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ABSTRACT: 7 

The estimation of rainfall depth-duration-frequency (DDF) curves is necessary for the design of several water systems 8 

and protection works. These curves are typically estimated from observed locations, but due to different sources of 9 

uncertainties, the risk may be underestimated. Therefore, it becomes crucial to quantify the uncertainty ranges of such 10 

curves. For this purpose, the propagation of different uncertainty sources in the regionalisation of the DDF curves for 11 

Germany is investigated. Annual extremes are extracted at each location for different durations (from 5mins up to 7days), 12 

and local extreme value analysis is performed according to Koutsoyiannis et al. (1998). Following this analysis, five 13 

parameters are obtained for each station, from which four are interpolated using external drift kriging, while one is kept 14 

constant over the whole region. Finally, quantiles are derived for each location, duration and given return period. Through 15 

a non-parametric bootstrap and geostatistical spatial simulations, the uncertainty is estimated in terms of precision (width 16 

of 95% confidence interval) and accuracy (expected error) for three different components of the regionalisation: i) local 17 

estimation of parameters, ii) variogram estimation and iii) spatial estimation of parameters. First two methods were tested 18 

for their suitability in generating multiple equiprobable spatial simulations: sequential Gaussian simulations (SGS) and 19 

simulated annealing (SA) simulations. Between the two, SGS proved to be more accurate and was chosen for the 20 

uncertainty estimation from spatial simulations. Next, 100 realisations were run at each component of the regionalisation 21 

procedure to investigate their impact on the final regionalisation of parameters and DDFs curves, and later combined 22 

simulations were performed to propagate the uncertainty from the main components to the final DDFs curves. It was 23 

found that spatial estimation is the major uncertainty component in the chosen regionalisation procedure, followed by the 24 

local estimation of rainfall extremes. In particular, the variogram uncertainty had very little effect in the overall estimation 25 

of DDFs curves. We conclude that the best way to estimate the total uncertainty consisted of a combination between local 26 

resampling and spatial simulations, which resulted in more precise estimation at long observation locations, and a decline 27 

in precision at un-observed locations according to the distance and density of the observations in the vicinity. Through 28 

this combination, the total uncertainty was simulated by 10,000 runs in Germany, and indicated, that depending on the 29 

location and duration level, tolerance ranges from ±10-30% for low return periods (lower than 10 years), and from ±15-30 

60% for high return periods (higher than 10 years) should be expected, with the very short durations (5min) being more 31 

uncertain than long durations.  32 
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1. Introduction 36 

Design precipitation volumes at different duration and frequencies, also known as Depth-Duration-Frequency (DDF) 37 

Curves, are necessary for the design of many water-related systems and facilities. These curves are typically generated 38 

by fitting a theoretical distribution to the rainfall extremes (either annual extremes – AMS or extremes above a threshold 39 

– POT) derived for specific duration intervals at observed locations. Mostly, a Generalised Extreme Value distribution 40 

with three parameters (location, scale and shape) is preferred for such applications (Koutsoyiannis, 2004a, 2004b). An 41 

adjustment of the rainfall extremes over different duration intervals is also considered either before fitting the theoretical 42 

distribution (as in Koutsoyiannis et al. 1998), or after (as in Fischer and Schumann, 2018). As the fitted theoretical 43 

distribution can be used to describe the DDF values only at observed locations, regionalisation techniques are applied to 44 

estimate these distributions at unobserved locations. The estimation of a regional distribution based on the index method 45 

as proposed by Hosking and Wallis (1997) is one of the most used methods in the literature (Burn, 2014; Forestieri et al., 46 

2018; Perica et al., 2019), followed by the kriging interpolation of the parameters describing these theoretical distributions 47 

(Ceresetti et al., 2012; Shehu et al., 2022; Uboldi et al., 2014).  48 

 Nevertheless, the procedure for the derivation of DDF curves is subjected to different sources of uncertainty which can 49 

affect the confidence level of the estimated design values. Such sources of uncertainties include measurement errors, 50 

choice of distribution, short observation length, non-representativeness of point measurements for the spatial dependency 51 

of extremes, instationarity due to the climate change etc (Marra et al., 2019b). So far for DDF curves in Germany, there 52 

is not objective quantification of the uncertainty, but only approximative guessed tolerance ranges between 10-20% 53 

(depending on the return period) that should account for the measurement errors, uncertainties in the extreme value 54 

estimation and regionalisation, and for the climate variability (Junghänel et al., 2017). The tolerance ranges are kept 55 

constant throughout duration levels and locations, nevertheless such tolerance ranges are expected to be higher for very 56 

short observations and high return periods (Poschlod, 2021) especially for short durations and drier climate (Marra et al., 57 

2017). Therefore, there is a need to perform different simulations in order to quantify the tolerance ranges (uncertainty) 58 

dependent on duration, location and return period. In this paper, the focus is on developing a framework that accounts for 59 

uncertainties due to short observation lengths and non-representativeness of point measurements for spatial dependencies 60 

of extremes. Once a framework is developed, it can be used to investigate the role of distribution choice as in Miniussi 61 

and Marra (2021) or the role of future climate as in Poschlod (2021). 62 

In the literature, parametric or non-parametric bootstrapping resampling techniques are used to quantify tolerance ranges 63 

of DDF curves. Overeem et al., (2008) was one of the first to include the uncertainty of such curves by including only the 64 

uncertainty of GEV parameters estimated by a regional bootstrap procedure (sample variability). In their study, extremes 65 

from a homogenous region were pooled together to estimate regional probability distribution, which resulted in a narrower 66 

uncertainty range at observed locations. Overeem et al. (2009) proposed a bootstrapping technique where same years for 67 

all the observed points were resampled together in order to maintain the spatial dependency of the extremes. Uboldi et al. 68 

(2014) went a step further and accounted spatial dependency when performing the bootstrapping for each location: 69 

extremes from near observations have a higher probability to be resampled at a specific location than the ones from far 70 

away. Typically, the bootstrapping procedures are implemented together with the index-based regionalisation as proposed 71 

by Hosking and Wallis (1997). Examples in the literature of such applications, are for instance in Burn (2014) and Requena 72 

et al. (2019) in Canada where the uncertainty is computed from the confidence intervals of a parametric bootstrap 73 

procedure, or in Chaudhuri and Sharma (2020), Notaro et al. (2015), Tfwala et al. (2017), Van de Vyver (2015) where a 74 

Bayesian framework is employed to estimate the uncertainty of DDFs curves at different duration levels. Mostly the 75 

uncertainty is derived from bootstrap procedure where the 95% or 90% confidence interval width is used as a measure of 76 

precision: as lower the confidence interval width, the more precise are the estimates. However, the spatial structure of 77 
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uncertainties is not well considered in the index-based regionalisation: first, no uncertainty of the index itself is considered 78 

and propagated, and second, there is no measure how uncertain the locations further away from observations are. 79 

Therefore, local resampling of extreme values (to account for sample variability) are not enough to describe the spatial 80 

structure of uncertainty, instead spatial simulations are needed. Alternatively, remote sensing data, i.e. satellites or weather 81 

radar data, provide spatially continuous indirect measurements of rainfall intensities or volumes (Marra et al., 2019b). 82 

However, their shortcomings are related to the short available dataset, the inability of the remote sensing dataset to capture 83 

accurately intensities, and lack of a true observed dataset to validate the methods applied. While remote sensing provides 84 

a valuable tool and more research is performed in tackling better the uncertainties, at the moment DDF curves from station 85 

observations represent still the standard procedure, and hence a method to estimate the spatial structure of uncertainties 86 

based on these observations is required.  87 

In kriging, when regionalising from point values, the variance of the estimations can be used as a measure of the 88 

uncertainty for un-observed locations. This estimation can either be parametric (multi-Gaussian process) or non-89 

parametric (indicator kriging). It is widely accepted that the kriging system can capture only the local uncertainty 90 

(providing information at one location at a time conditioned to other observations in the vicinity) and not the spatial one 91 

(providing a measure of uncertainty about the un- sampled values taken altogether in space rather than one by one), the 92 

estimated uncertainty is dependable on the data configuration rather than on the value itself, and lastly it fails to preserve 93 

the high spatial variability of the target variable (Cinnirella et al., 2005; Deutsch and Journel, 1998; Goovaerts, 1999b, 94 

2001; Lin and Chang, 2000). As stated in Liao et al. (2016) the spatial uncertainty is more important (bigger) than the 95 

local uncertainty. Therefore, solutions for the estimation of the spatial uncertainties in geostatistics are stochastic 96 

simulations with equiprobable realisation of the target variable in space. The main assumption of the stochastic 97 

simulations is the generation of equiprobable realisations in space while maintaining certain global statistics of the target 98 

variable; for instance, the histogram of the observed values and the semi-variogram (herein referred as variogram for 99 

simplicity) - which describes the spatial dependency of the variable variance on the distance between the observations. 100 

The stochastic simulations present a trade-off: on one side they provide more spatial variable fields than kriging (which 101 

is known for its smoothening properties), and on the other side, because the goal is to maintain the global statistics, may 102 

suffer from larger errors at the local scale. Another advantage of stochastics simulations is the ability to compute directly 103 

the confidence intervals for the target variable, while in kriging interpolation the confidence intervals are computed from 104 

the kriging variance assuming a normal distribution of the errors. 105 

Examples of different stochastic simulations are the sequential Gaussian simulations (SGS) (Cinnirella et al., 2005; Emery, 106 

