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Abstract 11 

Climate change has increased the possibility of more severe and prolonged droughts worldwide, which 12 

requires innovative methods to predict their impacts on different sectors such as agriculture. Crop 13 

growth models calculate yield and variables related to plant development and are used for crop yield 14 

estimation, a useful variable for monitoring drought impacts. Although used for prediction, these crop 15 

models are not explicit forecasting models; they are limited to the physical assumptions reflected in 16 

their conceptual model. In addition, the input data availability, the spatial and temporal aggregation, 17 

and different sources of uncertainty make the crop yield prediction challenging. Given these limitations, 18 

machine learning (ML) models are often utilised following a multivariable forecasting approach, but 19 

their use with the spatial characteristics of droughts as input data is limited. This research explored the 20 

spatial extent of drought as input data for building an approach for predicting seasonal crop yield. This 21 

ML approach is made up of two components. The first includes polynomial regression (PR) models, 22 

and the second considers artificial neural network (ANN) models. This approach aimed to evaluate both 23 

types of ML models (PR and ANN) and integrate them into one operational tool. The logic is as follows: 24 

ANN models determine the most accurate predictions, but in practice, issues regarding data retrieval 25 

and processing can make the use of equations, i.e. PR, preferable. The proposed approach provides 26 

these PR equations with early and preliminary input to perform such calculations. The estimates can be 27 

further improved when the ANN models are run with the final input data. The results indicated that the 28 

empirical equations (PR) produced good predictions when using drought area as the input. ANN 29 

provides better estimates, in general. The results presented are a proof of concept showing the 30 

capabilities of this ML approach to predict drought impacts with a certain degree of confidence. 31 

Research results show that the spatiotemporal changes of drought area and its temporal aggregation 32 

provide an important pre-processing alternative to implement  ML models for drought impact 33 

prediction. 34 
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1 Introduction 37 

Drought frequently hits many regions across the world. It negatively affects various human 38 

activities such as agriculture, which not only generates economic losses but can also trigger 39 

famine, causing millions of deaths (Below et al., 2007; Food and Agriculture Organization of 40 

the United Nations (FAO), 2017; Kim et al., 2019; Sheffield and Wood, 2011; World 41 

Meteorological Organization (WMO), 2006). Hence, methods that help to improve strategies 42 

for drought mitigation are necessary. Within these methods are those that allow predicting the 43 

impacts of drought. 44 

Assessments of drought impacts confirm that the presence of drought on human activities can 45 

be devastating. For instance, the Food and Agriculture Organization of the United Nations 46 

(FAO) calculated the damage and losses in the agricultural sector caused by five types of 47 

hazards, including drought. FAO estimates that drought causes damages and losses to the 48 

agricultural sector by up to 80% (FAO, 2017). Although multiple factors are involved in 49 

agriculture affectation, drought often plays the primary role, as literature confirms (Dai, 2011; 50 

FAO, 2017; Kim et al., 2019). 51 

The assessment of drought impacts on agriculture can be performed with the help of crop yield. 52 

FAO defines crop yield as the measure of the yield of a crop per unit area of land cultivation 53 

(in kg/ha or ton/ha) (FAO and DWFI, 2015). For assessing crop yield under drought affectation, 54 

physical models based on crop properties turn out to be more comprehensive and descriptive 55 

(Huang et al., 2019; Reynolds et al., 2000; White et al., 1997; Wu et al., 2016). However, an 56 

important barrier to such models' realisation is the lack of detailed crop data and the difficulty 57 

representing all the processes involved in all stages of crop development (Huang et al., 2019; 58 

Reynolds et al., 2000; Wu et al., 2016). 59 

Statistical and machine-learning (ML) models, which involve mathematical equations to 60 

calculate the output of a model with suitable input(s), can be used to assess crop yield impact 61 

by drought without considering any biological or physical process of the crop but the analysis 62 

of the input and output data (Araneda-Cabrera et al., 2021; Chlingaryan et al., 2018; Rahmati 63 

et al., 2020; Udmale et al., 2020; van Klompenburg et al., 2020). There have been studies where 64 

various inputs, ML techniques, and architectures (configurations) have been tested for crop 65 

yield prediction mainly following a multivariable forecasting approach (e.g., Chlingaryan et 66 

al., 2018; van Klompenburg et al., 2020). However, the use of spatial characteristics of drought 67 

such as its spatial extent has not been fully explored to crop yield prediction. The prediction 68 

refers to the calculation of crop yield at the end of the growing season (harvesting) with 69 
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information available before or during the crop development season (pre-harvesting). Previous 70 

studies have found the spatial extent of drought to be highly correlated with the variation of 71 

crop yield, which motivates its use in the construction of crop yield prediction models in this 72 

research (Araneda-Cabrera et al., 2021; Diaz et al., 2016; Osman, 2018; Osman et al., 2018). 73 

This research aims to develop an ML approach to calculate seasonal crop yield (CY) with the 74 

monthly drought areas (DAs) as input. The ML approach comprises two components. Each 75 

component includes a set of the following types of ML models: polynomial regression (PR) 76 

and artificial neural network (ANN). The goal is to build both types of ML models (ANN and 77 

MR) and use them as an integrated tool to support the decisions made based on crop yield 78 

prediction. The logic is as follows. PR provides the prediction where the crop yield calculation 79 

is "clear" to the performer (the end-user) because she/he has access to the equations that have 80 

a straightforward interpretation and calculations can be done with early and preliminary input 81 

data. For its part, ANN is used as the most accurate model, although the output calculation is 82 

not as "clear" as in the case of PR due to the difficulty of interpreting the structure of the 83 

resulting ANN. The ANN is expected to be used with the final input data.  84 

Three East Indian regions where agriculture plays an important role were chosen as a case 85 

study. ML models were built for the period 1967-2015. ML models aim to predict rice crop 86 

yield since rice is the most cultivated crop in these regions. The ML approach was applied 87 

separately in each of the three regions. 88 

Crop yield prediction in India 89 

In India, as in many other countries, the official crop yield prediction is mainly based on 90 

conventional data collections techniques such as ground-field visits (Bhatt et al., 2014; 91 

Reynolds et al., 2000; Sawasawa, 2003). The crop yield is measured through crop cutting 92 

experiments carried out over sample crop areas. In this country, crops' area and yield 93 

calculations are released through the Directorate of Economics and Statistics, Ministry of 94 

Agriculture (DESMOA). A specific crop's production (in kg or ton) is calculated by 95 

multiplying the whole field area (cultivation district) by its crop yield. The crop production is 96 

needed for the decision-makers to take various policy decisions relating to pricing, marketing, 97 

distribution, exportation and importation. 98 

The Kharif season, as it is locally known, represents about 80% of the annual rainfall (Naresh 99 

Kumar et al., 2012). This monsoon season generally goes from June to October. In this season, 100 

the highest agricultural production is obtained. Estimation of Kharif crop yield and production 101 

is released four times during the year with different levels of sophistication and precision, 102 
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where the last one is considered the most accurate. The first calculation is presented in 103 

September, the second one in January, the third one in March/April, and the fourth, and the last 104 

one, in June/July. It should be noted that the last two calculations of crop yield and production 105 

become available much after the crops have already been harvested in December/January. 106 

From the four calculations, the first two can be considered predictions. These two first 107 

predictions serve as primary estimations about how much the final yield and production will 108 

be. 109 

The existing ground-field visits-based crop yield calculation system provides reliable 110 

information for various crops, including rice, at the district, state, and country level for each of 111 

the four realisations previously described; however, it lacks pre-harvesting forecasting. This 112 

limitation of crop yield prediction motivated the creation of a satellite-based forecasting system 113 

to have information at the early stages of crop growth. The system is carried out by the 114 

Mahalanobis National Crop Forecast Centre (NCFC) (Sawasawa, 2003). The NCFC system is 115 

continuously verified and updated. Although the NCFC system advances the one based on 116 

ground-field visits by providing information in the early stages of crop growth, the data 117 

required for its execution may not always be available. Therefore, it is necessary to explore 118 

other solutions. 119 

In this study, it is not intended to replace the previous and new forecasting systems in India but 120 

to provide a complement to corroborate calculations from both types of systems and, in a 121 

broader sense, to provide the scientific community with an approach to crop yield prediction 122 

with information on the spatial extent of drought. 123 

2 Data 124 

2.1 Crop yield 125 

Rice is the most important food grain in East India, so it was selected to assess our ML-oriented 126 

crop-yield predictions. Rice from this region accounts for roughly 85 percent of the total rice 127 

production in India (Ghosh et al., 2014). As mentioned, ML models were constructed for three 128 

regions of the eastern Indian (Figure 1). State-wise crop-yield data was retrieved from 1966 to 129 

2015 (49 years) through the Indian Directorate of Economic and Statistics from the Department 130 

of Agriculture (DAC) (http://eands.dacnet.nic.in/).  131 

Time series of crop yield data were arranged as follows. There are three crop seasons in India: 132 

Rabi, Kharif, and Zaid. Of these, the Kharif season was chosen for study because it is the largest 133 

in terms of crop production. Kharif crops are sown in June and harvested in 134 

November/December. Seasonal crop-yield data was obtained from the DAC website and 135 
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arranged into time series per region. In this way, one value was assigned to each year of crops 136 

harvested in the Kharif season (Figure 1). In the arrangement of the time series of the yield 137 

data, no data filling was carried out since there are data for each year in the three regions. 138 

