’t think these statements are valid, particularly in light of the preceding 
sentences. There is no spatial aspect to the modelling to this modelling approach, it only uses 
age and chemistry data. 

We feel that the reviewer has slightly misinterpreted the intent of statements made in the 
original manuscript. Our view is that the metamodeling approaches demonstrated in this 
paper can be applied in other catchments where sufficient age and chemistry data are 
available. While we already note that it is not reasonable to apply a metamodel from one 
catchment to another catchment, we state that within a single catchment the metamodels can 
provide estimates of age distribution where no age tracer concentrations have been measured, 



as long as chemistry data are available. We will slightly modified the sentence on Line 543 to 
indicate that applications within a single catchment must pertain to a single hydrogeological 
regime. 

Line 578: Which of these models would you have the most confidence to apply elsewhere? 

The performance of these models in other catchments will likely be comparable if the 
catchment has a similar hydrogeological regime. The similarity or not of the hydrogeological 
systems and the key hydrochemical processes are likely going to be the most significant 
considerations for applying either of these modelling approaches, rather than any differences 
between these modelling approaches. As mentioned above, the purpose of the paper was not 
to compare the model performance but rather to demonstrate the utility of  metamodels in this 
context using two different models and their typical model set up (mimicking practitioners 
use of these modelling methods). As stated in the original manuscript (from line 383 
onwards), we believe that either method would be suitable for similar application elsewhere, 
depending on user requirements, experiences and understanding. 

1.2 RC2 – Camille Bouchez 

This work explores the use of metamodelling techniques to predict groundwater age 
distributions from hydrochemistry. It is a novel and interesting contribution aiming at 
increasing the availability of groundwater age information from easily available 
hydrochemical data in catchments. The knowledge gap is convincing and the paper is nicely 
written. However, I have some comments that should be addressed before publication. 

1.2.1 Training chemistry-based metamodels on LPM-derived age distributions 

My main concern comes from considering the LPM-derived age distributions as the true 
representation of groundwater age distribution, which is later used as the metamodel 
prediction target. I understand the interest of this choice, but I think it is a strong assumption 
that should be further discussed in the paper. In particular, the following points are missing: 

• Where are the age tracer data? They are not in the Supplementary Material as 
indicated l. 219, and I could not easily find them in Morgenstern et al. 2018. There is 
an extensive description of how these data where acquired (l. 228-238) and how they 
are used to fit LPM (l. 238-264) but results are never presented in the paper while 
they are very important. Age tracer data fitted by the LPM must appear in 
Supplementary Material, to evaluate the confidence in the LPM predictions later used. 

We thank the reviewer for pointing this out. The majority of, and currently publicly available 
age tracer data, together with information on tracer inputs, are provided in Morgenstern & 
van der Raaij (2019). It was an oversight from us to not include the reference to this report, 
and we will amend the relevant sections accordingly. 

Morgenstern U, van der Raaij RW. 2019 Groundwater residence time assessment of Hawke’s 
Bay municipal water supply wells in the context of the Drinking-water Standards for New 
Zealand. Lower Hutt (NZ): GNS Science. 48 p. https://doi.org/10.21420/8KKH-4W33. 2019. 

https://doi.org/10.21420/8KKH-4W33


• Without this, it is hard to evaluate uncertainties associated with the LPM-derived age 
distributions. Would it be possible to estimate the uncertainties? How much are the 
trained models sensitive to the LPM? Could uncertainties in LPMs explain part of the 
errors? 

We agree that this would be an interesting topic to study, but this is a separate study in itself. 
Fitting LPMs to age tracer datasets is subject to several error sources, including the number 
of different age tracers used, their age and error ranges, the number of measurements at the 
same XYZ location over time, and the use of binary or single mixing models (dependent on 
the hydrogeologic system). Therefore, the combination of the errors and how they propagate 
into the metamodels is quite complex. A paired simple-complex model comparison would be 
one such methodology that could be used (Doherty & Christenson 2011). We also did touch 
on in the paper that potentially the metamodelling approaches could be used to identify issues 
with the LPM interpretations.  