2010; Ersoy and Yünsel, 2009; Gyasi-Agyei and Pegram, 2014; Jang, 2015; Jang and Huang, 2017; Liao et al., 2016; 107 

Poggio et al., 2010; Ribeiro and Pereira, 2018; Szatmári and Pásztor, 2019; Varouchakis, 2021; Yang et al., 2018), 108 

sequential indicator simulations (SIS) (Bastante et al., 2008; Goovaerts, 1999a, 2001; Luca et al., 2007), simulated 109 

annealing (SA) (Goovaerts, 2000; Hofmann et al., 2010; Lin and Chang, 2000), turning bands (TB) (Namysłowska-110 

Wilczyńska, 2015) etc. As seen, the most preferred stochastic simulation in the literature is the SGS due to its simplicity, 111 

followed by the SIS and then by SA. Alternatively a stochastic random mixing (as stated in Bárdossy and Hörning, 2016) 112 

with spatial dependency modelled by Copulas (Haese et al., 2017) or a collocated cokriging simulation (Bourennane et 113 

al., 2007) can also be applied. However, geostatistical simulations remain the preferred choice in the literature for 114 

estimating spatial uncertainty, although the main application is in the geosciences field, with very few applications in 115 

rainfall modelling, and to authors knowledge no application to the regionalisation of extreme design rainfall. Therefore, 116 

geostatistics becomes a useful tool to estimate and analyse the estimation of DDF uncertainties at observed and un-117 

observed locations. The question which of stochastic simulations is more appropriate for extreme design rainfall naturally 118 

raises. 119 
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As stated, because of its simplicity the SGS is a very popular method in estimating spatial uncertainty in geostatistics. In 120 

the SGS approach each simulation is considered a realisation of the multivariate Gaussian process, and hence it is strictly 121 

required for the target variable to be multivariate normal. As discussed in Deutsch and Journel (1998), the testing of the 122 

multivariate normality is a difficult task, which depending on the case at hand, can be very time and computational 123 

expensive and hence is not usually tested. Typically, studies in literature include a transformation to normal distribution 124 

in order to ensure that the target variable is at least univariate normal. Another disadvantage of the normalisation needed 125 

for the SGS application, is that the upper and lower tail of the transformed variable will cause an under/over – estimation 126 

of these values, and hence an extrapolation to lower and upper bounds is required. Contrary, to the SGS, the sequential 127 

indicator simulations (SIS) does not need a prior assumption on the multivariate normality of the target variable and is 128 

more suitable for observed values that do not exhibit bivariate normal properties. The SIS is a conditional simulation 129 

based on the indicator kriging theory, which provides the probability that a location has to exceed a certain threshold. The 130 

number of thresholds considered should be more than 5 but lower than 15 as suggested by Luca et al. (2007). For each of 131 

the selected threshold a variogram is fitted to the portion of the data following under this threshold, and it is used for the 132 

sequential simulation. A disadvantage of the SIS is that, if many threshold classes are presented, order relationship 133 

problems will arise on the obtained realisations (Deutsch and Journel, 1998; Journel and Posa, 1990), which are more 134 

emphasized if empty thresholds are included (Luca et al., 2007). Another disadvantage of the SIS is that mainly it has 135 

been used together with simple and ordinary kriging theory (Deutsch and Journel, 1998), and no application of the SIS in 136 

an external drift or universal kriging has been reported (to authors knowledge) in the literature. Alternative to the SGS 137 

and SIS stochastic simulations, the simulated annealing (SA) can be also implemented to alternate and generate 138 

conditional images of a continuous target variable. The main idea in the implementation of the SA, is a numerical 139 

algorithm which perturbs continuously an image until an objective criterion is reached. The optimization function can 140 

include only one criterion (typically the global statistics) or multiple criteria depending on the application at hand. For 141 

instance Goovaerts (2000) included three criteria: the local estimation of the variable, the observed histogram and 142 

variogram. The advantage of the SA is that no prior assumption of the normality is required (as the observed histogram is 143 

reproduced) and that it allows a degree of flexibility for realisations that doesn’t exactly match the objective criteria. On 144 

the other hand, the disadvantages of the SA include the prior selection of the objective criteria carefully and, depending 145 

on the application, the high computational time. 146 

In our previous study, Shehu et al. (2022) investigated different methods and datasets in Germany for the local estimation 147 

of the DDFs from station data, and different regionalisation methods for the estimation of the DDFs at ungauged locations. 148 

The study revealed that kriging interpolation of long observation records (more than 40 years) with a denser network of 149 

short observations as an external drift delivered best cross-validation results for return periods higher than 10 years. 150 

Therefore, apart from the stochastic simulations that account for the spatial uncertainty, more simulations are needed to 151 

tackle other sources of uncertainties for the estimation of DDF curves: such as sample variability, variogram estimation 152 

and the combination with an external drift. For this purpose, the SGS and SA will be implemented and investigated for 153 

their suitability in generating spatial simulations for DDF curves. Once a best method is chosen for this purpose, different 154 

experiments are conducted based on non-parametric bootstrapping techniques to investigate how each of the uncertainty 155 

component is propagated into the final DDF curves, and if some components are more dominant than others. Lastly, based 156 

on the most important components, a framework for estimating the total uncertainty in regionalised DDF curves (both at 157 

observed and un-observed locations) is proposed.  158 

The paper is organized as following: First, in Section 2 the data and methods for the estimation and regionalisation of 159 

DDF curves is explained (Section 2.1 and 2.2), together with the necessary transformation to normality in Section 2.3 and 160 

testing the bi-Gaussian conditions in Section 2.4. Then an introduction to the main uncertainty sources considered here is 161 
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given in Section 3, and the main methods to tackle each uncertainty sources are given in Section 3.1 to 3.3. An overview 162 

of the experiments and how the uncertainty is measured in terms of both accuracy and precision is described in Section 163 

3.4. The results are summarised in section 4, where first a comparison of the two spatial simulations techniques is 164 

investigated (Section 4.1), and later uncertainty results of different experiments for un-observations locations and for the 165 

whole German region are shown respectively in Section 4.2 and Section 4.3. Lastly conclusions and the best framework 166 

to tackle uncertainties for DDF curves in Germany are discussed in Section 5.  167 

2. Study Area and Data Processing  168 

The investigation is carried out for Germany, as shown in Figure 1, together with the two rainfall measuring networks 169 

from the German Weather Service (DWD) used for the uncertainty analysis, grouped in LS (short for long recording 170 

stations)– tipping bucket sensors with 1min temporal resolution, 0.1mm accuracy, 2% uncertainty and observation lengths 171 

from 40 -80 years, and in SS (short for short recording stations) – digital sensors with 1min temporal resolution, 0.01 172 

accuracy, 0.02-0.04 mm uncertainty and observation length from 10-35 years. An overview of the data from these two 173 

networks is given in Shehu et al. (2022). For both networks, the 1min time steps are aggregated to 5min and then Annual 174 

Maximum Series (AMS) are extracted for each station for 12 durations levels from 5min to 7 days. To avoid the 175 

underestimation of the rainfall depth due to fixed accumulation periods of 5, 10 and 15min, corrections factors of 1.14, 176 

1.07 and 1.04 were used for the AMS of these durations according to the regulations in DWA-531 (DWA, 2012). Next, 177 

as described in Shehu et al. (2022) a jump elimination according to sensor changes is performed (DVWK, 1999) in order 178 

to ensure the stationarity of AMS at most stations for different duration levels.  179 

Figure 1 The distribution and location of the two rainfall networks used for the uncertainty analysis of Depth-Duration 

Frequency Curves in Germany: where LS represents the long and SS the short recording stations. DEM is short for digital 

elevation model (m) from SRTM (NASA Shuttle Radar Topography Mission SRTM, 2013).  
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2.1 Extreme Value Analysis  180 

The local rainfall extreme value statistics describing the DDF curves for each station, are derived in two steps. First, the 181 

intensities of different duration levels are generalised according to the mathematical framework proposed by 182 

Koutsoyiannis et al. (1998) also illustrated in Equation (1):  183 

𝑖 =  𝑖𝑑  ∙ (𝑑 + 𝜃)𝜂,  184 

where i is the generalised intensity in mm/h, id is the AMS intensity in mm/h at each duration, d is the duration in hours 185 

and ϴ, η are the Koutsoyiannis parameters optimised for each station. The optimisation of the Koutsoyiannis parameters 186 

is done by minimising the Kruskal-Wallis statistic. Second, a Generalized Extreme Value (GEV) distribution is fitted to 187 

the generalised intensities through the methods of the L-Moments (Asquith, 2021). The GEV is described by three 188 

parameters: location – μ, scale – σ, and shape – γ (with notation according to Coles, 2001) as given in Equation (2). For 189 

a robust estimation of extreme values with return periods of 100 years, the shape parameter was fixed at 0.1. The decision 190 

to fix the shape parameter at 0.1 was made based on existing literature and previous analysis that we have conducted on 191 

the data set in Germany. For more information regarding the choice of generalisation or shape parameter, the reader is 192 

directed to our previous study (Shehu et al., 2022). Keeping the shape parameter as fixed can be a reasonable choice to 193 

reduce the high uncertainty that is associated with the extreme values analysis at single stations. As shown in (Shehu et 194 

al., 2022), for return period higher than 20 years, the uncertainty from a free shape parameter is much higher than the 195 

uncertainty from keeping the shape parameter fixed at 0.1, which will cause the interpolation of extreme rainfall to be 196 

less certain.  197 

𝐹(𝑥; 𝜇, 𝜎, 𝛾) =𝑒𝑥𝑝 { − [1 + 𝛾
(𝑥 + 𝜇)