Figure 1 also shows the location of the three regions. These regions are made up as follows. 139 

Region 1 includes the current states of Bihar and Jharkhand; region 2 corresponds to the state 140 

of West Bengal; and region 3 makes up the state of Odisha. Two important clarifications have 141 

to be made regarding crop yield data retrieving for these regions. First, in late 2000, Bihar was 142 

divided into two states: Bihar and Jharkhand. Thereafter, rice data was reported separately. In 143 

this study, both states are marked as region 1; the crop-yield data from 2000 to 2015 is the 144 

reported sum of current Bihar and Jharkhand. Second, in 2011, Orissa was renamed Odisha 145 

(region 3), but the territory remains the same. In this case, crop yield data for Odisha is that 146 

reported for the former Orissa and the current Odisha. 147 

 148 

Figure 1 Case study location (top) and crop yield (CY) data (bottom). Case study comprises region 1 (Bihar and 149 

Jharkhand), region 2 (West Bengal), and region 3 (Odisha). The rice cropland (in percentage) is indicated. Source 150 

of rice cropland: Monfreda et al. (2008). 151 
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2.2 Drought indicator 152 

Soil moisture is the preferred variable for calculating agricultural drought indicators. However, 153 

another widely disseminated way to indirectly infer this type of drought indicator is to use 154 

meteorological drought indicators as proxies. Among these, the Standardised Precipitation 155 

Evaporation Index (SPEI) proposed by Vicente-Serrano et al. (2010) has shown to be useful in 156 

assessing agricultural drought. The SPEI follows a similar methodology as that of the widely 157 

used Standardized Precipitation Index (SPI) (Mckee et al., 1993), but with added consideration 158 

for the difference between precipitation and evapotranspiration. SPEI data was retrieved from 159 

the SPEI Global Drought Monitor (https://spei.csic.es) between 1901 and 2015. The spatial 160 

resolution of the drought indicator data is 0.5 degrees. The SPEI data was available at different 161 

aggregation periods; for this study, it was retrieved for the aggregation periods of 1, 3, 6, 9, 162 

and 12 months, indicated as DI1, DI3, DI6, DI9, and DI12, respectively.  163 

3 ML modelling methodology 164 

The experiment was carried out with the following methodology that involves the ML 165 

construction. The next paragraphs show each step in detail. These steps are (1) data preparation, 166 

(2) input variable selection, (3) polynomial regression models calculation, (4) artificial neural 167 

network models calculation, and (5) models application and combination. 168 

3.1 Step 1. Data preparation 169 

Two types of data were prepared, the crop yield (CY) and the drought areas (DA). For data 170 

preparation, three tasks were carried out (1) data retrieving, (2) drought areas calculation, and 171 

(3) data de-trending. 172 

3.1.1 Data retrieving 173 

Section 2 showed what corresponds to data retrieving for crop yield (CY) and the drought 174 

indicator (DI). A summary of CY and DI is as follows. Seasonal CY data correspond to the 175 

largest growing season. CY time series has a value for each year for the period 1966-2015 (49 176 

years). CY was available for each region. On the other hand, drought indicator data is on a 177 

monthly basis for the period 1901-2015. The spatial resolution is half a degree. 178 

3.1.2 Drought areas calculation 179 

The drought areas were calculated following the methodology presented below. These areas 180 

were calculated for the three regions. Drought areas were calculated from the drought indicator 181 

data that is in a grid format, i.e., each cell has associated a geographic location and a time step. 182 

The calculation of drought areas started with the reclassification of all the cells of the drought 183 

indicator data by non-drought and drought cells. The drought indicator data was evaluated cell 184 
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by cell to determine those that are in drought, i.e. drought condition. To determine drought and 185 

non-drought condition (DS), the Eq. 1 was applied (Corzo Perez et al., 2011; Diaz et al., 2019, 186 

2020; Herrera-Estrada et al., 2017). Eq. 1 represents the following. When the drought indicator 187 

is below to the chosen threshold τ, the value of 1 is used to indicate drought in the cell and non-188 

drought is represented by the value of 0. This classification is performed for all the cells of the 189 

grid data in each time step (t). 190 

 
1  if  DI( )

0  if  DI( )
S

t
D t

t






 


                                                                                                   (Eq. 1) 191 

Once the ones-and-zeros data was obtained, the drought areas (DAs) were calculated for each 192 

region with Eq. 2. DA was computed as the ratio between the cells in drought and the total 193 

number of cells of the region (N). In Eq. 2, the number of cell is denoted by c. 194 

   
1

DA 100
N

Sc
t N D t


                                                                                            (Eq. 2) 195 

The number of cells (N) of the mask is 63, 31 and 54 for region 1, 2 and 3. The masks in raster 196 

format were built for each region. The mask is an array of ones and zeros, where the value of 197 

1 indicates the land. We used the threshold τ = −1 to calculate cells in droughts. This threshold 198 

is widely used to identify a cell in drought when working with standardised indices such as the 199 

used in this research (Sect. 2.2). Usually, drought indicator data is calculated at different 200 

aggregations periods. We retrieved this data for 1, 3, 6, 9, and 12 months of aggregation period 201 

(Sect. 2.2).  DAs' time series were calculated for each aggregation period and are indicated as 202 

DA1, DA3, DA6, DA9, and DA12 (Figure 2). 203 

3.1.3 Data de-trending 204 

Data stationarity is typically assumed when modelling. However, the present study uses crop 205 

yield, which is non-stationary in nature. The crop yield depends on factors that affect its trend, 206 

such as drought, flood, cultivars, and its own management. Therefore, it is advisable to remove 207 

short-term fluctuations in crop yield before constructing the model (Montesino Pouzols and 208 

Lendasse, 2010). 209 

Among the methods available to de-trend data, the 'first difference' method is popular due to 210 

its simplicity. In this method, the trend is removed from the time series by subtracting the 211 

previous value x*(t −1) from the current one x*(t), as shown in Eq. 3. The de-trended value for 212 

the first time step (t = 1) is not calculated. The length of the de-trended time series is n = m −1, 213 

where m is the length of the original time series. The de-trended data x(t) has the same units as 214 

the original data x*(t). 215 

     * * 1x t x t x t                                                                                                      (Eq. 3) 216 
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Once the trend is removed, all the steps for constructing the ML models are carried out with 217 

the de-trended time series. After the ML models are built, the de-trending procedure must be 218 

applied in reverse after calculating a new prediction x(t+1) to have that prediction in the 219 

magnitude to the original time series. The reverse de-trending procedure can be done with Eq. 220 

4, which is the solution for Eq. 3 for the de-trended prediction x(t+1). In practical terms, the 221 

prediction x*(t+1) in the original magnitude is calculated by adding the de-trended prediction 222 

x(t+1) to the last value of the original time series, i.e. x*(t). 223 

     * 1 * 1x t x t x t                                                                                                    (Eq. 4) 224 

The trend of the CY and DA time series was removed with Eq. 3. As can be observed, the 225 

method for removing the trend does not generate the value for the first time step; therefore, the 226 

de-trended CY data corresponds to the period 1967-2015 (49 years). 227 

In the case of DA, Eq. 3 was applied as follows. Because the DA data is monthly, i.e. 12 values 228 

per year, and CY data is seasonal, i.e. one value per year, the DA time series were extracted 229 

and organised for each month from January to December to match them with the CY data 230 

(Figure 2). This extraction/organisation procedure was carried out for each of the five 231 

aggregation periods DA1, 3, 6, 9 and 12 months. A total of 60 DA time series (12 × 5) were 232 

obtained. To refer to these time series, a number (suffix) was added to indicate the month. In 233 

this way, for example, the time series DA3_7 indicates the drought areas for July calculated 234 

from the drought indicator with 3-month aggregation period. Eq. 3 for the removal of the trend 235 

was applied to each of the 60 DA time series (Figure 2). The DA time series run from 1901 to 236 

2015. For the construction of the ML models, the common period 1967-2015 (49 years) was 237 

chosen. 238 

3.2 Step 2. Input variable selection 239 

In an ML model, the input, known as the predictor, is generally made up of independent 240 

variables. These input variables are often arranged or aggregated in different ways to determine 241 

the best model input representation. An example of arrangement is by considering different 242 

previous time steps of the input variable, such as t−1 (the previous time), t−2, and so on. 243 

Another way is by aggregating the input variable in different periods. For instance, when using 244 

drought indicators as the predictors (input), the aggregation periods include 3, 6, 9, 12, and 24 245 

months. Other aggregations include the average, or other statistics, over a period. In this step, 246 

the idea is not to include all the variables and all their different possible arrangements or 247 

aggregations but rather to choose the suitable input variables and discard those that do not 248 

contribute significantly to the model's results. 249 
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There are different methods for selecting input variables. Based on the procedure, these 250 

methods are classified into model-based and filter types (May et al., 2011). The model-based 251 

type includes all those where the model runs and based on its performance, a specific variable 252 

is chosen or discarded. The filter type includes methods where the variable is chosen a priori 253 

through a generally statistical process and does not require the model to be run. Correlation 254 

analysis, which falls under the second category, is often chosen for its simplicity and wide 255 

application. Correlation is calculated between the time series of the output variable (CY in this 256 

case) and the different input variables, including their various arrangements or aggregations. 257 