Doherty, J. and Christensen, S. 2011. Use of paired simple and complex models to reduce 
predictive bias and quantify uncertainty. Water Resources Research, 47, 
https://doi.org/10.1029/2011WR010763. 

1.2.2 Explaining the age-hydrochemistry relationships 

My second main concern comes from the relationships obtained between hydrochemical data 
and groundwater age distribution and the processes that could explain them. 

• Based on which argument and figure can you tell that “NH3-N, Fe and Mn all tend to 
increase with groundwater age, whereas concentrations of DO and NO3-N tend to 
decrease” (l. 424)? This affirmation does not appear clearly on Figure 8 and it does 
not appear clearly either in the correlation matrix Figure 2. 

Figure 8 displays the relative weightings of the hydrochemical parameters in the metamodels. 
It does not, nor is it intended to, display the correlations between the variables.     

Figure 2 does indeed show the magnitude and direction of correlations among hydrochemical 
variables across the whole dataset. For example, DO is seen to be positively correlated with 
NO3-N (r = 0.2) but negatively correlated with Fe (r = -0.2), Mn (r = -0.3), NH3-N (r = -0.1) 
and PO4-P (r = -0.4, mistakenly labelled as DRP, which will be changed). While some of 
these appear weak, it’s because Pearson’s r is a measure of linear correlation whereas several 
of the hydrochemical relationships are known to be non-linear, as shown for the Heretaunga 
Plains data below (note log scales). The non-linearity in relationships between redox-
sensitive parameters is expected given that they tend to be consumed through microbial 
respiration in a step-wise sequence; for example, NO3-N is usually has to be largely depleted 
through denitrification before appreciable concentrations of NH3-N build up. We will add a 
short comment to this effect. 

https://doi.org/10.1029/2011WR010763


  

 

 

• I found interesting to try to quantify the consumption of DO in the catchment, by 
assuming that the organic matter oxidation is only related to DO. However, no 
explanations are given on how the average rate constant was derived and additional 
information are required. A first-order kinetics on the DOM concentration was 
considered, therefore not accounting for the DO concentrations (if I understood 
correctly from the reference given). Is it correct? It should be specified. Which 
groundwater age percentile was considered for the calculation? How were the DOM 
concentrations averaged? 

We appreciate this interest from the reviewer. Our aim here is just to provide a general 
indication of the sorts of insights that could be generated on DO consumption rates if better 
data were available. We caution that our original manuscript acknowledged that the rate of 
DO consumption can only be evaluated semi-qualitatively at best from the data we have 
available. We will modify the wording to make this clearer. 
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We have corrected an error at Line 445 in the reporting of our estimated rate constant (k). 
The original manuscript stated that k = -0.6, but actually this should have been log k = -0.6. 

To make the calculations easier to follow we will add the first-order kinetic rate expression to 
the text. 

An important point that we didn’t make clearly in the original manuscript is that the decline 
in DO concentration over time depends on the organic matter concentration in the 
groundwater, either introduced via recharge or acquired during groundwater passage through 
the aquifer. We will clarify this in the updated manuscript. 

An illustrative plot is shown below. It displays the measured concentrations of DO vs the 
median of the LPM-derived age distribution for each site. Two model curves are shown based 
on the rate equation now given in the text. The models assume that the governing reaction is 
CH2O + O2 = H2O + CO2. Both model curves assume the same rate constant (log k = -0.6) 
and the same initial concentration of DO (8 mg/L), but the top and bottom curves assume 
different initial organic matter concentrations of 3.3 and 6.6 mg/L, respectively. Note that 
organic matter concentrations are not typically measured in Heretaunga Plains groundwater 
or other aquifer systems in New Zealand, so these values were just selected to bracket the 
dataset – but they are potentially reasonable based on overseas studies.  

We welcome advice from the Editor as to whether inclusion of such a plot would be valuable 
for the manuscript. Our initial sense is that it is based on so many assumptions that it would 
be better to exclude, but we would welcome feedback. 