𝜎
]

−
1
𝛾

 } , 𝛾 = 0.1 198 

Finally, the local statistics of each station are described by five parameters: three from the GEV distribution (μ, σ, γ) and 199 

two from the intensity generalisation over all durations (θ, η). Since the shape parameter is fixed at 0.1, only 4 parameters 200 

are regionalised independently from one another using kriging.  201 

2.2 Direct Regionalisation (interpolation) 202 

Here a spherical variogram is employed to describe the increment of the variance between any two points of observation 203 

situated at a specific distance h, as per Equation (3). The parameters of the variogram are estimated by of the methods of 204 

the least squares and human supervision.  205 

𝛾 (ℎ) =  𝑐0 + 𝑐 ∙  (
3ℎ

2𝑎
−

ℎ3

2𝑎3)  𝑓𝑜𝑟 ℎ ≤ 𝑎 𝑎𝑛𝑑 𝛾 (ℎ) =  𝑐 𝑓𝑜𝑟 ℎ = 𝑎  , 206 

where c0 is the nugget, c the sill and a the range of the variogram. Once the theoretical variogram is known, it can be used 207 

as a basis for regionalising the statistical properties on a 5x5km grid. The regionalisation (or the interpolation) with kriging 208 

is done in two steps, by considering independently the short (SS) and long (LS) recording stations. First, each of the SS 209 

parameters are interpolated with ordinary kriging (herein referred to as OK[SS]) based on the theoretical variogram of 210 

the SS dataset. Second, each parameter derived from the LS dataset is interpolated with external drift kriging KED[LS|SS] 211 

based on the theoretical variogram of LS dataset, whereas the OK[SS] serves as an external drift. The reason for this two-212 

step procedure, is that the short recording stations have an inadequate length for estimating extremes of high return period, 213 

but still provide useful information about the spatial trends. For more information regarding the choice of this spatial 214 

regionalisation, the reader is directed to our previous study (Shehu et al., 2022).  215 

(1) 

(2) 

(3) 
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2.3 Data Transformation 216 

A requirement for the spatial simulations (Sequential Gaussian Simulation - SGS), is that the target variable to be 217 

interpolated (in this case each of the 4 parameters), should follow a normal distribution. Following the quantile-quantile 218 

plot, with sample vs normal quantiles, illustrated in Figure 2, it is clear that the dataset (both LS and SS) are not normally 219 

distributed, as the extremes (both lower and upper tail) deviate clearly from the normal distribution (the dashed continuous 220 

lines). Therefore, in case of a Sequential Gaussian Simulation (SGS) for assessing the spatial uncertainty, a transformation 221 

to normality is required. Deutsch and Journel (1998) propose a normal score transformation based on the empirical 222 

probabilities (Weibull plot position) as indicated in Equation (4).  223 

𝐹(𝑥)′ = 1 −  (
𝑘

𝑛 + 1
)   𝑎𝑛𝑑 𝑥𝑛𝑜𝑟𝑚 =  𝐺−1(𝐹(𝑥)′),  224 

where F(x)’ is the empirical cumulative distributed function calculated based on the descending rank k of input data x, n 225 

is the number of available x-observation, G-1 is the inverse function of the gaussian distribution, and xnorm is the normalised 226 

input data.  227 

 228 

Figure 2 Sample quantiles of the 4 obtained parameters for both long (LS) and short (SS) datasets in comparison with 

the theoretical quantiles from the normal distribution. The dashed lines represent the normal quantile lines for a perfect 

fitting between the sample and the normal quantiles.  

Respectively a back-transformation algorithm is also available to transform back the dataset from the normal to its original 229 

space. However, the back-transformation may be problematic as the tail behaviour will be underestimated by the normal 230 

score and back transformation. An alternative approach to the normal score transformation, is the fitting of the theoretical 231 

cumulative probability functions (CDF) to the original dataset, and perform the transformation from the chosen theoretical 232 

CDF to the normal one. Here, the problem of the choice for tail extrapolation is substituted with the choice of fitting a 233 

theoretical CDF. Through the method of L-Moments, different theoretical distributions were fitted to the available datasets, 234 

for instance the Wakeby distribution (WAK), the Weibull (WEI), the Generalized Normal (GNO) and the Generalized 235 

Extreme Value (GEV) probability distribution. For more information about the CDF and the fitting of the parameters, the 236 

reader is directed to Asquith (2021), Hosking and Wallis (1997). Afterwards the Cramer von Mises Goodness of Fit test 237 

(CSöRgő and Faraway, 1996) is performed to test whether or not the observed data belongs to the chosen theoretical CDF. 238 

The p-value statistics is used to compare the empirical CDF with the theoretical one for each dataset, in order to select 239 

the most adequate theoretical CDF. The results of the p-value statistics from Cramer von Mises Test are shown in Table 240 

1, and they reveal that the parameters of the long recording stations (LS) are better described by the WAK distribution, 241 

while the parameters of the short recording stations from the GNO distribution. All the parameters, except the θ [SS], 242 

exhibit a very large p-value (higher than 0.90). Even though the p-value for θ [SS] is 0.24, the null hypothesis that the 243 

theoretical distribution describes the current dataset can still not be rejected. To keep a consistent choice between the short 244 

and the long dataset, the GNO was chosen, as the best theoretical distribution for the SS and the second best for LS (shown 245 

in bold letters in Table 1).  246 

(4) 
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Table 1 p-values of Cramer-von-Mises test for testing if the different theoretical distribution fits well to the data. The 

higher the value, the higher the certainty in accepting the null hypothesis that the chosen CDF describes correctly the 

data.  

                 Long recording stations (LS) Short recording stations (SS) 

CDFs wak wei gno gev CDFs wak wei gno gev 

μ[LS] 0.99 0.8 0.94 0.91 μ[SS] 0.77 0.68 0.99 0.99 

σ[LS] 0.96 0.8 0.9 0.85 σ [SS] 0.85 0.39 0.980 0.95 

θ[LS] 0.91 0.67 0.78 0.76 θ [SS] 0.24 0.15 0.24 0.2 

η[LS] 0.94 0.36 0.36 0.25 η [SS] 0.52 0.83 0.91 0.27 

A comparison of these two transformations, normal score according to Deutsch and Journel (1998) and the quantile-247 

quantile transformation based on fitted theoretical distribution, was performed priory on a cross-validation mode for the 248 

SGS runs in ordinary kriging and external drift kriging. The results of such comparison favoured the quantile-quantile 249 

transformation based on fitted theoretical distributions.  250 

2.4 Data Bi-Normality 251 

An additional precondition to run the SGS and assess the spatial uncertainty is the multivariate normality. However as 252 

stated in Deutsch and Journel (1998), the data for checking multivariate normality (the tri-variate, quadrivariate and so 253 

on) are hardly enough to allow the interference of the corresponding experimental multivariate frequencies. Thus, they 254 

suggest that if the bivariate normality conditions are not violated, one can continue with the SGS experiments. Here the 255 

bivariate normality is tested by comparing empirical indicator variograms of the normalised parameters sets with the 256 

respective ones from a Bi-Gaussian random function that shares the same variogram with the normalised parameter sets. 257 

First, a theoretical variogram is fitted to the normalised observed variograms from dataset LS and SS (separately). Next 258 

the analytical relation given at Deutsch and Journel (1998) linking the covariance Cy(h) with any normal bivariate CDF 259 

value (with mean 0 and standard deviation 1).  260 

 𝑃𝑟𝑜𝑏{𝑌(𝑢) ≤ 𝑦𝑝, 𝑌(𝑢 + ℎ) ≤ 𝑦𝑝} = 𝑝2 +  
1

2𝜋
∫ exp (− 

𝑦𝑝
2

1+𝑠𝑖𝑛𝜃
) 𝑑𝜃,

𝑎𝑟𝑐 sin 𝐶𝑌(ℎ)

0
 261 

where yp in the normal p-quantile of the normal bivariate CDF, and the Cy(h) is the correlogram obtained from normalised 262 

LS and SS dataset. For a given threshold yp, the bivariate probability will be: 263 

 𝑃𝑟𝑜𝑏{𝑌(𝑢) ≤ 𝑦𝑝, 𝑌(𝑢 + ℎ) ≤ 𝑦𝑝} = 𝐸{𝐼(𝑢; 𝑝) ∙ 𝐼(𝑢 + ℎ; 𝑝)} = 𝑝 − 𝛾𝐼(ℎ; 𝑝),  264 

with I(u;p) equal to 1 for 𝑌(𝑢) ≤ 𝑦𝑝 or equal to 0 if otherwise, and 𝛾𝐼(ℎ; 𝑝) is the indicator variogram for the p-quantile 265 

(corresponding to threshold 𝑦𝑝) of the normal bivariate CDF. Three thresholds were chosen for the computation of the 266 

indicator variograms that corresponds to 0.25, 0.5 and 0.75 percentiles. Based on Equation (6), the generation of the Bi-267 

Gaussian functions was performed of each set of data independently (short and long) with the GSLIB package. Lastly, 268 

the sample indicator variograms for the three thresholds are computed from the observed normalised datasets. The check 269 

consists in comparing for each threshold the empirical indicator variogram and the theoretical indication variogram from 270 

the normal bivariate CDF.  271 

The obtained indicator variograms are shown in Figure 3 for empirical data set (in points) and for the Bi-Gaussian 272 

functions (in solid lines) of the two datasets (short and long). From Figure 3 it is visible that the Bi-Gaussian indicator 273 

variograms described well the empirical data sets for most of the cases. For instance, the θ and η parameters show a good 274 

agreement for the two types of indicator variograms. For the μ and σ parameters the agreement is better for the high 275 

thresholds than for the low one (0.25 percentile), where mainly the LS dataset differs more with the Bi-Gaussian indicator 276 

variogram than the SS dataset. To a certain degree this is expected, as the LS dataset is much smaller than the SS dataset. 277 

Overall, the Bi-Gaussian indicator variograms match well with the empirical ones, and the bivariate normality conditions 278 

are not violated. Hence, the SGS can be used for spatial simulation of the parameter sets.   279 

(5) 

(6) 
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Figure 3 Experimental indicator variograms for the two datasets (SS in light blue, LS in dark blue) for the 4 parameters 

and their respective fits of the Bi-Gaussian model derived theoretical curves (shown respectively in solid line). 