In this study, for the selection of the relevant input variables, the correlation analysis was done. 258 

The correlation was calculated between the de-trended time series of the seasonal CY and the 259 

60 DAs (Figure 2). As mentioned before, due to DAs are monthly and CY is seasonal, 12 time 260 

series of DAs were prepared, one per month, for each aggregation period. The DAs were then 261 

correlated with the CY. Another option could be to use the yearly average value of the DAs, 262 

such as the average of the DAs of the months of the cultivation period, or something similar. 263 

However, we opted to identify the DAs of the months that have the highest correlation with the 264 

seasonal CY and use them as inputs. 265 

The approach of the selection of the most correlated DAs was chosen for two main reasons. 266 

First, on the one hand, rice responds to the climate variations differently from one growth stage 267 

to another over the year, which could be better captured with the information of some months 268 

than others. On the other hand, different types of drought (i.e. meteorological, agricultural, and 269 

hydrological) are expected to affect (impact) the crop yield to varying degrees throughout the 270 

different stages of crop growth. This level of impact could be taken into account either by using 271 

different hydro-meteorological variables or selecting different aggregation periods of the 272 

meteorological variables, as in this case. An average of DAs could "hide" a significant drought 273 

area that could contribute more (or less) to the final crop yield.  274 

Second, in this research, ML models were built to be used at different stages of crop cultivation, 275 

i.e. models to be applied in June, July, and so on, each of them with a different expected degree 276 

of accuracy. Therefore, the use of time series for each month extracted from the DAs for all 277 

the different aggregation periods (1, 3, 6, 9, and 12 months) is more appropriate than the 278 

average (Figure 2). 279 

Based on the correlation coefficient, the input variables were chosen. In total, 15 sets of input 280 

variables (Table 2) were selected. Each set is made up of the different DA time series, i.e. DA1, 281 

3, 6, 9, and 12. The number of variables is different in each set. These sets of input variables 282 

are presented in the results section. All sets also include the de-trended CY from the previous 283 
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year (CYt−1). CYt−1 was used because, in the particular case of the study area, CY of the current 284 

year is planned to be reached based on data of the previous year. The ML models were built 285 

for each month (from January to December). The sets of inputs presented in Table 2 (Sect. 4.2) 286 

indicate which time series of DAs have to be considered for the ML model’s construction. The 287 

models were built for each of the 15 input sets, more details are in the following sections. It 288 

should be noted that for each month the DAs are those corresponding to the same month. 289 

 290 

 291 

Figure 2 Diagram showing how time series of monthly drought areas (DAs) are extracted and organised to match 292 

them with the seasonal crop yield (CY) data. For each year there are 12 DA values and one CY value. DAs were 293 

calculated for the aggregation periods 1, 3, 6, 9, and 12 months (DA1 to DA12). DAs were extracted and organised 294 

by month, from January to December. For each month, the procedures of data de-trending, correlation, input 295 

variable selection, and ML models construction were carried out. The entire flow was conducted for each of the 296 

three regions analysed. 297 
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3.3 Step 3. Polynomial regression models calculation 298 

For the case of PR, four types of models were tested (Table 1). All the PR models were built 299 

for each month from January to December following Eq. 5 to 8. A total of 15 sets of 300 

combinations of input variables were tested in each PR model. The best PR model was 301 

identified for each month following the RMSE criterion (Eq. 9). MATLAB software was used 302 

for implementation. 303 

PR is an extension of linear regression that allows the use of more than one input variable to 304 

calculate the output variable (Eq. 4). 305 

0

1

n

i i

i

y b b x e


                                                                                                             (Eq. 4) 306 

In Eq. 4, y is the output variable, also known as the response, which in this case is the crop 307 

yield. The term xi is the i-th input variable (predictor) from a total of n variables. The regression 308 

coefficients vector is represented by b. From the coefficients vector, b0 is known as the 309 

intercept. The vector of errors is indicated by e. 310 

Table 1 shows four formulations of PR. The PR models are indicated as linear, pure-quadratic, 311 

quadratic, and interactions. Descriptions of each and their equations are presented in Table 1 312 

(Eq. 5 to 8). The input variable (xi) was selected based on the correlation analysis (Sect. 2.2). 313 

Table 1 Polynomial regression (PR) types followed in this study. 314 

PR type Equation Description 

Linear (Eq. 5) 0

1

n

i i

i

y b b x


   
It has an intercept and 

linear terms of predictors 

Pure-

quadratic 
(Eq. 6) 

2

0

1 1

n n

i i n i i

i i

y b b x b x


 

      

It has an intercept, as 

well as linear and 

squared terms of 

predictors 

Quadratic 

(Eq. 7) 

 
 

 

1
2

0 1
2 11 1 1 1 2

n n n n

i i n i i i ji i
n i n j ii i i j i

y b b x b x b x x


 
        

        

It has an intercept, 

linear and squared terms 

and all products of pairs 

of distinct predictors 

Interactions (Eq. 8) 
 

 
 

1

0 1
11 1 1 2

n n n

i i i ji i
n i n j ii i j i

y b b x b x x



       

      

It has an intercept, 

linear terms of 

predictors, all products 

of pairs of distinct 

predictors and no 

squared terms 

 315 

 316 
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The best PR model was identified from four types using the root mean square error (RMSE) 317 

criterion. The RMSE is calculated between the observations (o) and the predictions (p), as 318 

shown in Eq. 9. RMSE is one of the most widely used criteria in the comparison of observations 319 

and model calculations. 320 

 
2

1RMSE

n

i i

i

o p

n








                                                                                                 (Eq. 9) 321 

3.4 Step 4. Artificial neural network models calculation  322 

ANN is a method loosely based on imitating the basic functionality of neurons (i.e. the working 323 

units of the human brain) (Govindaraju, 2000; Maier and Dandy, 2000). The input variables 324 

(predictors) are connected to each other through mathematical formulations that allow complex 325 

non-linear relationships to be represented. These connexions are symbolised as nodes 326 

interconnected within a network aimed at calculating the output variable (response). 327 

Of the different proposed ANN architectures (network designs), one of the most widely used 328 

is the feedforward neural network (FFNN). The FFNN is schematised by a series of nodes 329 

located in one of three layers: input, hidden or output. The number of input nodes is equal to 330 

the number of input variables in the input layer (Elshorbagy et al., 2010). This first layer is in 331 

turn connected to the hidden layer, which receives this name because the connections made 332 

there may not be immediately evident to the model performer. In this hidden layer, the number 333 

of nodes is not defined by default; rather, the greater the number of nodes, the more complex 334 

the model. Finally, the nodes of the hidden layer are connected to those of the output layer. In 335 

a single-output variable problem, there is only one node. ANNs are typically trained by non-336 

linear optimisation gradient-based algorithms, e.g. the Levenberg-Marquardt algorithm. 337 

In the ANN setup, the number of nodes of the input layer was equal to the number of variables 338 

of the respective combination. The number of nodes in the output layer was one and 339 

corresponded to the seasonal crop production (CY). An iteration optimisation procedure was 340 

carried out regarding the hidden layer, varying the number of nodes from 1 to 10. For each 341 

number of nodes, 100 iterations were done, being 1,000 in total. For reproducibility of the 342 

results, the random values were set to default at the beginning of the number of nodes change. 343 

For each month, from January to December, the ANNs were built. MATLAB software was 344 

used to implement the ANNs with the Levenberg-Marquardt algorithm for training. In each of 345 

the ANNs, 85 % of the data was used for training-validation, and the rest for testing 346 

(verification). The best model corresponding to each number of hidden nodes was identified, 347 

i.e. ten models per month and the best model for each month. RMSE was used to identify the 348 
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best models. RMSE was calculated for (1) the training-validation dataset (RMSE_cal), (2) the 349 

testing dataset (RMSE_test), and (3) the entire period (RMSE). In all the cases, the final (best) 350 

model was chosen based on RMSE for the entire period. The iteration optimisation procedure, 351 

including the calculation of RMSE, was carried out for each of the 15 sets of input variables 352 

(Table 2) and for each month (Sect. 4.2).  353 

3.5 Step 5. Models application and combination 354 

Once the best ML models, PR and ANN, were known, the pair of models were selected for 355 

each month. Depending on the performance of these models (and experience of their use), they 356 

can be used either separately or combined, e.g. being run in parallel so that a modeller could 357 

see the cases when models produce different results. An alternative is to use a dynamic 358 

weighting of the models' outputs (e.g. with the weights being proportional to the historical 359 

performance) to form a "model committee". 360 

4 Results and discussion 361 

4.1 Data preparation: drought areas and crop yield 362 

Figure 3 shows the drought areas calculated for the three regions. In this heat map, columns 363 

indicate the months and rows point out the years. The redder the colour, the larger the drought 364 

area. In general, region 1 (Figure 3, the upper panel) presents the highest values concerning the 365 

other two regions. In general, the 1990s show higher values of areas with respect to the rest of 366 

the period, which agrees with Guha-Sapir (2019); in this decade, there were three droughts, 367 