 

 

• The inverse relationship between age and temperature is not expected as we would 
expect that older groundwater shows higher temperature. But this relationship is really 
strong and I think this paper would highly benefit from a close look at this 
relationship and clarifications in the explanations given. I do not understand the 
calculation of the activation energy made and I doubt the interpretation that is made 
from it. First, it somehow considers an aggregation of all reaction types. Secondly, 
where does the k1/k2=0.8 come from? Here, the age ratio is 0.8. But why would the 
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kinetic rate ratio be equal to the age ratio? I agree that an increase in T would increase 
the reaction rates. However, how do you relate this to the effect of T on modelled 
age? Please clarify the process that is presented here to explain the inverse 
relationship between age and temperature. I would be more convinced by a 
hydrological explanation. The paper would benefit from a more convincing 
explanation of the relationship obtained between temperature and age. 

We appreciate the reviewer’s interest in this finding. Indeed, the strong inverse correlation 
between T and the modelled groundwater age was a surprising result for us as well.  

In the updated paper, we will clarify that the available data from this study do not permit 
elucidation of the cause(s) of the strong inverse relationship between T and estimated 
groundwater age, and that the following paragraphs simply present two concepts that could 
be explored through further investigations. 

We feel that the Arrhenius Equation is quite well established and so shouldn’t require further 
explanation in the text, but we will a reference to Langmuir (1997), which contains these 
same equations. 

In the application to the present study, the Arrhenius equation has to be aggregated across all 
reaction types because there is no available means of identifying specific types of reactions 
that may be more important than others, or applying the equation to any particular type of 
reaction. We clarify this in the paper.  

The reviewer asks why the reaction rates at two temperatures should be tied to the ratio of 
ages. This is because we assume that there is a fixed reaction rate constant for each 
temperature, so a given reaction will proceed at a different rate for the two temperatures 
being compared. For the reaction to have progressed to the same degree from the same initial 
chemical condition, our results suggest that the warmer system will take less time. Assuming 
that the form of the kinetic reaction equation doesn’t change (for example it remains first-
order), then the ratio of times for the reactions to progress to the same point should be equal 
to the ratio of their reaction rate constants. 

• Relationships between Ca, Mg, Na, K and SiO2 and age would highly depend on the 
aquifer lithology. Would these elements be better predictors of groundwater age if an 
a priori classification based on the rock lithology was made? 

This is a suggestion made by Reviewer RC1, to which we reply in subsection 1.1.2 above.  
As noted there, we will add an explanation of why we did not apply an a priori segregation of 
sites based on rock lithology, and we will also add a sentence to our results section that 
justifies our approach. 

1.2.3 Minor comments 

Fig.1: What are the red lines? 

Good find. The red lines identify areas where Morgenstern et al. (2018) found indication that 
there is no surface water flow contributing to the main aquifers. We will add an explanation 
to the figure caption. 



l. 136: it would be interesting to give the value of the recharge rate of the area 

Rakowski & Knowling (2018) estimate the total recharge to the aquifer to be approximately 
264 M m3/year, of which losing rivers contribute about 185 Mm3/year, and 79 Mm3/year 
come from rainfall recharge. We will add this to the updated manuscript version and will also 
modify the text slightly to make clearer that this is an estimate only.  

Rakowski, P. and Knowling, M. J.: Heretaunga aquifer groundwater model: development 
report, 182 pp., 2018. 

Line 140: what is the confined aquifer zone near the coast? Maybe worth showing on the 
map? 

This is a good suggestion. We agree that it could be useful to show the confined aquifer zone 
on the map. However, the confined aquifer boundary in the Heretaunga Plains is currently in 
the process of being updated with new data. Alternatively, we could show the currently 
mapped extents of fine (sand, silt, clay) terrestrial and estuary deposits at the ground surface 
in the plains if this is seen as useful. 

Line 195: there is a confusion between the text and Fig. 3, one refer to mean residence time 
and the other to the 50th percentile, please correct. 