 280 

3. Methods for uncertainty estimation  281 

The regionalisation of the four parameters describing the rainfall extreme value statistics, is performed using kriging, as 282 

the best regionalisation method from Shehu et al. (2022). The regionalisation is done primarily with the LS data and using 283 

the interpolation of SS parameters as an external drift. In this procedure, there are several sources of uncertainty that one 284 

should consider for the overall uncertainty, as illustrated in Figure 4, which are respectively:  285 

 Sample uncertainty in estimating local extreme value statistics (four parameters), herein referred to as the local 286 

uncertainty.  287 

 The uncertainty in the external drift which originates from the uncertainty in the estimation of the variogram 288 

based on the SS stations, and from the uncertainty in the regionalisation of the SS statistics. Here, only the latter 289 

is considered, as previous work revealed that this is more relevant than the former.  290 

 The uncertainty in the regionalisation of the LS statistics originating from the estimated variogram from LS 291 

stations, and the uncertainty of the spatial regionalisation (herein referred to as spatial uncertainty). 292 

Overall, the methodologies to tackle these uncertainties can be categorised in three main groups: the local estimation, the 293 

variogram estimation and the spatial simulation (as illustrated in blocks in Figure 4). The methodology for uncertainty 294 

estimation on each block is discussed accordingly in the following sections.  295 
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 296 

Figure 4 The main uncertainty sources in the regionalisation of the rainfall statistics for Germany for the selected 

methodology. Arrows indicate the calculation flow, and the blocks at the right represent the three main methodologies to 

tackle the uncertainty at each component. 

3.1 Local Non-Parametric Bootstrap  297 

A non-parametric bootstrap approach is implemented in order to quantify the sample uncertainty of the local rainfall 298 

extreme value statistics. This means that for each station the AMS are resampled with replacement for the same length of 299 

observations and the local statistics are then derived base on the methodology explained in Section 2.1. This resampling 300 

procedure is run 100 times for each location (either LS or SS), and for each time the parameters describing the local 301 

extreme value statistics are calculated. The resampled parameter-sets are then used as input for the rest of the 302 

regionalisation approach to first investigate the effect of the local uncertainty on the regionalisation output (results shown 303 

in Section 4.2) or their impact on the overall uncertainty of regionalised DDFs curves in Germany (results shown in 304 

Section 4.3). 305 

3.2 Variogram Simulations  306 

A non-parametric bootstrap is implemented in the variogram uncertainty, with the precondition that the spatial dependency 307 

between stations is maintained. The whole station dataset (both short and long recordings) are grouped together, from 308 

which 133 stations are sampled randomly 100 times. Only 133 values from all the stations were sampled here, to address 309 

the uncertainty in computing the variogram from a small dataset that corresponds with the number of the long recording 310 

stations that were used to compute the variogram for the KED interpolation. For each of the sample, first the empirical 311 

variogram is calculated and then a theoretical spherical one is fitted automatically. Such sampling of variogram, is 312 

indirectly accounting the low station density and the short observation length for the final interpolation of KED[LS|SS]. 313 

The obtained variogram simulations are shown in Figure 5. For each of the estimated variogram, the kriging interpolation 314 

is performed and in the end its effect on the final regionalisation output is discussed in Section 4.2. 315 

 316 

Figure 5 100 variogram realisations obtained from bootstrapping (shown in grey lines) the station datasets, the empirical 

variograms as observed by the normalised LS (in dark blue points) and SS database (in light blue points), and the 

respective fitted theoretical spherical variograms used for the interpolation.  
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3.3 Spatial Simulations  317 

The uncertainty in the spatial regionalisation is assessed by generating 100 equiprobable realisation of the normalised 318 

parameter sets, where each realisation is honouring the global statistics of the parameter (the spatial mean value and the 319 

variogram). Here a conditional simulation is performed, where these 100 realisations do not only share the global statistics 320 

but as well a set of observed values at certain locations. In other words, for the known locations where there are 321 

observations, either the nodes are not resampled (as in the case of simulated annealing) or the nodes are allowed to vary 322 

according to the variogram nugget when compared to the observations (as in the case of the sequential Gaussian 323 

simulation). The spatial simulations are conditioned to the location of the 133 long recording stations (LS) since they are 324 

the main input for the regionalization are considered the ground truth.  325 

3.3.1 Sequential Gaussian Simulation (SGS)  326 

The Sequential Gaussian Simulation (SGS) is the most straight forward algorithm for generating such equiprobable 327 

realisation and it is proven to be more robust than other algorithms (Pebesma and Wesseling, 1998). An overview of this 328 

procedure, where a normal continuous variable z(u) is modelled by a Gaussian stationary random function Z(u) is 329 

described as follows (Deutsch and Journel, 1998):  330 

1. A random path is defined that is visiting each node of Germany grid (at 5km2 spatial resolution) once. At each 331 

node u, fix the neighbouring conditional locations (either SS for OK[SS] and LS for KED[LS|SS]) and their 332 

observed values z, as well as the previously simulated z values at the grid node.  333 

2. Do either ordinary kriging with the normalised short recording stations (OK[SS]) or kriging with external drift 334 

with the normalised long recording stations (KED[LS|SS]) using the respective variograms to estimate the global 335 

statistics (mean as per Equation (7) and variance as per Equation (8)) of the Conditional Cumulative Distribution 336 

Function (CCDF) at the random function Z(u) at the location u.  337 

𝜇(𝑢) =  ∑ 𝜆𝑖 ∙ 𝑍(𝑢𝑖)

𝑛

𝑖=1

,  338 

 𝜎2(𝑢) = 𝐶(0) −  ∑ 𝜆𝑖 ∙ 𝐶(𝑢 − 𝑢𝑖)
𝑛
𝑖=1 ,  339 

where 𝜆𝑖  are the weights as estimated by ordinary kriging for OK[SS] and kriging with external drift for 340 

KED[LS|SS], 𝑍(𝑢𝑖) is the conditional value of the target variable at the 𝑢𝑖 location, with i corresponding to 341 

conditional values in the neighbourhood (within a maximum radius of 300km and within the range 12 to 24), 342 

𝐶(0) is the variance and 𝐶(𝑢 − 𝑢𝑖) the covariance of the normalised dataset.  343 

3. Draw randomly a value from this CCDF as z´(u) and add this simulated value to the conditional dataset.  344 

4. Proceed to the next node, until all nodes are simulated.  345 

The “gstat” package available in R is used to generate such realisation both for the ordinary kriging interpolation of the 346 

SS database (OK[SS]) and for the external drift kriging interpolation of the LS database (KED[LS|SS]) (Pebesma, 2004). 347 

Note that the spatial simulations are always performed on the normal space (normal transformation of the dataset). For 348 

the simulation of the KED[LS|SS] both the input dataset LS and the external drift OK[SS] are as well in the normal space. 349 

A back-transform to the original space is done after each spatial simulation only for the final product KED[LS|SS].  350 

3.3.2 Simulated Annealing Simulations (SA)  351 

Simulated Annealing is an alternative method for generation conditional stochastic images. New images are created by 352 

randomly selected values from the observed histograms, such that global statistics like variogram, marginal distribution, 353 

correlation to a secondary variable are maintained. Unlike the SGS method, no prior assumption of normality is needed, 354 

and hence the observed data (with no prior transformation) can be directly used. An overview of this procedure is found 355 

in (Deutsch and Journel, 1998) and also explained shortly below:  356 

(7) 

(8) 
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1. An initial image is randomly created by the observed histogram. For nodes where data is observed, the random 357 

values are substituted by the observed ones. Thus, the observed values are exactly reproduced. This image 358 

matches the observed histogram and conditional data, but not the observed variogram.  359 

2. An objective function is calculated, and a conditional simulation is reached when the objective function is as 360 

close as possible to zero. For generation of the external drift spatial information (OK[SS]) only the variogram is 361 

used as part of the objective function, while for the final parameter estimation (KED[LS|SS]) additionally the 362 

correlation with the external drift is preserved.  363 

𝑂𝐹𝑂𝐾[𝑆𝑆] = 𝑤1  ∑
[𝛾′(ℎ) − 𝛾(ℎ)]2

𝛾(ℎ)2

ℎ

, 𝑎𝑛𝑑 𝑂𝐹𝐾𝐸𝐷[𝐿𝑆|𝑆𝑆] =  𝑤1 ∑
[𝛾′(ℎ) − 𝛾(ℎ)]2

𝛾(ℎ)2

ℎ

+ 𝑤2 [𝜌′ − 𝜌]2 364 

where 𝛾’(h) is the simulated variogram, 𝛾(h) the observed variogram, ρ’ the simulated correlation and ρ the 365 

observed correlation with the external drift, w1 and w2 are weights for the two components (both equal to 5).  366 