1993, 1996 and 2000. At the beginning of the period, large areas are also observed in the theree 368 

regions; these results align with Bhalme and Mooley (1980).  369 

In Figure 3, a pattern is observed in the drought areas distribution for all the aggregation 370 

periods, i.e. from DA1 to DA12. In DA1, the areas mainly concentrate in the first months; even 371 

the December column is almost white (without drought). Later, for DA3, the large areas are 372 

located from April to November. Successively, for DA6 and DA9, the largest areas are 373 

concentrated in the second half of the year. There are even droughts that end in the following 374 

year; they are the reddish lines that are observed in the first semester (first columns). Finally, 375 

in DA12, there are consecutive large areas indicated by the reddish lines; droughts usually 376 

begin in the second semester and extend until the following year. These results show the 377 

importance of considering more than one period of aggregation when using indicators based 378 

on meteorological variables; each aggregation period can be a proxy for analysing different 379 

types of drought and its effects. 380 
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 381 

Figure 3 Drought areas (DAs) for each aggregation period (1, 3, 6, 9, and 12 months) and region. Top, middle, 382 

and bottom panels indicate region 1 (Bihar and Jharkhand), region 2 (West Bengal) and region 3 (Odisha). 383 
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Figure 4 shows the time series of de-trended CY and DA for the three regions. In the case of 384 

DA (indicated in red), the values are displayed in inverse order to facilitate interpretation. In 385 

general, when drought areas increase, this is expected to affect crop yield (decreasing). 386 

Otherwise, when the drought area decreases, this effect favours an increase in crop yield. In 387 

general, for the three regions, the decreases in CY coincide with the increases in DA. The 388 

general pattern regarding DA variations is as follows. The values fluctuate throughout the year 389 

for the aggregation periods of one and three months (DA1 and DA3). Subsequently, for DA6 390 

to DA12, the values are concentrated in the second half of the year. These results also show 391 

the usefulness of the different aggregation periods to capture different types of drought. The 392 

effect of increasing DA seems not to be observed in decreasing CY for all cases of DAs. For 393 

example, in region 1 (Figure 4, the upper panel), the decrease in 2004, one of the maximums, 394 

does not coincide with increases in DA9 and DA12, but it does for DA1, DA3 and DA6. These 395 

results also support the use of the different aggregation periods on drought assessments. 396 

4.2 Input variable selection (correlation analysis) 397 

Figure 5 summarises the correlation between the de-trended CY and the DAs, and Figure 6 398 

presents the correlation for each monthly DA time series. 399 

Figures 5 and 6 show that the correlation is different over the year in the three regions. In all 400 

cases, the correlation coefficient increases until a maximum and then decreases. The month in 401 

which the maximum value is reached is different for each region but falls within the crop season 402 

(i.e. June to November/December). For region 1, it is in July. For region 2, there are four 403 

months with this pattern, June, July, October, and November. Finally, for region 3, it is 404 

October, November, and December.  405 

These results of correlation can be useful for monitoring agricultural drought. For example, in 406 

region 1, the drought areas calculated from SPEI6 (i.e. DA6) show a maximum correlation in 407 

July. This correlation value means that the previous six months' accumulated effect is crucial 408 

for the crop yield of the Kharif season, which covers more or less from June to 409 

November/December. 410 

Figure 5 shows the following pattern. In general, for region 1, results similar to DA6 are 411 

observed for DA3, 9, and 12. For region 2, a similar pattern happens in the peaks, but in this 412 

case two, one corresponding to DA1 and 3, and the other to DA6, 9, and 12. The first peak of 413 

DA1 and DA3 may indicate that it is crucial to pay attention to the immediate period conditions 414 

of one to three months. In the case of the second peak, the medium and long-term conditions, 415 

6 to 12 months, are more important to monitor for the harvest month. For region 3, the peak 416 
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occurs at the end of the growing season, in almost all cases. Hence, the condition before the 417 

growing season is decisive for the crop yield.  418 

 419 

 420 

Figure 4 Time series of the de-trended crop yield (CY) and drought areas (DAs) for each aggregation period (1, 421 

3, 6, 9 and 12 months) and region. Top, middle, and bottom panels indicate region 1 (Bihar and Jharkhand), region 422 

2 (West Bengal) and region 3 (Odisha). 423 
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Figure 6 shows how the correlation coefficients between CY and DA are positive outside the 424 

growing season and negative within that season. However, this pattern is less evident for DA1 425 

and DA3. The pattern shown by the correlation coefficients in Figure 6 supports the idea that 426 

drought is an important factor in crop yield since the months with less drought are more 427 

correlated with the increase in CY, and the months with more drought do so with decrease in 428 

CY. 429 

Figure 5 (d) shows the percentage of irrigated and rain-fed agriculture. For regions 1 and 2, 430 

about half is by irrigation, while in region 3, only 35%. Perhaps this percentage of irrigation 431 

for region 3 explains why the correlation coefficients for this region are higher than for the 432 

other two (Figure 5, and 6 (c)). Region 3 is more dependent on rain for agriculture; therefore, 433 

this condition is best captured when calculating drought with the precipitation, as in this case 434 

(Sect. 3.2). 435 

 436 

Figure 5 Summary of correlation between de-trended crop yield (CY) and drought areas (DAs) for each 437 

aggregation period (1, 3, 6, 9, and 12 months) and region: (a) region 1 (Bihar and Jharkhand), (b) region 2 (West 438 

Bengal) and (c) region 3 (Odisha). Negative R indicates the correlation between the increase in DA and the 439 

decrease in CY. Percentage of rice area under irrigated and rein-fed agriculture (d). Source of irrigated and rein-440 

fed agriculture data: Directorate of Rice Development (DRD), (2014). 441 
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 443 

Figure 6 Correlation (R) between de-trended crop yield (CY) and drought areas (DAs) for each aggregation period 444 

(1, 3, 6, 9, and 12 months) and region. DA is on the x-axis, and CY is on the y-axis. Results are shown for each 445 

monthly DA time series from June to December (J to D). Top, middle, and bottom panels indicate region 1 (Bihar 446 

and Jharkhand), region 2 (West Bengal), and region 3 (Odisha). Negative R indicates the correlation between 447 

increase in DA and decrease in CY. 448 
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Figure 5 (a, b, and c) shows the following pattern in the three regions. The correlation 452 

coefficients between CY and DAs increase according to the aggregation periods and the month 453 

of analysis. DA1 and DA3 have a better correlation in the first months of the year. DA6 has a 454 

better correlation in the subsequent months, between May and June. Finally, DA9 and 12 do 455 

so within the second half of the year. 456 

Each respective DA time series reaches a maximum (or maximums) of correlation, and then 457 

correlation decreases. According to this pattern, the 15 combinations of input variables shown 458 

in Table 2 were selected. As earlier mentioned, the CY of the previous year was included in all 459 

combinations and is indicated as CYt−1. Combinations 1 to 5 only include a DA time series. 460 

Combinations 6 to 9 are DA pairs that were calculated with the drought indicator of successive 461 

aggregation times. For example, combination 6 forms DA1 and 3, combination 7 includes DA3 462 

and 6, and so on. Similarly, combinations 10 to 13 are proposed, but for triples. Combinations 463 

13 and 14 are fourfold. Finally, the last combination (15th) is made up of all the DA series.  464 

As mentioned, the models were built for each month (January to December) using the 15 465 

combinations (Table 2) in each case. For example, for the case of January the monthly series 466 

of DAs extracted for January were used. These DAs are DA1_1, DA3_1, DA6_1, DA9_1, and 467 

DA12_1. The suffix indicates the month. Then, the different DA1_1 to DA12_1 were used 468 

following the 15 combinations shown in Table 2 to build the ML models (ANN and PR) for 469 

January. Similarly, it was carried out from February to December. 470 

Table 2 Input sets (combinations) to build the ML models. CY and DA stand for crop yield and drought area. 471 

DAs are calculated with the drought indicator for the aggregate period of 1, 3, 6, 9, and 12 months (details in Sect. 472 

4.2).  473 

Input set (combination) Input variables 

1 CYt−1, DA1 

2 CYt−1, DA3 

3 CYt−1, DA6 

4 CYt−1, DA9 

5 CYt−1, DA12 

6 CYt−1, DA1,3 

7 CYt−1, DA3,6 

8 CYt−1, DA6,9 

9 CYt−1, DA9,12 

10 CYt−1, DA1,3,6 

11 CYt−1, DA3,6,9 

12 CYt−1, DA6,9,12 

13 CYt−1, DA1,3,6,9 

14 CYt−1, DA3,6,9,12 

15 CYt-1, DA1,3,6,9,12 
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4.3 ANN and PR models 474 

The results show different magnitudes of error between the observed and predicted CY. The 475 

models with the lowest error are presented in Figures 7, 8 and 9, for each of the three regions. 476 

The pair of ANN and PR that best predicts CY is shown for each month. The RMSE is also 477 

indicated in each case. On the other hand, Figure 10 shows the error for each input set 478 

(combination); the lowest error achieved in each month is presented in each case both for each 479 