Good catch. We will change this in the text. 

Figure 6: At least for the example given in Figure 6, the lumped parameter model should be 
described in the main text (singular or binary EPMs? Which values of the parameters?) 

We agree and will action this in the next version of the manuscript. 

Line 337: MAE : Mean Absolute Error? 

Good catch. We must have missed explaining this in the paper. In this paper, MAE stands for 
Median Absolute Error. We will add this to the manuscript. 

Figure 8: change DRP for PO4-P as this is how it is referred to in the main text 

This will be corrected in the next version of the figure. We have also checked the other 
figures and have found other instances of this that will also be adapted. 

Line 540: I wonder of the generalization of the approach and on the application of the trained 
model elsewhere. The obtained hydrochemistry-age relationships are not easy to explain (at 
least for temperature), and therefore it is difficult to tell if they are applicable elsewhere or if 
they are only related to some local effects. Would other predictive parameters such as depth, 
distance to the river, or elevation inform on water age predictions? 

We agree. We are currently looking into using hydrophysical parameters in addition to the 
hydrochemistry. This is the plan for the next paper. We will add a sentence about future 
research in this direction in Section 5.The authors acknowledge that the work might be only 
applicable to the selected catchment. Is there another similar catchment, where age data are 



available and where the models could be applied to determine groundwater age distributions 
from hydrochemistry, in order to validate the method? 

Testing and validating of the models in other catchments is planned for further work. 

1.3 RC3 – Anonymous referee 

Overall, this is an interesting metamodeling application using water quality information to 
emulate a lumped-parameter model and make forecasts of groundwater age. Two methods 
were used (gradient boosted regression and symbolic regression) with advantages to each and 
with generally similar performance. The authors also make a detailed interpretation of the 
parameter and model behavior. 

This is a fine contribution and I have just a few minor comments to consider. 

1.3.1 Minor comments 

Line 61: There is some ambiguity to how the model is described here. It’s not really trained 
on data, but rather is trained on the LPM model that, in turn, is trained on data. Being super 
clear here is important, particularly for readers less familiar with metamodeling 

This is a good suggestion. As noted in our response to RC1, we will clarify this in the 
updated manuscript. 

Figure 1 and in the text: The clusters from previous work are both identified on the figure and 
in the text, but no context is provided beyond a reference to previous work. A sentence or two 
would be key to explain this. 

We use the clustering from previous work for two purposes.  The first purpose is just to 
simplify the description of hydrochemical variations across the Heretaunga Plains aquifer 
system. We will add a sentence to explain this rationale at Line 168. 

The second purpose we use the clustering for is to test whether the age models are able to 
perform adequately on all groundwater chemical categories, but without have pre-segregated 
the dataset and training separate machine learning models for each cluster. Please note our 
responses to similar comments from Reviewer RC1 in subsection 1.1.2 above.  As noted 
there, we will add an explanation of why we did not apply an a priori segregation of sites 
based on rock lithology at Line 266, and we will add a sentence to our results section at Line 
378 that justifies our approach. 

Figure 2 and elsewhere: Many of these water quality constituents are obviously identified by 
their chemical formulae, but some of not defined. Even if it’s in supplemental material, a 
table defining the quantities would be helpful. 

We agree that this is an oversight from us. We will add a table to the supplemental material 
as suggested and provide a reference to the table in the text. 

Abbreviation Name Units 
Ca Calcium mg/L 



Mg Magnesium mg/L 
Na Sodium mg/L 
K Potassium mg/L 
HCO3 Bicarbonate mg/L 
Cl Chloride mg/L 
SO4 Sulphate mg/L 
NO3-N Nitrate-nitrogen mg N/L 
NH3-N Ammoniacal nitrogen mg N/L 
PO4-P Phosphate-phosphorus mg P/L 
Fe Iron mg/L 
Mn Manganese mg/L 
SiO2 Silica mg/L 
B Boron mg/L 
F Fluoride mg/L 
pH pH pH units 
EC Electrical conductivity µS/cm at 25°C 
DO Dissolved oxygen mg/L 
T Temperature °C 
δ18O Oxygen-18 per mil (‰) 
δ2H Deuterium per mil (‰) 

 

Line 290: There seems to be a formatting glitch here – hard to understand what the equation 
is meaning to explain. 