3. If the value of the objective function is not reached, a new image is created by swapping randomly values of pair 367 

nodes (not conditioned nodes), and the objective function in recalculated.  368 

4. If the new objective function is better than the previous one (closer to zero), then the swap is accepted, if not the 369 

swap is accepted based on an exponential probability distribution. The parameter of the exponential probability 370 

distribution is equal to the temperature in simulated annealing.  371 

𝑃𝑟𝑜𝑏.𝑎𝑐𝑐𝑒𝑝𝑡 =  {
1,

𝑒
𝑂𝐹𝑜𝑙𝑑−𝑂𝐹𝑛𝑒𝑤

𝑡
,

𝑖𝑓 𝑂𝐹𝑛𝑒𝑤 ≤ 𝑂𝐹𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 372 

where Prob.accept is the acceptance probability distribution, t is the temperature (which decreases with each 373 

iteration), OFnew is the new objective function obtained by swapping a pair of values and OFold is the previous 374 

objective function value. As higher the temperature, the higher the probability to selected such unfavourable 375 

swaps. 376 

5. Redo step 3-4, until a maximum number of swaps is reached, or if a maximum number of accepted swaps is 377 

reached. If this is the case, the temperature t is reduced by a multiplicative factor Ω (here as 0.1).  378 

6. Redo steps 3, 4, and 5 until convergence is reached or if the maximum number of possible swaps is reached S 379 

times. The simulation is then completed and the image is frozen.  380 

The “GSLIB” program from (Deutsch and Journel, 1998) was employed to generate 100 random realisation fields for 381 

both the external drift and the interpolation. Note two main differences of the SA with SGS: i) no data transformation and 382 

back transformation is required, ii) by fixing a seed number, the random path in SGS is same for all the parameters, while 383 

for the SA the random path for each parameter depends on how fast the optimum criteria is reached.  384 

3.4 Uncertainty Estimation and Propagation  385 

Based on several simulations, the uncertainty is evaluated only at the locations on the long recording stations (LS) – in 386 

total 133 stations. Different experiments are conducted in order to investigate first how the sources of uncertainty are 387 

propagating to the final regionalisation of the 4 parameters (experiments 1-4), and how the main sources of uncertainty 388 

are interacting with each other to produce the total uncertainty (experiment 5). An overview of these experiments and the 389 

sources of uncertainty they consider, is given in  Figure 6 and in Table 2. Note that in experiment 5, two uncertainty 390 

sources are combined: the local uncertainty from the sampling of rainfall extreme value statistics and the spatial 391 

uncertainty from KED[LS|SS] simulations. This means that at experiment 5 for each realisation of the local statistics, 392 

both variograms of LS and SS are re-calculated, the OK[SS] is derived and respectively 100 KED[LS|SS] simulations are 393 

generated, concluding thus in a total of 10,000 simulations. The bootstrapping of the variograms (VAR[LS|SS]) is left 394 

outside of this experiment, because as it is shown in section 4.2, doesn’t have a major impact on the regionalisation output. 395 

(9) 

(10) 
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Moreover, as the variograms are re-estimated, different variograms are as well modelled, including the variogram 396 

uncertainty indirectly. Here only the combination of local and spatial uncertainty at KED[LS|SS] simulations are included 397 

as prior work revealed that this produces the highest uncertainty in terms of precision.  398 

 399 

 Figure 6 Different experiments run for the propagation of the uncertainty. The red bold letters indicate the source of 

uncertainty investigated for each experiment and how it propagates throughout the regionalisation procedure (in dashed 

arrows). The number of arrows at the experiment 5 indicate different uncertainty sources combined together. 

Table 2 The description of the uncertainty propagation for each of the experiments shown in  Figure 6, and the number 

of realisations considered for each experiment. 

Exp. Explanation No. of realisations 

1 For each local re-sampled extreme value statistics, the regionalisation 

procedure is run. 

100 

2 For each variogram estimated from LS+SS database, the regionalisation 

procedure is run. 

100 

3 For each spatial realisation of the OK[SS], the regionalisation procedure 

is run. 

100 

4 For each spatial realisation of the KED[LS|SS], the regionalisation 

procedure is run. 

100 

5 For each local re-sampled extreme value statistics and spatial realisation 

of KED[LS|SS] the regionalisation procedure is run. 

10,000 

For each of these experiments, the final regionalisation step of the 4 parameters (KED[LS|SS]) is run on a cross-validation 400 

mode: which means that each of the LS station is left stepwise outside of the database, and the remaining database is used 401 

to estimate this LS location. The simulations at the LS stations are then used as a basis for the uncertainty estimation of 402 

each parameter separately, and for the final rainfall depth (RD) obtained at specific return periods (T1a, T10a and T100a) 403 

and 12 duration intervals (5, 10, 15, 30, 60, 120, 180, 360, 720, 1440, 2880, 7340 mins). For each LS location, the 404 

uncertainty is estimated based on the experiment simulations using the following criteria:  405 

Normalised 95% Confidence Interval Width:       𝑛𝐶𝐼95𝑤𝑖𝑑𝑡ℎ  [%] = 100
𝑥97.5%−𝑥2.5%

�̅�
, 406 

where x represents the simulations of the target variable at a specific location, x97.5% and x2.5% are the respective 97.5% 407 

and 2.5% quantile of the x simulations, and �̅� is the expected value of x from the simulations of an experiment. The 408 

normalised 95% Confidence Interval Width (nCI95width) is a measure of spatial simulations precision: the smaller the 409 

value, the more robust or precise is the estimation method for x. 410 

Average Error over all simulations:       𝐵𝑖𝑎𝑠 [%] = 100
∑ (

𝑥𝑠𝑖𝑚−𝑥𝑜𝑏𝑠
𝑥𝑜𝑏𝑠

)𝑛𝑠𝑖𝑚
𝑠𝑖𝑚=1

𝑛𝑠𝑖𝑚
,  411 

where x represents the simulation of the target variable at a specific location from the random simulation sim, xobs is the 412 

local observed target variable at the specific location, and nsim represent the total number of simulations for each 413 

experiment. The average error over all the simulations measures the accuracy of the realisation compared to local input 414 

(11) 

(12) 
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data. When rainfall depth (RD) is the target variable, one can go one step further and measure how well the realisations 415 

capture the monotonically increase of the RD at different duration intervals for specific return periods, which corresponds 416 

to the evaluation criteria in estimating the best regionalisation method for Germany on our previous study (Shehu et al., 417 

2022).  418 

Percentage RMSE:   𝑅𝑀𝑆𝐸𝑠𝑡,𝑇𝑎[%] = 100 ∙
√

1

𝐷
∑ (𝑅𝐷𝑟𝑒𝑔𝑖𝑜,𝑑 −𝑅𝐷𝑙𝑜𝑐𝑎𝑙,𝑑)

2𝐷
𝑑=1

𝑅𝐷𝑙𝑜𝑐𝑎𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ,  419 

where Ta and st are the respective selected return period and LS location, RDregio corresponds to the regionalised rainfall 420 

depth (with KED[LS|SS]), RDlocal the locally derived rainfall depth from the normalised GEV function (from Equation 421 

(1) and (2)), the 𝑅𝐷𝑙𝑜𝑐𝑎𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean local rainfall depth over all duration levels, and the d is an index indicating the 422 

iteration from 1st to D=12th duration interval. Through the Equations (12) and (13) and the cross-validation mode, it is 423 

possible to compare the performance the simulations with the direct regionalisation (i.e. interpolation) from Shehu et al. 424 

(2022), in order to investigate if the simulation methods are appropriate.   425 

4. Results and Discussion  426 

4.1 Comparison of different models in modelling spatial uncertainty 427 

Before analysing the propagation of different uncertainty sources, the best method for computing the spatial uncertainty 428 

is investigated. As discussed in Section 3.3 two methods are employed for the generation of 100 equiprobable realisations 429 

both for the drift information (OK) and the interpolation of the long recording stations with external drift kriging (KED): 430 

the Sequential Gaussian Simulation (SGS) as method 1 and the Simulated Annealing (SA) as method 2. Figure 7 431 

illustrates the parameter precision (nCI95width [%]) and accuracy (Bias [%]) of these 100 simulations calculated in cross-432 

validation mode for each of the long recording locations (in total 133) for both methods. Note that the transformation to 433 

normality is required only for the SGS and not the SA simulations, as the SA simulations are performed based on observed 434 

histograms. The main differences between the two simulation methods are seen in the precision obtained from the 100 435 

realisations (nCI95width – upper row), where the realisations from the SA approach are more precise than the ones from 436 

the SGS approach. The difference in the precision is much higher in the KED[LS|SS] than for the OK[SS] for all the 4 437 

parameters. In terms of parameter accuracy, both methods have similar performance for both OK[SS] and KED[LS|SS], 438 

with SA having slightly higher errors than the SGS and the direct regionalisation (i.e. interpolation) performance 439 

(particularly for the μ and θ parameter). Overall it seems that the SA is more precise than the SGS, nevertheless as the 440 

focus is on Depth-Duration-Frequency curves, the methods should be as well compared in their ability to estimate the 441 

DDF curves. For this purpose, for each cross-validation location, the RMSE [%] was first calculated as per Equation (13) 442 

for each simulation, and then the median over the 100 simulations was obtained. The median RMSE [%] performance for 443 

different return periods for both methods are shown in Figure 8. The median RMSE [%] performance obtained by the 444 