ANN and PR. 480 

In general, ANN shows the least errors, as expected (Figure 10). However, the results of PR 481 

are not much worse compared to those of ANN; for example, in some cases, the errors shown 482 

by linear PR are very close to those of ANN (e.g. Figure 10, region 2). In general, it is observed 483 

that the models with the lowest errors correspond to region 2, followed by region 3 and region 484 

1 (Figure 10). It is attributed to the different degrees of crop irrigation with surface and mostly 485 

groundwater, which determines the accuracy of the modelling in the different regions. Another 486 

factor contributing to the models' performance is the drastic changes in the CY data, where 487 

regions 1 and 3 are the ones that presented the most, and to a much lesser extent, region 2. 488 

Figure 10 shows that in the three regions, different types of PR showed better results. In 489 

general, linear and pure-quadratic indicate more stable results (no sudden changes among the 490 

different realisations) but not better than quadratic and interactions. In general quadratic and 491 

interactions present better results, being in some cases very close to those shown by ANN, e.g. 492 

PR interactions (Figure 10, region 1). 493 
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 494 

Figure 7 ANN and PR models for predicting seasonal crop yield (CY) built for each time series of monthly 495 

drought areas (DAs): region 1 (Bihar and Jharkhand). The model with the lowest error (RMSE) is presented for 496 

each month, from January to December (J to D).  497 
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 498 

Figure 8 ANN and PR models for predicting seasonal crop yield (CY) built for each time series of monthly 499 

drought areas (DAs): region 2 (West Bengal). The model with the lowest error (RMSE) is presented for each 500 

month, from January to December (J to D). 501 
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 502 

Figure 9 ANN and PR models for predicting seasonal crop yield (CY) built for each time series of monthly 503 

drought areas (DAs): region 3 (Odisha). The model with the lowest error (RMSE) is presented for each month, 504 

from January to December (J to D). 505 
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 506 

Figure 10 Root mean square error (RMSE) [kg/ha] for each of the 15 input sets (combinations) of the ANN and 507 
PR models built for each region. For each set of input (from one to 15), the lowest errors are presented for each 508 
month (January to December). Results of each input set are shown with lines to facilitate the analysis. Left, middle, 509 
and right panels indicate region 1 (Bihar and Jharkhand), region 2 (West Bengal) and region 3 (Odisha). 510 

4.4 Models application and combination 511 

The best performing models were selected for each month. Table 3 shows the summary of these 512 

models, which includes the input set (combination), number of nodes, and errors for ANN, and 513 

input set, type, and errors for PR. The number of nodes indicates the degree of non-linearity 514 

presented in each model. In this way, the more nodes, the more complex the model is in the 515 

case of ANN. On the other hand, quadratic and interactions are the types that showed the best 516 

performance in PR models. In all cases, within the combinations of input variables, a single 517 

DA time series corresponding to one of the various aggregation periods (D1, D3, D6, D9 or 518 

D12) that by itself produced good results was not found. The input sets are made up of two and 519 
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up to six different DAs corresponding to the various aggregation periods. Thus, using more than 520 

one aggregation period of drought indicator results in better model performance. 521 

Tables 4, 5 and 6 are derived from Table 3. These three tables show the PR formulas for region 1, 522 

2 and 3, respectively. In each table, the PR formula and the inputs are indicated. These formulas 523 

are also intended to be a stand-alone tool in the CY prediction for each region. 524 

The application of PR models begins by selecting the formula of the PR model (Table 4, 5, or 6). 525 

For example, in the case of region 1, if the drought indicator data is available up to March (including 526 

it), the formula for March is chosen from Table 4. After, DAs are calculated (Sect. 3.1.2), and the 527 

time series of DAs are updated. According to Table 4, the DA1 and DA3 are required in this 528 

example. Then, from these time series of DAs, values of March are extracted, i.e. DA1_3 and 529 

DA3_3 (see Sect. 3.2 and 4.2). Then, the de-trending procedure is applied to each time series (Sect. 530 

3.1.3). After, the CY is calculated. Finally, the reverse de-trending procedure is carried out to have 531 

the predicted CY in the same order of magnitude as the original CY data (Sect. 3.1.3). At the same 532 

time, or when it can be computed, the ANN model of the month under analysis is applied. 533 

Table 3 Summary of the ANN and PR models for predicting crop yield (CY) built for each month and region: (1) 534 
Bihar and Jharkhand, (2) West Bengal, and (3) Odisha. The table shows the models built with the lowest error 535 
(RMSE). DA stands for drought area. 536 

 ANN  PR 

Region Month Input set (combination) 
No. 
nodes 

RMSE 
[kg/ha] 

 Month Input set (combination) Type 
RMSE 
[kg/ha] 

Region 1 

Jan 10 CYt−1, DA1,3,6 4 167.0  Jan 8 CYt−1, DA6,9 quadratic 238.9 
Feb 15 CYt-1, DA1,3,6,9,12 6 151.2  Feb 13 CYt−1, DA1,3,6,9 quadratic 223.9 
Mar 11 CYt−1, DA3,6,9 7 180.2  Mar 6 CYt−1, DA1,3 quadratic 233.3 
Apr 10 CYt−1, DA1,3,6 9 175.8  Apr 15 CYt-1, DA1,3,6,9,12 interactions 236.1 
May 15 CYt-1, DA1,3,6,9,12 5 162.0  May 10 CYt−1, DA1,3,6 quadratic 211.7 
Jun 13 CYt−1, DA1,3,6,9 2 163.4  Jun 10 CYt−1, DA1,3,6 interactions 219.9 
Jul 15 CYt-1, DA1,3,6,9,12 10 166.8  Jul 6 CYt−1, DA1,3 quadratic 233.0 
Aug 13 CYt−1, DA1,3,6,9 5 144.0  Aug 15 CYt-1, DA1,3,6,9,12 interactions 215.6 
Sep 6 CYt−1, DA1,3 5 177.9  Sep 7 CYt−1, DA3,6 quadratic 232.4 
Oct 14 CYt−1, DA3,6,9,12 6 186.7  Oct 15 CYt-1, DA1,3,6,9,12 quadratic 201.0 
Nov 8 CYt−1, DA6,9 4 178.5  Nov 13 CYt−1, DA1,3,6,9 interactions 222.6 
Dec 10 CYt−1, DA1,3,6 4 153.3  Dec 13 CYt−1, DA1,3,6,9 pure-quadratic 223.3 

            

Region 2 

Jan 13 CYt−1, DA1,3,6,9 8 63.0  Jan 14 CYt−1, DA3,6,9,12 quadratic 99.8 
Feb 11 CYt−1, DA3,6,9 10 59.8  Feb 15 CYt-1, DA1,3,6,9,12 interactions 108.0 
Mar 7 CYt−1, DA3,6 8 54.8  Mar 15 CYt-1, DA1,3,6,9,12 interactions 93.9 
Apr 14 CYt−1, DA3,6,9,12 7 48.7  Apr 14 CYt−1, DA3,6,9,12 interactions 125.1 
May 15 CYt-1, DA1,3,6,9,12 10 60.5  May 15 CYt-1, DA1,3,6,9,12 quadratic 69.6 
Jun 13 CYt−1, DA1,3,6,9 7 72.5  Jun 10 CYt−1, DA1,3,6 quadratic 112.7 
Jul 6 CYt−1, DA1,3 6 76.2  Jul 10 CYt−1, DA1,3,6 quadratic 112.5 
Aug 6 CYt−1, DA1,3 9 66.4  Aug 13 CYt−1, DA1,3,6,9 interactions 127.0 
Sep 6 CYt−1, DA1,3 10 68.1  Sep 15 CYt-1, DA1,3,6,9,12 interactions 104.1 
Oct 7 CYt−1, DA3,6 10 54.2  Oct 15 CYt-1, DA1,3,6,9,12 interactions 98.0 
Nov 7 CYt−1, DA3,6 10 48.1  Nov 15 CYt-1, DA1,3,6,9,12 interactions 102.7 
Dec 15 CYt-1, DA1,3,6,9,12 8 54.3  Dec 14 CYt−1, DA3,6,9,12 interactions 118.4 

            

Region 3 

Jan 15 CYt-1, DA1,3,6,9,12 7 106.5  Jan 14 CYt−1, DA3,6,9,12 quadratic 145.7 
Feb 13 CYt−1, DA1,3,6,9 10 105.7  Feb 10 CYt−1, DA1,3,6 quadratic 160.5 
Mar 15 CYt-1, DA1,3,6,9,12 9 84.1  Mar 12 CYt−1, DA6,9,12 quadratic 143.5 
Apr 15 CYt-1, DA1,3,6,9,12 4 112.3  Apr 14 CYt−1, DA3,6,9,12 quadratic 169.6 
May 12 CYt−1, DA6,9,12 10 100.3  May 15 CYt-1, DA1,3,6,9,12 quadratic 133.4 
Jun 15 CYt-1, DA1,3,6,9,12 9 94.5  Jun 12 CYt−1, DA6,9,12 quadratic 189.4 
Jul 15 CYt-1, DA1,3,6,9,12 7 106.0  Jul 15 CYt-1, DA1,3,6,9,12 quadratic 128.2 
Aug 12 CYt−1, DA6,9,12 7 103.9  Aug 15 CYt-1, DA1,3,6,9,12 interactions 137.7 
Sep 11 CYt−1, DA3,6,9 9 84.1  Sep 13 CYt−1, DA1,3,6,9 quadratic 145.0 
Oct 15 CYt-1, DA1,3,6,9,12 10 79.7  Oct 10 CYt−1, DA1,3,6 quadratic 139.0 
Nov 11 CYt−1, DA3,6,9 10 62.6  Nov 10 CYt−1, DA1,3,6 quadratic 127.5 
Dec 11 CYt−1, DA3,6,9 9 74.7  Dec 8 CYt−1, DA6,9 quadratic 137.3 