Good catch. Symbols must have been converted between versions. As already noted in our 
response to RC1, we will correct this. 

Line 327: more formatting glitches 

Another good catch. Will correct this.  

Lines 359-362: This is a great point and I appreciate the context because it’s true that the 
extrema of the distribution would be of interest to many users. 

We thank the reviewer for support of this point made in the original manuscript. 

1.4 RC4 – Anonymous referee 

This manuscript aims at assessing the validity of using two machine leaning techniques to 
extrapolate beyond available groundwater age data and infer the lumped RTD from 
hydrochemistry. 

This contribution is novel and appears quite appealing to complement tracers dataset which 
are costly and time consuming. 

The manuscript is nicely written and easy to follow.  



1.4.1 Training chemistry-based metamodels on LPM-derived age distributions 

I have reservations about the choice of the LPM models as calibration targets. I understand 
that the study is closer to the reality in which the age distribution is unknown. Still, I consider 
that it would have been much stronger to test the validity of the methodology on a pure 
synthetic case controlling every aspect of the problem: data and associated uncertainty, full 
shape of the age distribution, etc. An important aspect as well is that, without a priori 
information about the age distribution, a few LPM differing in their hydrogeological 
conceptual representation can equally fit. My point is that it is difficult to evaluate the 
validity of a calibration or inference methodology on real largely under-constrained cases. 
One way to tackle this would be I think to highlight the fact that the system studied here is a 
“not so complex” system (a textbook system?) and have been widely studied so that the target 
LPM is a more than reasonable estimation (see my minor comment below). 

Please refer to our response to Reviewer RC1, given in subsection 1.1.1 above. As listed 
there, we have made several modifications to the manuscript to clarify and justify our 
approaches. 

The reviewer suggests that we could have conducted a purely synthetic study based on 
models in which all parameters and processes were fully constrained. We did consider this 
idea and may pursue it in the future, but we ruled it out for the current investigation because 
we considered the chemical process datasets and models to be too uncertain to be useful.  
More detail is on this below. 

In order to undertake a purely synthetic study we would need to develop a model of the 
groundwater flow and transport system. Much of this modelling has already been undertaken. 
Simulations are already possible for tritium transport and particle tracking or direct age 
simulation to enable the age distributions of groundwater to be evaluated spatiotemporally 
across the model domain. Further work is underway to improve the existing groundwater 
flow and transport models but is not yet published. 

In order to undertake a purely synthetic case study we would also need to implement a model 
of the chemical evolution of groundwater over time. One option would be to use a forward 
simulation based on lab-derived reaction rates, e.g. using a programme such as PHREEQC, 
Geochemist’s Workbench, etc. The other option would be to apply a reaction rate model 
based on field observations, such as PROFILE or ForSAFE (see Sverdrup et al. 2019, cited in 
the original manuscript). In either case, we would need to be certain that these models contain 
geochemical processes that are relevant to our particular field location. 

But just as important, regardless of which type of geochemical reaction model was selected, 
we would have the major challenge that we do not have data including but not limited to: 1) 
the mineralogical composition of the aquifer materials or how they vary spatially; 2) the key 
factors such as reactive surface area, which control water-rock reaction rates; 3) microbial 
processes and their rates and spatial variability; or 4) dissolved and solid phase organic matter 
concentrations and their reactivities.   

The result is that we felt that we could conceivably develop a groundwater flow and transport 
model with accompanying estimates of age distributions, but our ability to model the 
geochemistry would be too underconstrained to be useful. 