SGS method seems to be in accordance with the performance of the direct regionalisation (interpolation) for both OK[SS] 445 

and KED[LS|SS]. In contrast, the RMSE [%] performance from the SA simulations are slightly worse than the direct 446 

regionalisation for OK[SS], and much worse for the KED[LS|SS] over all return periods (median up to 5-8% higher). 447 

Even though the SA produces more precise simulations of parameters, it fails to maintain the inter-relationship between 448 

the parameters, causing lower accuracy in the DDF estimation. The SGS on the other hand, keeps the same level of 449 

accuracy like the direct regionalisation (interpolation) but with a lower precision. Since the aim is to keep accuracy as in 450 

the direct regionalisation (interpolation), SGS was chosen as a more suitable method to model the spatial uncertainty. 451 

(13) 
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Also, since the SGS produces a higher range of simulations, the estimated precision, in the end, is more conservative than 452 

the SA procedure.      453 

 454 

  455 

Figure 8 The accuracy (RMSE [%]) of two different spatial simulations methods (1- SGS and 2 - SA) for the drift 

regionalisation (O) and the final regionalisation (K) of the Depth-Duration-Frequency curves. The boxplots illustrate the 

median RMSE over the 133 LS locations. The background shades illustrate the accuracy of the direct regionalisation (i.e. 

interpolation) of observed local statistics in a cross-validation mode, where: red dash indicates the median accuracy over 

all stations, the blue region the inter-quantile range (IQR) of all stations, the light blue region the 95% and 5% quantiles, 

and the grey dashed lines the maximum and minimum performance over all stations. 

Figure 7 The precision (nCI95width [%]) and accuracy (Bias [%]) of two different spatial simulations methods (1-SGS 

and 2 -SA) for the drift regionalisation (O) and final regionalisation (K) of the 4 parameters. The boxplots illustrate the 

performance over the 133 LS locations. The background shades in the lower row illustrate the accuracy of the direct 

regionalisation (i.e. interpolation) of observed local statistics in a cross-validation mode, where: red dash indicates the 

median accuracy over all stations, the blue region the inter-quantile range (IQR) of all stations, the light blue region the 

95% and 5% quantiles, and the grey dashed lines the maximum and minimum performance over all stations. 
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4.2 Effect of different uncertainty components for the estimation of the DDF Curves at ungauged locations 456 

Experiments 1 to 4 were conducted in order to investigate the uncertainty propagation from each component of 457 

regionalisation to the final parameter and DDF values, while Experiment 5 considers a propagation of the two main 458 

uncertainty sources interacting together in the final regionalisation of the extremes. The parameter uncertainty is 459 

calculated from the number of simulations given in Table 2 for each experiment, and is illustrated in Figure 9; where the 460 

upper rows represents the precision (nCI95width [%]), while the lower rows the accuracy (Bias [%]) of estimated parameters 461 

in a cross-validation mode. Figure 10 illustrates the DDF uncertainty at duration levels from 5min up to 7 days for three 462 

return periods 1, 10 and 100 years: precision (nCI95width [%]) shown in upper row and accuracy (RMSE [%]) at the lower 463 

row. The accuracy of the simulations is compared with the direct regionalisation (i.e. interpolation) of the observed 464 

parameter sets (see caption for more details). It is worth mentioning that the difference between the different component 465 

simulations (Experiment 1 to 4) is visible only at the precision of the simulations and not at the accuracy. As illustrated 466 

by Figure 9– lower row and Figure 10– lower row, the accuracy at estimating the parameters (Bias [%]) and the DDF 467 

values (RMSE [%]) is not changing considerably from one experiment to the other. Also, when comparing the boxplots 468 

with the performance obtained from the direct regionalisation (interpolation - shown with the background colours), the 469 

same accuracy more or less is observed. Therefore, the analysis will be focused on the variation of precision (nCI95width 470 

[%]) according to different sources of uncertainty. Regarding the parameter uncertainty as shown by Figure 9, the spatial 471 

KED[LS|SS] simulations (Exp. 4) represent the highest source of uncertainties for all the parameters: the nCI95width [%] 472 

ranges from 18% for the η parameter, between 40-50% for the two GEV parameters μ and σ, and up to 250% for the θ 473 

parameter. The parameters are varying greatly in space, and that is why when sampling from space (spatial simulations) 474 

the prediction intervals are higher than for the bootstrapping case (or the other cases). For all the parameters, the nCI95width 475 

of the KED[LS|SS] simulations are at least 3 times higher than the nCI95width of the other uncertainty sources, concluding 476 

that the spatial simulations add to the regionalisation the biggest uncertainty. Second to the KED[LS|SS] simulations, are 477 

the resampling of local statistics (Exp. 1) and the OK[SS] simulations (Exp. 3), which seems to produce similar levels of 478 

nCI95width for most parameters ranging from 10% for the location - μ, 90% for the θ and only 8% for the η parameter. 479 

Only for the scale GEV parameter (σ) is the nCI95width from the local statistics resampling higher (~20%) than the one 480 

from OK[SS] (~15%). It is interesting to see, that the obtained nCI95width from the variogram bootstrapping (Exp. 2) are 481 

lower than 5% for almost all parameters (exception θ parameter which is lower than 20%). This suggests that the 482 

variability between interpolated fields with different variograms is reproducing very similar spatial parameters, even 483 

though the variograms differ greatly in terms of nugget, sill and range (see Figure 5). The same behaviour is also seen in 484 

estimated DDF curves for different return periods (Figure 10 – upper row), where the variability as exhibited by the 485 

variogram bootstrapping (Exp. 2) is very low (less than 10%) compared to the other simulations, and as well constant 486 

over the duration levels. On the other hand, the simulations from both local resampling (Exp. 1) and OK[SS] simulations 487 

(Exp. 2) exhibit similar patterns of nCI95width for the selected DDFs curves (Figure 10 – upper row). Unlike the nCI95width 488 

exhibited at the parameter simulations, here it is more visible the difference between these two components, as the nCI95% 489 

produced by the local resampling (Exp.1) are 1-5% higher than the one produced by the OK[SS] simulations (Exp.3). As 490 

seen also in Figure 10 – upper row, the nCI95width from the KED[LS|SS] (Exp. 4) are the highest compared to the other 491 

components, emphasizing that the spatial uncertainty of the KED[LS|SS] is the main source of uncertainty when 492 

regionalising the DDF curves. Also, unlike the other types of uncertainties (Exp. 1 to 3), the spatial uncertainty from the 493 

KED[LS|SS] depends greatly on the duration level, with nCI9width values of short duration intervals (from 5min up to 2 494 

hours) being considerably higher than the other experiments (reaching on average values of 40%). Moreover, Exp. 4 495 

boxplots are much wider than Exp. 1 to 3, suggesting that the spatial uncertainty is highly dependent on the location. The 496 

high uncertainty values in terms of precision for Exp. 4, come with the cost of slightly increased error in RMSE (Figure 497 
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10 -lower row), where the median RMSE values are 1-2% higher than those of the direct regionalisation, but still within 498 

the Inter-Quantile-Range (IQR) of the direct regionalisation performance.    499 

 500 

 501 

Figure 10 The obtained precision (first row - nCI95[%]) and accuracy (lower row - RMSE [%]) from propagating the 

multiple realisations at each component of the regionalisation procedure to the final DDF values. The background shades 

in the lower row illustrates the accuracy of the direct regionalisation (i.e. interpolation) of observed local statistics 

computed as well in a cross-validation mode, where: red dash indicates the median accuracy over all stations, the blue 

Figure 9 The obtained precision (first row - nCI95width [%]) and accuracy (lower row - Bias [%]) from propagating the 

multiple realisations at different components of the regionalisation procedure to the final parameter sets. The background 

shades in the lower row illustrate the accuracy of the direct regionalisation (i.e. interpolation) of observed local statistics 

computed as well in a cross-validation mode, where: red dash indicates the median accuracy over all stations, the blue 

region the inter-quantile range (IQR) of all stations, the light blue region the 95% and 5% quantiles, and the grey dashed 

lines the maximum and minimum performance over all stations.  
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region the inter-quantile range (IQR) of all stations, the light blue region the 95% and 5% quantiles, and the grey dashed 

lines the maximum and minimum performance over all stations.   