 537 
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Table 4 PR models for predicting crop yield (CY) built for each month: region 1 (Bihar and Jharkhand). For each 538 

moth, it is indicated the input (x1 to x6) and the PR formula. DA stands for drought area. 539 

Month 

Input 

PR model 

x1 x2 x3 x4 x5 x6 

Jan CYt−1 DA6 DA9 
   

−60.7111 −0.1944x1 −0.2201x2 +1.2033x3 −0.0023x1x2 +0.0043x1x3 −0.0372x2x3 

+0.0003x1
2 +0.0504x2

2 +0.0308x3
2 

Feb CYt−1 DA1 DA3 DA6 DA9 
 

−27.4716 −0.4688x1 +1.8718x2 −1.3313x3 −0.2611x4 +1.3878x5 −0.0137x1x2 

+0.0135x1x3 +0.0032x1x4 +0.0064x1x5 +0.0823x2x3 +0.0574x2x4 +0.0935x2x5 

−0.0544x3x4 −0.0746x3x5 −0.0241x4x5 +0.0014x1
2 −0.0496x2

2 −0.0202x3
2 −0.0016x4

2 

+0.0227x5
2 

Mar CYt−1 DA1 DA3 
   

28.1213 −0.5204x1 −0.4908x2 +0.0545x3 +0.0051x1x2 −0.0093x1x3 +0.0033x2x3 

+0.0003x1
2 −0.0107x2

2 +0.0086x3
2 

Apr CYt−1 DA1 DA3 DA6 DA9 DA12 −24.3419 −0.4785x1 −0.1965x2 −0.1356x3 +0.0848x4 −0.4774x5 +0.8029x6 +0.0066x1x2 

+0.0031x1x3 −0.0128x1x4 +0.0081x1x5 −0.0003x1x6 +0.0067x2x3 −0.0604x2x4 

+0.1495x2x5 −0.0169x2x6 +0.0248x3x4 −0.1295x3x5 −0.0306x3x6 +0.0458x4x5 

+0.0516x4x6 +0.0595x5x6 

May CYt−1 DA1 DA3 DA6 
  

113.2521 −0.5132x1 +1.0101x2 −1.4019x3 −1.1130x4 +0.0100x1x2 +0.0150x1x3 

−0.0027x1x4 +0.0250x2x3 −0.0655x2x4 +0.0596x3x4 −0.0006x1
2 −0.0358x2

2 −0.0380x3
2 

−0.0495x4
2 

Jun CYt−1 DA1 DA3 DA6 
  

54.3 −0.3715x1 +1.4832x2 +0.1432x3 −3.0648x4 −0.0106x1x2 +0.0256x1x3 −0.0111x1x4 

−0.0556x2x3 +0.0648x2x4 −0.0172x3x4 

Jul CYt−1 DA1 DA3 
   

18.7237 −0.3166x1 +1.3310x2 −3.0099x3 −0.0030x1x2 +0.0024x1x3 +0.0054x2x3 

+0.0001x1
2 +0.0065x2

2 −0.0065x3
2 

Aug CYt−1 DA1 DA3 DA6 DA9 DA12 59.2373 −0.6972x1 +0.1791x2 +5.1900x3 −1.3783x4 −6.9753x5 +1.5471x6 −0.0142x1x2 

+0.0072x1x3 +0.1163x1x4 −0.1285x1x5 +0.0294x1x6 −0.3670x2x3 +0.0897x2x4 

+0.2332x2x5 +0.0922x2x6 +0.3014x3x4 +0.3444x3x5 −0.4160x3x6 −0.5819x4x5 

−0.0450x4x6 +0.3299x5x6 

Sep CYt−1 DA3 DA6 
   

44.8563 −0.4565x1 +0.6884x2 −1.9466x3 +0.0053x1x2 −0.0005x1x3 +0.0012x2x3 

+0.0004x1
2 −0.0172x2

2 −0.0002x3
2 

Oct CYt−1 DA1 DA3 DA6 DA9 DA12 76.1546 +0.0046x1 −2.2220x2 +1.0816x3 +19.1690x4 −53.2338x5 +29.1398x6 

+0.0048x1x2 +0.0155x1x3 −0.0383x1x4 −0.0868x1x5 +0.1254x1x6 −0.0444x2x3 

+0.0448x2x4 +0.0175x2x5 −0.0552x2x6 +0.2154x3x4 −1.0260x3x5 +0.7776x3x6 

+3.2060x4x5 −3.3267x4x6 +11.6655x5x6 +0.0002x1
2 −0.0547x2

2 +0.1171x3
2 +0.2874x4

2 

−7.7995x5
2 −4.0845x6

2 

Nov CYt−1 DA1 DA3 DA6 DA9 
 

30.0286 −0.4536x1 −0.6721x2 −0.8270x3 −7.0981x4 +5.3007x5 −0.0339x1x2 

+0.0086x1x3 +0.0107x1x4 −0.0084x1x5 +0.1347x2x3 +0.1123x2x4 −0.0596x2x5 

+0.2355x3x4 −0.2262x3x5 −0.0117x4x5 

Dec CYt−1 DA1 DA3 DA6 DA9 
 

29.2005 −0.3816x1 −0.6953x2 +0.8469x3 +1.2024x4 −3.2563x5 +0.0005x1
2 −0.5339x2

2 

−0.0047x3
2 −0.0119x4

2 +0.0083x5
2 
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Table 5 PR models for predicting crop yield (CY) built for each month: region 2 (West Bengal). For each moth, 547 

it is indicated the input (x1 to x6) and the PR formula. DA stands for drought area. 548 

Month 

Input 

PR model 

x1 x2 x3 x4 x5 x6 

Jan CYt−1 DA3 DA6 DA9 DA12 
 

8.5606 −0.2404x1 −1.1236x2 −0.7606x3 +6.6535x4 −5.3772x5 +0.0087x1x2 −0.0044x1x3 

−0.0182x1x4 +0.0234x1x5 +0.0080x2x3 +0.0234x2x4 −0.0037x2x5 −0.0402x3x4 

+0.1648x3x5 +0.0200x4x5 +0.0001x1
2 −0.0145x2

2 −0.0657x3
2 +0.0544x4

2 −0.0952x5
2 

Feb CYt−1 DA1 DA3 DA6 DA9 DA12 −24.8742 −0.5460x1 −0.1190x2 +0.2175x3 +0.7776x4 −8.6335x5 +6.4022x6 −0.0164x1x2 

+0.0095x1x3 −0.0251x1x4 +0.0262x1x5 −0.0057x1x6 −0.0179x2x3 −0.0241x2x4 

−0.1705x2x5 +0.1579x2x6 +0.0064x3x4 +0.2383x3x5 −0.2779x3x6 −0.0117x4x5 

+0.0266x4x6 +0.0614x5x6 

Mar CYt−1 DA1 DA3 DA6 DA9 DA12 35.6904 −0.3835x1 −0.9286x2 +0.1960x3 −0.3445x4 −0.3559x5 +0.6370x6 −0.0025x1x2 

−0.0009x1x3 +0.0111x1x4 −0.0252x1x5 +0.0144x1x6 −0.0059x2x3 +0.0426x2x4 

+0.0063x2x5 +0.0012x2x6 −0.0362x3x4 −0.1287x3x5 −0.0038x3x6 +0.0242x4x5 

−0.0355x4x6 +0.0394x5x6 

Apr CYt−1 DA3 DA6 DA9 DA12 
 

8.5856 −0.1865x1 +1.5824x2 −1.0816x3 −1.0256x4 +1.7846x5 −0.0164x1x2 +0.0242x1x3 

−0.0013x1x4 +0.0009x1x5 −0.0084x2x3 +0.0073x2x4 −0.0710x2x5 −0.0430x3x4 

+0.0659x3x5 +0.0317x4x5 

May CYt−1 DA1 DA3 DA6 DA9 DA12 −25.0101 −0.8233x1 −1.8073x2 +1.1145x3 +1.6217x4 +0.9651x5 +0.5729x6 +0.0254x1x2 