1.4.2 Chaining approach 

I have reservations as well about the independence for the percentiles and the further chaining 
approach. It appears to me that it goes again physics and flow mechanics to consider 
percentiles as separate entities, and not the age distribution as a whole. My point is that a 
LPM or numerically-generated distribution lies on a hydrogeological conceptual 
representation which describes the functioning of the system. It has been shown (Leray et al, 
2019: https://doi.org/10.1016/j.jhydrol.2019.04.032) that local modification of the system 
properties affects not only local flow lines and mass balance locally but the overall response 
and functioning of the system and consequently the age distribution. So it is confusing to me 
that the distribution is considered by part (even if the chaining approach intends to 
reconstruct the puzzle) 

We thank the reviewer for this insightful comment. We agree that the percentiles in a single 
age distribution must have a mathematical relationship driven by the groundwater flow 
regime. The approach that we took in the manuscript should not be taken as a disagreement 
with this statement – rather, our approach was followed to test the appropriateness of using 
LPM-derived age distributions as our modelling objective.  

We initially constructed unchained models for the individual percentiles as a means of testing 
the validity of the shapes of the age distributions produced by the LPMs. By modelling one 
percentile at a time, we aimed to determine whether there were any sites for which the SR or 
GBR models produced misfit, which may have demonstrated that the shape of the LPM age 
distribution was inappropriate at those sites. Then by comparing the age estimates derived for 
different percentiles (i.e. from different unchained SR or GBR models) at single site, we 
could diagnose whether the LPM mean age was erroneous (as shown by systematically 
incorrect age estimates for all percentiles), or the LPM’s age distribution had the wrong shape 
(as shown by different misfit for different percentiles), or a combination of both.  We will 
clarify this at Line 281.   

The reason for subsequently constructing the chained models was already described in the 
original manuscript (at Line 302): “[Chaining] was done to ensure that the separately 
simulated percentiles had an appropriate relationship to each other, e.g., that the value for the 
10th percentile in the age distribution for any sample had to be greater than or equal to the 5th 
percentile in the age distribution at the same sample.”  

Our results section already discussed the insights that could be gained by comparing the 
quality of SR and GBR model fits across sites and percentiles. We will add a sentence at Line 
378 to explain that “there were few sites for which clear errors in the shape of the LPM-
derived age distribution could be identified based on differences in the quality of fit of 
unchained model fits across different percentiles, so we conclude that the LPMs applied in 
this investigation are generally appropriate to represent the age distributions in the study 
area.” 

1.4.3 Minor comments 

Line 26: I would write the age as plural (“understanding the ages of water”) to reinforce the 
fact that natural groundwater systems are made of a wide variety of flow paths and 
consequently of residence times (or ages). If it is correct grammatically of course. 



Agreed. Will modify text as recommended. 

Line 53: “most such previous studies”. Revise 

No change will be made in response to this comment. Perhaps we are being slightly pedantic, 
but we have opted to keep the original wording. The use of the term ‘such previous studies’ is 
to show that we are referring to the ‘various less time and cost-intensive methods have 
previously been trialled to increase the amount of available groundwater age data in areas 
where no age tracers have been sampled’ – in other words, we are not referring to all studies 
about groundwater age. 

Line 218: I am not an expert but should it not be half of the detection limit? 

We will clarify the text at Line 217 to say “Censored and uncensored results below the 
highest censoring threshold for each parameter were replaced with the corresponding 
analytical detection limit (Helsel et al., 2020)”. The reason for this approach is that it isn’t 
possible to tell the difference between concentrations reported (for example) as <0.05, 0.03, 
<0.06 so they should all be considered equivalent and set at 0.06 for SR and GBR model 
training. 

Lines 252 to 254: It is argued that the EPM provided good matches for a wide range of New 
Zealand systems. A fault-bounded, local, relatively homogeneous and thick system with 
uniform recharge rate upstream and zero recharge rate downstream looks like an EPM to me. 
So, I think the validity of the EPM should be argued considering specific aspects of the 
system (that may be quite similar to other sites in New Zealand) 

We agree that this is an important aspect to include. We will add a sentence to clarify that the 
EPM does indeed match the hydrogeological system, at Line 254. 

Line 278: to differentiate. 

Good catch. Will be corrected.  
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