So far, the experiments 1 to 4 considered the propagation of singular uncertainty sources to the final regionalisation of 502 

parameters and DDF curves in Germany. Experiment 5 considers a propagation of the two main uncertainty sources 503 

interacting together in the final regionalisation of the DDF curves. As stated before, the most important sources are; the 504 

local estimation of rainfall extreme statistics, and the spatial uncertainty in regionalisation (KED[LS|SS]). As the 505 

variogram and the external drift is calculated for each local resampling dataset, the uncertainty of variogram and external 506 

drift is already included in the propagation of uncertainty from local resampling to spatial simulations. For each of the 507 

two components, 100 realisations are run, resulting in a total of 10,000 simulations. Overall, the final and total uncertainty 508 

from Exp. 5 follows a similar pattern to the uncertainty from KED[LS|SS] simulations, but due to the local uncertainties, 509 

it manifests higher values of nCI95width and RMSE (as seen in Figure 9 and 10). The variation of the total nCI95width for 510 

almost all parameters is 10-20% higher than those of Exp.4, with the GEV parameters reaching values of 50% (μ) to 70% 511 

(σ), the θ parameter up to 270% and the η parameter up to 20%. Consequently, the variation of the total nCI95width over 512 

the duration levels is between 35-50% for return periods 1 and 10 years and between 40-80% for return period of 100 513 

years. As with the KED[LS|SS] simulations (Exp. 4), the durations shorter than 120min and the ones longer than 3 days, 514 

exhibit higher nCI95width values, with the durations from 6 – 48 hours having the highest precision (lowest nCI95width 515 

values). Another property seen from experiment 5 is that the variation in space (the wideness of boxplots) is narrower 516 

than in Exp. 4 for most of the durations, suggesting that the final spatial uncertainty is more constant in space (inheriting 517 

a property from local uncertainty – Exp. 1). In term of accuracy, the RMSE [%] has been increased on average with 3% 518 

for 1-year return period, and to 4-5% for 10-100 years return periods, differing slightly from the direct regionalisation 519 

(i.e. interpolation) performance, but still within the Inter-Quantile-Range (IQR) of the direct regionalisation. Some 520 

outliers are present in the accuracy plot (lower row Figure 10), however expect for one location, these outliers are within 521 

the maximum RMSE manifested by the direct regionalisation. The behaviour of these outliers emerges both from 522 

parameter outliers and from looking at the quantiles. They are present at locations where parameters are considerably 523 

different from the neighbour long observations (as in the case of singular stations in the Black Forest or the Alps), or 524 

where a parameter outlier is located (as in the case of Münster City where a very rare extreme event in 2014 causes a high 525 

value for the scale σ parameter) and are not geographically clustered. Since the median of the simulations from 526 

experiments 5 is increasing slightly the RMSE [%] but still within the IQR of the direct regionalisation, the simulations 527 

can be used to quantify the total uncertainty range for the regionalisation of the Depth-Duration-Frequency Curves. Under 528 

this context, the nCI95width [%] values in  Figure 10  can be divided by two, to show the tolerance range above or below 529 

the predicted values at each node from the direct regionalisation. For instance, if at a specific location, for duration of 530 

5min and return period 100 years, the simulated nCI95[%] is 40%, which means that the regionalised rainfall depth at 531 

this location is varying with ∓20% of its mean value.   532 

A parabolic relationship is visible for experiments 1-3, with lower nCI95width values at the mid-duration levels (1 and 2 533 

hours) and increasing values at lower and longer durations. This parabolic behaviour over the different duration levels is 534 

attributed to the Koutsoyiannis framework for generalising the intensities over all durations by the two parameters θ and 535 

η.  A particular behaviour is the variation of the nCI95width over the DDF values from the KED[LS|SS] simulations (Exp. 536 

4), which is inherited as well at the final uncertainty computation (Exp. 5). The behaviour exhibited by KED[LS|SS] 537 

simulations does not follow a parabolic function as in Exp. 1, Exp. 2 and Exp. 3, but more a sinusoidal one. This can be 538 

attributed to two main reasons: 1. The effect of the Koutsoyiannis parameters on different durations, and 2. The spatial 539 

simulations of the SGS algorithm following the transformation to normality. 540 
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Figure 11 – upper row illustrates the observed empirical and simulated CDF from Exp. 4 for each parameter extracted 541 

from the LS dataset. Overall the simulated CDFs agree well with the observed CDFs, however the tails might diverge 542 

slightly. This is particularly true for the lower tail of the θ and η parameters, and the upper tail of the σ parameter. This 543 

occurs as the transformation is done on a continuous CDF, a GNO is first fitted to the data and based on the GNO-CDF 544 

the transformation is performed. Nevertheless, this is not negative, as like this, values outside the observed range are 545 

simulated, and hence higher or lower values can be simulated as well. As stated in (Marra et al., 2019b), the rainfall 546 

stations will not capture the maximum intensities of a storm, and thus is almost certain that they don’t represent the high 547 

possible intensities. Therefore, generating higher or lower parameter values than observed is crucial in the generation of 548 

stochastic simulations. Figure 11 – lower row illustrates the correlation between pairs of LS parameters (shown in red 549 

dots), and the corresponding correlations obtained from the 100 KED[LS|SS] simulations run in the cross-validation mode. 550 

For the μ-σ pair the observed correlation is well captured as it coincides with the median of the simulations. To a certain 551 

degree, this is also true for the θ-η pair. The main differences are in the relationships between the GEV and Koutsoyiannis 552 

parameters, where the simulated correlation is much higher than observed. In particular the correlation between μ, σ, and 553 

θ are higher than the correlation between μ, σ, and η. This explains why the precision of the KED[LS|SS] has a sinusoidal 554 

behaviour. The fluctuation of the θ parameter is affecting the uncertainty of the short durations (mainly from 5 to 60min), 555 

while the fluctuation of the η parameter affects the uncertainty at short (5-30min) and very long durations (12hours to 7 556 

days). Since the θ parameter is highly correlated with the μ and σ parameters, its fluctuations will result in a smaller 557 

uncertainty than the η fluctuations, resulting in a slight increase of precision between the duration of 5-30mins.    558 

In KOSTRA2010R, which provides design storms for Germany, no objective uncertainty analysis was performed to give 559 

the confidence intervals between 10-20% and hence should not be directly compared with the objective uncertainty esti-560 

mation performed here. The total uncertainty considered here (from Exp. 5) depends not only on the return period, but as 561 

well on the duration level. The results from  Figure 10 can be used to determine the tolerance above (+) and below (-) the 562 

median for the 95% confidence level. This will result in a median uncertainty range from ±15-25% for low return periods 563 

Figure 11 upper row - empirical CDF simulated from Exp.5 (in grey) and from observed paramter values (in red) over 

the 133 locations; lower row – observed correlations calculated in space between pairs of LS parameters (shown in red 

dots) and the respective correlations from 100 KED[LS|SS] simulations (shown in the grey boxplots).   
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(lower than 10 years), and from ±20-40% for high return periods (higher than 10 years). Moreover, the short durations 564 

(5min to 2 hours) are in general 20-30% more uncertain than the longer durations (6hours – 1 day). The behaviour exhib-565 

ited here is in accordance also with other studies (for instance Marra et al., 2017) where the shorter duration intervals are 566 

more uncertain than the ones of 1 day. In this section we compare the uncertainty estimation from two experiments 4 and 567 

5, to see how they distinguish from one another. Uncertainty from experiment 1 is left outside, not only to keep the 568 

graphics simple for visualization, but also because it is much narrower than for the other 2 experiments and it is enclosed 569 

in Exp. 5. Examples of Depth-Duration-Frequency Curves and tolerance ranges for three stations and three returns periods 570 

(T=1, 10 and 100 years) are illustrated in Figure 12 for three methods: only spatial KED[LS|SS] simulations (from Exp. 571 

4) in blue, local and spatial simulations (from Exp. 5) in orange, and local derived DDF curves in dashed black line. Note 572 

that the results shown here are also obtained in cross-validation mode, which of course overestimate the overall uncer-573 

tainty at these locations. The first station KO00830 is located in Oberstdorf (a town in the Allgäu Alps of Germany), the 574 

second KO000490 in Soltau Lower Saxony, and the third KO00550 in Emmendingen in the Black Forest region. These 575 

three stations were selected as representative of different regions and behaviours. Over all the stations, the tolerance range 576 

computed by the two experiments are wider at short duration intervals. This is true for all return periods, but the tolerance 577 

ranges get wider with increasing return period. As seen from– first row, the expected rainfall depth in the German Alps is 578 

Figure 12  Examples of DDF estimates from observed data and predicted by simulations of Exp. 4 and 5 in a cross-

validation mode: as median over all simulations and as 95% tolerance ranges from all simulations: upper row for 

return period T=1years, middle row for T=10years and lower row for return period T=100years. Three stations are 

shown here: K000830 located in the German-Alps, KO00490 location in Lower Saxony, and KO00550 located in Black 

Forest. 
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much higher than the two others, followed by the station in Soltau and the one in the Black Forest. Because of the low 579 

station density in the Alp region, the tolerance range is bigger than in other locations. Overall the two products are similar 580 

with each other, with the main difference present mainly at the durations from 6 to 12 hours, where Exp. 5 exhibits wider 581 

tolerance ranges. Regarding the median estimation of DDF from both experiments, the main difference is seen in the Alps, 582 

where the Exp. 5 agrees better with the observed values. Lastly, we recommend quantifying the uncertainty based on Exp. 583 

5, since the tolerance ranges are better representing the duration levels from 6-12 hours and its median is matching better 584 

with the observation.  585 

4.3 Spatial structure of uncertainty for whole Germany 586 

Spatial maps of precision were generated for three experiments (Exp. 1, 4 and 5), by using the whole dataset, in order to 587 

investigate the spatial distribution of the precision when generating the DDFs curves for Germany. The precision in terms 588 

of nCI95width [%] for the 4 parameters describing the extreme value statistics are given in Figure 13. It can be seen that 589 

the different sources of uncertainties exhibit different precision over Germany. For instance, a propagation of the local 590 

uncertainty (Exp. 1 showed at the first row), is causing less precision at observed locations (shown in black) than at 591 

unobserved location. This is because, the resampling of the target network (LS) proves more uncertainty than resampling 592 

the external drift network (SS). Therefore, uncertainty estimated from Exp. 1 is not enough to capture the spatial structure 593 

of the uncertainties. On the other hand, Exp. 4 shows a clear spatial structure for uncertainty (mainly for three parameters 594 

σ, θ, and η) with the North-West and South of Germany having higher uncertainty ranges. This follows the precipitation 595 

regime and the station density in Germany; the South parts records higher precipitation amounts because of the German 596 

Alps (so it is a region with clearly different behaviour than the rest of Germany), while the North-West has a lower station 597 

density for both the LS and SS datasets in comparison with the rest of Germany. The uncertainty range at two parameters 598 