−0.1198x1x3 +0.0959x1x4 −0.0112x1x5 +0.0311x1x6 −0.2178x2x3 +0.3465x2x4 

−0.3214x2x5 +0.0602x2x6 −0.9192x3x4 +1.2301x3x5 −0.2167x3x6 −0.8955x4x5 

+0.1015x4x6 +0.0662x5x6 +0.0048x1
2 −0.0096x2

2 +0.3527x3
2 +0.4308x4

2 −0.0492x5
2 

+0.0639x6
2 

Jun CYt−1 DA1 DA3 DA6 
  

90.7623 −0.5785x1 +0.1582x2 −2.7914x3 +0.8655x4 −0.0176x1x2 +0.0093x1x3 

−0.0108x1x4 +0.0533x2x3 −0.0521x2x4 +0.1589x3x4 +0.0012x1
2 +0.0072x2

2 −0.0974x3
2 

−0.0714x4
2 

Jul CYt−1 DA1 DA3 DA6 
  

26.1164 −0.6892x1 −0.6723x2 −5.5280x3 +4.6922x4 +0.0070x1x2 +0.0111x1x3 

−0.0148x1x4 −0.1301x2x3 +0.0838x2x4 +0.5157x3x4 +0.0014x1
2 +0.0679x2

2 −0.1671x3
2 

−0.3540x4
2 

Aug CYt−1 DA1 DA3 DA6 DA9 
 

55.6167 −0.2284x1 −0.0182x2 −1.7996x3 −4.0674x4 +3.7965x5 +0.0117x1x2 

−0.0259x1x3 +0.0556x1x4 −0.0484x1x5 −0.0176x2x3 −0.1459x2x4 +0.1017x2x5 

−0.0487x3x4 +0.2346x3x5 −0.1273x4x5 

Sep CYt−1 DA1 DA3 DA6 DA9 DA12 35.6058 −0.3263x1 +1.9755x2 −0.4197x3 −3.5963x4 +2.7383x5 −1.2234x6 +0.0013x1x2 

−0.0057x1x3 −0.0470x1x4 +0.0042x1x5 +0.0475x1x6 +0.0033x2x3 −0.1889x2x4 

+0.0749x2x5 +0.1060x2x6 +0.0179x3x4 −0.0003x3x5 +0.0412x3x6 +0.0291x4x5 

−0.0312x4x6 −0.0379x5x6 

Oct CYt−1 DA1 DA3 DA6 DA9 DA12 7.7675 −0.1875x1 −0.1476x2 −0.8333x3 −5.1327x4 +15.3857x5 −10.6323x6 −0.0012x1x2 

−0.0011x1x3 +0.0588x1x4 +0.0365x1x5 −0.0886x1x6 −0.1339x2x3 +0.1763x2x4 

−0.5955x2x5 +0.4854x2x6 −0.4231x3x4 −0.2159x3x5 +0.6868x3x6 +0.3521x4x5 

+0.0666x4x6 −0.4145x5x6 

Nov CYt−1 DA1 DA3 DA6 DA9 DA12 38.3601 −0.2443x1 +1.7236x2 −0.6584x3 −6.7484x4 +13.3609x5 −9.4895x6 +0.0114x1x2 

+0.0162x1x3 +0.0331x1x4 −0.0817x1x5 +0.0478x1x6 +0.0370x2x3 −0.1350x2x4 

−0.0212x2x5 +0.1631x2x6 −0.1562x3x4 −0.0082x3x5 +0.1229x3x6 +0.2672x4x5 

−0.0938x4x6 −0.1335x5x6 

Dec CYt−1 DA3 DA6 DA9 DA12 
 

24.769 −0.1091x1 −2.9747x2 +2.9990x3 −5.4144x4 +3.3374x5 +0.0083x1x2 −0.0069x1x3 

+0.0596x1x4 −0.0630x1x5 +0.0755x2x3 +0.0127x2x4 +0.0094x2x5 −0.0052x3x4 

−0.0884x3x5 +0.0361x4x5 
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Table 6 PR models for predicting crop yield (CY) built for each month: region 3 (Odisha). For each moth, it is 556 

indicated the input (x1 to x6) and the PR formula. DA stands for drought area. 557 

Month 

Input 

PR model 

x1 x2 x3 x4 x5 x6 

Jan CYt−1 DA3 DA6 DA9 DA12 
 

−149.3429 −0.4867x1 −1.5749x2 +2.0827x3 +5.9761x4 −6.0586x5 −0.0022x1x2 

+0.0100x1x3 +0.0200x1x4 +0.0045x1x5 −0.0142x2x3 −0.2414x2x4 +0.1392x2x5 

−0.1332x3x4 +0.1123x3x5 +0.2083x4x5 +0.0022x1
2 +0.0262x2

2 +0.0771x3
2 +0.0431x4

2 

−0.1405x5
2 

Feb CYt−1 DA1 DA3 DA6 
  

−90.6767 −0.6674x1 +0.1283x2 +0.2580x3 +0.4540x4 −0.0041x1x2 +0.0141x1x3 

−0.0009x1x4 +0.0055x2x3 −0.0195x2x4 +0.0771x3x4 +0.0006x1
2 +0.0313x2

2 −0.0207x3
2 

+0.0129x4
2 

Mar CYt−1 DA6 DA9 DA12 
  

−168.6741 −0.7249x1 +0.2079x2 −2.2594x3 +2.2421x4 +0.0074x1x2 −0.0102x1x3 

+0.0347x1x4 −0.0159x2x3 +0.0009x2x4 +0.1147x3x4 +0.0025x1
2 +0.0454x2

2 −0.0197x3
2 

+0.0318x4
2 

Apr CYt−1 DA3 DA6 DA9 DA12 
 

−116.7973 −0.6789x1 −0.4066x2 −0.5459x3 +3.4428x4 −3.2126x5 +0.0008x1x2 

−0.0110x1x3 +0.0063x1x4 +0.0337x1x5 +0.0647x2x3 −0.1280x2x4 +0.0847x2x5 

−0.0041x3x4 −0.1576x3x5 −0.0357x4x5 +0.0025x1
2 −0.0386x2

2 +0.0180x3
2 +0.0968x4

2 

+0.1431x5
2 

May CYt−1 DA1 DA3 DA6 DA9 DA12 −56.0895 −0.8435x1 −1.5688x2 +5.5848x3 −5.6556x4 −0.0876x5 −0.4449x6 +0.0396x1x2 

−0.0552x1x3 +0.0130x1x4 +0.0414x1x5 −0.0155x1x6 +0.0691x2x3 −0.1386x2x4 

+0.4106x2x5 +0.0874x2x6 +0.2997x3x4 −0.2552x3x5 −0.4282x3x6 −0.0482x4x5 

+0.2264x4x6 −0.2702x5x6 +0.0040x1
2 −0.0721x2

2 −0.0198x3
2 −0.2076x4

2 +0.2160x5
2 

−0.0223x6
2 

Jun CYt−1 DA6 DA9 DA12 
  

−23.8562 −0.3639x1 −1.8924x2 −0.0052x3 +1.3074x4 −0.0060x1x2 −0.0057x1x3 

+0.0205x1x4 −0.0135x2x3 −0.0965x2x4 +0.1034x3x4 +0.0004x1
2 +0.0110x2

2 −0.0171x3
2 

+0.0913x4
2 

Jul CYt−1 DA1 DA3 DA6 DA9 DA12 −18.8884 −0.7725x1 +2.8997x2 −1.9129x3 −0.9194x4 −0.5636x5 −0.6886x6 −0.0070x1x2 

+0.0320x1x3 −0.0220x1x4 −0.0221x1x5 −0.0042x1x6 +0.3776x2x3 −0.0748x2x4 

−0.1803x2x5 −0.2590x2x6 −0.5984x3x4 +0.6811x3x5 −0.0178x3x6 +0.8957x4x5 

+0.0173x4x6 −0.1524x5x6 +0.0012x1
2 −0.1151x2

2 −0.1006x3
2 −0.0306x4

2 −0.7603x5
2 

+0.1200x6
2 

Aug CYt−1 DA1 DA3 DA6 DA9 DA12 4.8997 −0.7900x1 −0.9225x2 +3.8372x3 −0.0832x4 −9.7835x5 +4.0199x6 −0.0065x1x2 

+0.0352x1x3 +0.0005x1x4 −0.0461x1x5 −0.0019x1x6 −0.0759x2x3 −0.1196x2x4 

+0.1775x2x5 +0.0748x2x6 +0.0694x3x4 +0.2503x3x5 −0.3715x3x6 −0.2022x4x5 

+0.4167x4x6 −0.2192x5x6 

Sep CYt−1 DA1 DA3 DA6 DA9 
 

41.4745 −0.5431x1 −0.0366x2 −0.9681x3 +3.6023x4 −4.3272x5 −0.0002x1x2 

+0.0115x1x3 −0.0191x1x4 +0.0139x1x5 −0.0809x2x3 +0.0508x2x4 +0.0205x2x5 

+0.4602x3x4 −0.5016x3x5 +0.3000x4x5 +0.0002x1
2 +0.0172x2

2 −0.0339x3
2 −0.3409x4

2 

+0.0831x5
2 

Oct CYt−1 DA1 DA3 DA6 
  

−48.806 −0.6966x1 −0.4241x2 −1.7664x3 −3.0097x4 +0.0040x1x2 +0.0053x1x3 

−0.0175x1x4 −0.0038x2x3 +0.0111x2x4 −0.1443x3x4 +0.0008x1
2 +0.0073x2

2 +0.0861x3
2 

+0.0558x4
2 

Nov CYt−1 DA1 DA3 DA6 
  

47.8316 −0.6925x1 +0.7765x2 −2.3671x3 −2.9813x4 +0.0043x1x2 +0.0011x1x3 

−0.0066x1x4 +0.0797x2x3 −0.0306x2x4 −0.0144x3x4 +0.0004x1
2 −0.0064x2

2 −0.0407x3
2 

+0.0200x4
2 

Dec CYt−1 DA6 DA9 
   

13.0378 −0.5111x1 +0.5765x2 −3.4820x3 +0.0177x1x2 −0.0158x1x3 +0.0155x2x3 

+0.0004x1
2 −0.0691x2

2 +0.0343x3
2 
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4.5 Modelling limitations 565 

The modelling limitations of the presented approach are the following. 566 

(1) To determine drought areas, a threshold value of the Standardised Precipitation 567 

Evapotranspiration Index (SPEI) drought index (SPEI ≤ -1) was used. Using just one threshold 568 

might lead to over or underestimation of the actual drought impacts over crop yield. 569 

(2) Gridded data of SPEI at spatial resolution (0.5°x0.5°) was used in this study over each 570 

region individually. Using such a coarse spatial resolution on different region sizes might not 571 

capture the drought area correctly, leading to over or underestimating its magnitude.  572 

(3) The study area has a diverse ecosystem of irrigated and rain-fed land, which may influence 573 

the correlation between DA and crop yield more or less. 574 

(4) This study assumes that drought is the only causative factor; however, floods negatively 575 

impact crop yield in the region, thus in the total production in the regions. Flood impacts are 576 

not considered in the models.  577 

(5) Many other factors might influence rice yield, such as market, technologies, management, 578 

etc. In this study, it was assumed that drought plays the prominent role. 579 

(6) Insufficient crop yield data for the ML model building was an issue because the CY time 580 

series only had one value for each year. 581 

4.6 Crop yield calculation systems 582 

The crop yield calculation is often based on at least one or both types of systems, the one based 583 

on ground-field visits and the one based on remote-sensing information. Regarding the 584 

temporal scale, those based on ground-field visits are usually issued twice or even four times, 585 

as in the case of India, depending on the agricultural calendar. On the other hand, in the case 586 

of remote-sensing information, they are usually more continuous, in fortnightly or monthly 587 

periods, and aggregated by seasonal periods. The calculations are based on data-driven 588 

equations to more complicated models based on crop growth and development. About the 589 

spatial scale, ground-field visits-based calculations are generally issued for the different 590 

cultivation districts or aggregated by regions and the whole country. In the case of remote-591 

sensing-based calculations, it depends on the spatial resolution of the input data. In theory, the 592 

outputs can be scaled down to the district level, although calculations aggregated by district, 593 

region, and country are often presented in practice. Although the remote-sensing-based systems 594 

have and advance over ground-field visits based method by providing information in the early 595 

stages of crop growth, the data required for its execution may not always be available. The ML 596 
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approach presented here falls into the second group; therefore, it shares similar limitations on 597 

latency, data availability, and spatial and temporal resolution.  598 

4.7 On the consideration of other factors, types of drought and indices 599 

Although many drought indices are initially created to analyse a specific type of drought, it is 600 

also possible to identify other drought types for which indices were created by considering 601 

different aggregation periods. In our study, this was the case. For this reason, we do not 602 

emphasise agricultural drought throughout the manuscript because we are not using only 603 

aggregation periods usually used for agricultural drought analysis. From our correlation 604 

analysis between crop yield and drought areas, we infer that different types of drought (i.e. 605 

meteorological, agricultural, and hydrological) affect the crop yield to varying degrees 606 

throughout the months of the crop period. This level of affectation could be considered to build 607 

the ML models by using the different hydro-meteorological variables or selecting different 608 

aggregation periods of the meteorological variables, as was the case in this research. 609 

Although we have tried to describe how the monthly time series on the calculated drought areas 610 

were matched with the seasonal crop yield data to build our ML approach, some readers may 611 

find the procedure complicated to replicate. If this is the case, we propose two alternatives. One 612 

is to consider an agricultural drought indicator, such as those based on soil moisture. The 613 

second is using a single aggregation period and concentrating on the construction of the ML 614 

model, exploring different types of ML models and modelling strategies. 615 

For the agricultural drought assessment, soil moisture is one of the most suitable variables for 616 

correct monitoring and analysis. The use of soil moisture depends mainly on the availability 617 

and accuracy of this information. We envision using soil-moisture-derived drought indicators 618 

in future studies in similar applications like the one presented here. 619 

Methodologies that consider other factors such as agricultural practices, soil properties and 620 

conditions, among others, are ideal to follow; however, this is not always possible. Our study 621 

presents a methodological alternative for predicting crop yield. There are current approaches 622 

for crop yield calculation in the study area, one based on field visits and another based on 623 

remote-sensing inputs. The main drawbacks and advantages are indicated in the Introduction 624 

Sect. Our methodology complements these two mentioned tools by providing crop yield 625 

prediction that can be compared with the current tools, with the difference that our ML 626 

approach produces results before the harvest (i.e. prediction). 627 

Our research could be extended further. In subsequent studies, we consider that irrigation 628 

practices could be analysed, where the best practices could be identified. Our results indicate 629 
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that the increase in drought area is highly correlated with the decrease in crop yield. A more 630 

detailed analysis will make it possible to identify the best agricultural management practices, 631 

identify sub-regions more/less vulnerable to the effects of the different types of drought, and 632 

detect various demands on water resources throughout the different farming systems. 633 

The degree of influence of anthropogenic factors, such as farmer operational practices, and 634 

other factors such as soil conditions, or other natural phenomena such as floods, could be 635 

included in the ML approach. One way to implement the above is as follows. Three or more 636 

types of inputs could be classified: anthropogenic, natural, and different types of combinations. 637 

The variable selection analysis could be carried out for each set of inputs to identify the ones 638 

that primarily drive agricultural production. Subsequently, the ML models could be built 639 

following our proposed approach, i.e. the use of ANN models (or similar models) and 640 

equations.  641 

Weighting the drought areas can be another way to include anthropogenic factors or other 642 

variables. Factors calculated with the additional variables can be used to modify the drought 643 

areas. In this way, the areas would be altered to a greater or lesser extent, increasing or 644 

attenuating the effects of the drought. 645 

Another line that we see much development in the future is the construction of ML models 646 

considering the study area spatially discretised in cells. The availability of spatial data is crucial 647 

in this type of analysis; advances in remote sensing and the different earth monitors developed 648 

in the last decades could facilitate the implementation of this spatially-distributed methodology 649 

using more advanced ML approaches. 650 

Finally, this research can also be extended to analyse the climate change scenarios, either to 651 

elucidate the consequences over crop yield or to find the best crop management practices to 652 

face the predicted problems. 653 

5 Summary and conclusions 654 

This research introduced a step-by-step ML approach for predicting crop yield (CY) with 655 

drought areas (DAs) as input. The ML approach comprises two components. Each component 656 

employs two types of ML models: polynomial regression (PR) and artificial neural network 657 

(ANN). The goal was to build the ML models (ANN and PR) and use them as an integrated 658 

tool to crop yield prediction. The formulas of the PR models were also provided. The ML 659 

approach was applied in three East India regions. 660 

 661 

 662 
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The following conclusions are drawn from this research. 663 

 Based on the performance of PR and ANN models, results show drought area to be a 664 

suitable variable to predict crop yield. 665 

 The correlation analysis between DA and CY showed high negative correlations in 666 

Odisha (region 3). The correlation gradually decreases in Bihar and Jharkhand (region 667 

1) and West Bengal (region 2). These correlation values can be because West Bengal 668 

has better access to irrigation facilities than Odisha and Bihar & Jharkhand.  669 

 On comparing ANN models and PR models, the ANN were more accurate than PR 670 

models to predict crop yield for all regions. This could have been expected since the 671 

drought–crop relationship is a highly non-linear problem.  672 

 It can be concluded that ANN has a high capability to predict CY in the pre-harvesting 673 

stage with good accuracy, considering the drought indicator used (SPEI), which uses 674 

climate variables such as precipitation and temperature (for evapotranspiration 675 

calculation). 676 

From the analysis and findings of this research, the following recommendations can be 677 

provided for further improvement. 678 

 Sensitivity analysis should be performed to identify the parameters that can impact the 679 

model results. For instance, different spatial resolutions of drought indicator and 680 

different thresholds should be investigated. 681 

 Wet extreme events should be considered, especially in the flood-prone regions such as 682 

the coastal areas of West Bengal (region 2) and Odisha (region 3) and North Bihar 683 

(region 1), where floods also influence crop yield. 684 

 Non-climatic factors such as econometric, fertilisers, and management practices might 685 

be considered because they influence crop yield. 686 

 In order to improve the model accuracy, more input data should be used in further 687 

studies. For CY, this can be estimated by remote sensing techniques on a monthly basis 688 

so that the ML models can be built for this temporal resolution and the spatial coverage 689 

can be better addressed. 690 

 The performance of other ML models has to be investigated, especially committee 691 

(ensemble) methods like random forests or boosting methods. In the case of data at 692 

scales less than monthly, the use of deep learning algorithms (e.g. LSTM networks) 693 

could be recommended to explore. 694 

We envision that this research will improve drought monitoring systems for assessing drought 695 

effects. Since it is currently possible to calculate drought areas within these systems, the direct 696 

application of the prediction of drought effects is possible to integrate by following approaches 697 

such as the one presented or similar. 698 
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