μ and σ is increasing with 30-40% for whole Germany when combining the local with spatial uncertainty (Exp. 5) in 599 

comparison with only spatial uncertainty (Exp. 4). The uncertainty at the parameters θ and η remains more or less at 600 

similar levels, with similar spatial patterns. Thus, including the local uncertainty mainly influences the parameters of the 601 

GEV distributions. It is interesting to see in Exp. 5, that at the location of the long recording stations (shown in black 602 

squares), the uncertainty of the parameters μ and σ is much lower than for the rest of the regions. This is an expected 603 

behaviour, as observed locations should be more certain than unobserved ones, and as the station density decreases, so 604 

increases the uncertainty. This behaviour, not seen in other experiments, seems to be captured quite well by Exp. 5. This 605 

is particularly true for the GEV parameters, while the Koutsoyiannis parameters show an additional spatial variability of 606 

uncertainty that follows the main elevation features in Germany (represented by the external drift): with North-West and 607 

South Germany having higher uncertainty ranges. Another interesting point is the high uncertainty associated at the σ 608 

parameter by Exp. 5 at Münster city (shown in a red circle) which is as well visible at Exp. 1. The high uncertainty of the 609 

scale parameters comes mainly from the local resampling bootstrap. As discuss in Shehu et. al (2022) a very rare extreme 610 

event has been recorded in 2014 in Münster, which affects the extreme value analysis considerably. Thus, the integration 611 

of the local uncertainty becomes mandatory to estimate the uncertainty when including these rare events (with a very high 612 

return period) in the estimation of DDF curves for design purposes. 613 

Figure 14 illustrates the spatial distribution of uncertainty (computed here in term of precision nCI95width [%]) for the 614 

durations 5min, 1hour, and 1 day and return period of 100 years: upper row - only from local uncertainty (Exp. 1), second 615 

row – only from spatial uncertainty (Exp. 4) and lower row – from both local and spatial uncertainty (Exp. 5). The 616 

uncertainty ranges exhibited by Exp. 1 (only considering the local uncertainty) are very similar throughout all three 617 

durations and maintain similar spatial structure as with the parameter uncertainty in  Figure 13. Here, the difference 618 

between observed and unobserved locations is small and, following the parameter precision, the observed locations have 619 

higher uncertainty that the unobserved ones (on average 15-20% higher nCI95width values). In Exp. 4 there is a clear 620 
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difference between the uncertainties of different durations, where the uncertainty of very short and very long durations 621 

(5min and 1day) are governed by the spatial structure of θ and η parameters. The uncertainty of 1-hour durations are more 622 

or less uniformly distributed, but with the North-West region exhibiting higher uncertainties than the rest of Germany. At 623 

Exp. 5 the uncertainty for 5min durations has been increased considerably when including the local uncertainty (from 20-624 

55% in Exp. 4 to 80-100%). The uncertainty of 1-hour durations exhibits similar patterns but is increased slightly from 625 

45% to 55% at Exp. 5. For 1-day duration, the uncertainty ranges are as well increased by Exp. 5, with values higher at 626 

the southern part of Germany (where the German Alps are located) and at the northern part of Germany near to the North 627 

Sea. The extreme event at Münster, influences the uncertainty of all durations but has a higher impact of short durations. 628 

Based on such propagation of uncertainty, tolerance ranges between ∓30-60% should be expected in Germany for 5min 629 

duration intervals, ∓15-45% for 1-hour durations and ∓20-50% for 1-day durations. Overall, the combination of local 630 

Figure 13 The precision (nCI95[%]) in estimating the 4 parameters for the whole Germany with all available data for 

two experiments: upper row – results obtained from the propagation of 100 local resampled data to the final 

regionalisation (Exp. 1), middle row -  results obtained from 100 spatial simulations of KED[LS|SS] (Exp. 4), lower row 

– results obtained from 10,000 local resampling and spatial simulations of KED[LS|SS] (Exp. 5). The black squares 

indicate the locations of LS, while the black lines illustrate the boundaries of German Federal states. Note that the ranges 

for the legend colours are changing for each experiment in order to emphasize the spatial structure of each experiment. 
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resampling with geostatistical spatial simulations provides the best method for the assessment of uncertainty in 631 

regionalisation DDF curves in Germany. First, and most importantly, the precision of these curves is higher at the location 632 

of long recording stations, and decreases in ungauged locations according to the distance from the long observations and 633 

the density of the observations in the vicinity.  634 

Figure 14 The precision (nCI95[%]) in estimation rainfall depth at different durations and 100 year return period for 

whole Germany with all available data for three experiments: upper row – results obtained from the propagation of 100 

local resampled data to the final regionalisation (Exp. 1), middle row –results obtained from 100 spatial simulations of 

KED[LS|SS] (Exp. 4), lower row – results obtained from 10,000 local resampling and spatial simulations of KED[LS|SS] 

(Exp. 5). The black squares indicate the locations of LS, while the black lines illustrate the boundaries of German Federal 

states. Note that the ranges for the legend colours are changing for each experiment in order to emphasize the spatial 

structure of each experiment.  
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5. Conclusion and Outlook  635 

In Shehu et al. (2022), a regionalisation based on external drift kriging was employed to calculate Depth-Duration-636 

Frequency (DDF) curves in Germany. Based on these results, an uncertainty analysis was conducted here to estimate the 637 

precision of the obtained regionalised DDF curves in Germany. For this purpose, many simulations were performed at 638 

the main components of the regionalisation procedure: local estimation of the extreme statistics (by non-parametric 639 

bootstrapping), spatial dependency (by variogram bootstrapping) of short and long recording stations statistics, the 640 

external drift information (by Sequential Gaussian Simulations) and the interpolation (also with Sequential Gaussian 641 

Simulations). Four different experiments were run in order to estimate how the uncertainty at each component propagates 642 

to the final regionalisation of the DDF curves, and a last experiment was performed by combing the uncertainty of the 643 

two main components in order to assess the total uncertainty. The uncertainty, in terms of precision, was evaluated at each 644 

long recording station location (on a cross-validation mode) based on the obtained 95% confidence interval from different 645 

simulations. The conclusions from this investigation are summarised below: 646 

 A comparison with Simulated Annealing showed that the SGS is better suitable for the study at hand, as it shows 647 

higher accuracy by capturing better the inter-relationship between the parameters (despite of the data 648 

transformation). Further works may include a new SA algorithm that models of the 4 parameters together in 649 

space in order to keep the inter-relationship between them. A future improved SA algorithm may have the 650 

potential to decrease the overall uncertainty ranges of DDF curves further on.  651 

  The uncertainty from the variograms, that describes the spatial dependencies within the short and long 652 

observation datasets, does not seem to influence much the final regionalisation of parameters and hence the 653 

estimation of the DDF curves. Therefore, it was neglected for the total uncertainty propagation. On the other 654 

hand, the uncertainty from the regionalisation of the long observations is the biggest source of uncertainty, 655 

followed up by the local estimation of extremes and by the drift estimation from short observation. A 656 

bootstrapping technique that combines the local estimation of extremes together with different spatial 657 

simulations of the long observations, provided the highest uncertainty and was used to quantify the total 658 

uncertainty.  659 

 The total uncertainty obtained here follows mainly the behaviour of the spatial uncertainty, but is slightly higher, 660 

as it is influenced by the local uncertainty. However, unlike the spatial uncertainty, the total uncertainty is 661 

influenced by the very rare extreme events, and considers them as well for the computation of tolerance ranges. 662 

Moreover, by combining local resampling with spatial simulations, the modelled uncertainty exhibits a valid 663 

behaviour: at observed locations the precision is higher, and it decreases at unobserved locations according to 664 

the distance from the observed, and the density of the observed locations in the vicinity. For very short and very 665 

long durations, uncertainty ranges are also dependent on different climatological regions in Germany.  666 

 From 10,000 simulation, it is concluded that the durations shorter than 2 hours exhibit a larger uncertainty that 667 

longer durations, which of course is increasing with the return period considered. Depending on the location and 668 

duration, tolerance ranges from ±10-30% for low return periods (lower than 10 years), and from ±15-60% for 669 

high return periods (higher than 10 years) should be expected.  670 

 For the proposed methodology, the uncertainty variation in space (for most locations) seems to be smaller (~10-671 

20%) than the variation across different durations (up to 30%). On the other hand, the uncertainty variation due 672 

to the return periods is low, approximately 5 to 10%. The only exception is at Münster, where a very rare extreme 673 

events has been observed and causes high uncertainty ranges for the extreme values in the vicinity. Events such 674 

at the one in Münster, influence the DDF curves considerably, and hence more research should be done in order 675 

to investigate how to treat them when the focus is on DDF curves for return periods up to 100 years.  676 
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Overall, the combination of local resampling with geostatistical spatial simulations provides a very suitable method for 677 

the assessment of uncertainty in regionalisation DDF curves. As shown here, considering only local resampling for the 678 

sample variability will underestimate the total uncertainty especially at very short duration interval and high return periods. 679 

Therefore, it becomes crucial to include as well spatial simulations for the computation of uncertainties. In this study, the 680 

extreme value analysis based on GEV was investigated, nevertheless it would be interesting to see if a meta-statistical 681 

approach, as proposed by Marra et al. (2019a), can result in narrower tolerance ranges while keeping a higher accuracy. 682 

So far, only the sample and spatial variability were included for the estimation of the uncertainties. Future works may as 683 

well include non-stationarity due to climate change, and the change of uncertainty patterns in the future.    684 
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