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Abstract. Coastal backwater effects are caused by the downstream water level increase as the result of elevated sea level, 10 

high river discharge and their compounding influence. Such effects have crucial impacts on floods in densely populated 

regions but have not been well represented in large-scale river models used in Earth System Models (ESMs), partly due to 

model mesh deficiency and oversimplifications of river hydrodynamics. Using two mid-Atlantic river basins as a testbed, we 

perform the first attempt to simulate the backwater effects comprehensively over a coastal region using the MOSART river 

transport model under an Earth system model framework i.e., Energy Exascale Earth System Model (E3SM) configured on a 15 

regionally-refined unstructured mesh, with a focus on understanding the backwater drivers and their long-term variations. By 

including sea level variations at the river downstream boundary, the model performance in capturing backwaters is greatly 

improved. We also propose a new flood event selection scheme to facilitate the decomposition of backwater drivers into 

different components. Our results show that while storm surge is a key driver, the influence of extreme discharge cannot be 

neglected, particularly when the river drains to a narrow river-like estuary. Compound flooding, while not necessarily 20 

increasing the flood peaks, exacerbates the flood risk by extending the duration of multiple coastal and fluvial processes. 

Furthermore, our simulations and analysis highlight the increasing strength of backwater effects due to sea level rise and 

more frequent storm surge during 1990-2019. Thus, backwaters need to be properly represented in ESMs for improving 

predictive understanding of coastal flooding. 
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1 Introduction 

Backwater zones are regions at the river downstream sections, a fluvial-marine transition area between upstream flow and 

estuary/coastal river plume, where the river flow is affected by the coastal processes, such as sea level changes, tides and 30 

storm surge (Lamb et al., 2012), and can extend hundreds of kilometers upstream in low-lying watersheds (e.g., up to 500 

km in Mississippi River).  Coastal backwaters are created by elevated sea level that can cause upstream propagation of flood 

waves and the attenuation of the spatial and temporal water stage fluctuations (Luo et al., 2017). These effects play a critical 

role in floodplain storage and river discharge (Paiva et al., 2013) and also have a key influence on the biogeochemistry and 

geomorphology at the terrestrial-aquatic interface (Dykstra & Dzwonkowski, 2020; Lamb et al., 2012; Ward et al., 2020). 35 

With population growth near coastal regions (Tellman et al., 2021), coastal backwaters are expected to exert a greater impact 

on human and natural systems. 

The backwater zones usually face severe flood risks as a result of tide, storm surge, rainfall runoff and their combined 

effects. During a landfalling hurricane with strong winds and heavy rainfall, storm surge drives coastal waters to propagate 

into the river network and interact with high river discharge (Bilskie & Hagen, 2018). When multiple drivers occur 40 

simultaneously or in close successions, the flood event is referred as compound flooding (Santiago-Collazo et al., 2019). 

Coastal backwater induced floods have strong temporal and spatial variabilities (Hendry et al., 2019), depending largely on 

the local topography and storm characteristics (Gori et al., 2020). Due to climate warming, the frequency and intensity of 

such compound flooding have exhibited an increasing trend (Bates et al., 2021; Rahmstorf, 2017), as a result of intensified 

storm surge (Camelo et al., 2020; Marsooli et al., 2019), more frequent extreme precipitation (Alfieri et al., 2016) and 45 

accelerated sea level rise (SLR) (Kulp & Strauss, 2019; Orton et al., 2019). Although SLR and storm intensification are 

considered the most influential flooding drivers (Hwang et al., 2020), projected changes in river discharge also play an 

important role in modulating the flood potentials (Bermúdez et al., 2021). 

Understanding the backwater drivers is prerequisite to mitigating the related flood risks. However, the interactions among 

the backwater drivers and their respective contributions through fluvial processes, storm and climate are not well understood 50 

(Dykstra & Dzwonkowski, 2021). Although there are extensive literatures that address the storm surge induced coastal 

inundation (or flooding on land) and the related impacts on flood risks in coastal cities (Hinkel et al., 2014; Ye et al., 2020), 

limited efforts are made towards understanding the extreme surge that propagates into the river network (Ikeuchi et al., 

2017). The latter is more critical in low-lying mega-delta regions that reside over 0.5 billion people globally (Syvitski & 

Saito, 2007). Streamflow in the backwater zones is affected by river topology, upstream discharge, sea level variations and 55 

their interactive effects (Castelltort et al., 2020; Hellmers & Fröhle, 2022). Specifically, river topology is characterized by 

the river channel geometry, riverbed elevation and river’s receiving water body. Among these factors, riverbed elevation, 

due to its control on the backwater propagation extent, has been widely recognized in previous studies (Gori et al., 2020). In 

contrast, the river’s receiving water body has not yet drawn much attention. As rivers contribute to a variety of water bodies 

including deltaic floodplains, estuaries and coastal oceans (Mikhailov & Gorin, 2012), the interactive effects of river 60 
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discharge and sea level vary substantially. For example, the impact of river discharge on the local sea level is much more 

intense in a narrow tidal-river estuary than in an open sea (Rayson et al., 2015; Chegini et al., 2022). In a narrow estuary, 

flood risks are further exacerbated because high discharge increases the local sea level, high sea level induced by storm surge 

impedes river discharge to the ocean, and the interaction of these two mechanisms intensifies the backwater effects (Eilander 

et al., 2020). 65 

Large-scale river models are one of the major components of Earth System Models (ESMs) that couple the atmosphere, land, 

river, and ocean models to simulate the global water cycle (e.g., Golaz et al., 2019; Leung et al., 2020) and assess flood risks 

(Hirabayashi et al., 2013; Towner et al., 2019). Although hydraulic or hydrodynamic models were used more often in 

previous studies to simulate storm surge induced coastal inundation (Bakhtyar et al., 2020; Muñoz et al., 2020), there have 

been growing applications of large-scale river models to assess the compound fluvial and coastal flooding at basin (Chen et 70 

al., 2013), regional (Ikeuchi et al., 2017; Yamazaki et al., 2012) and global scales (Eilander et al., 2020; Mao et al., 2019) 

because they are more computationally efficient for a large spatiotemporal assessment. The long-term evolution of flood 

drivers and risks can be quantified in the context of climate change. Moreover, such models, when directly coupled with 

other components of ESMs, can also provide estimations of energy, biogeochemical and sediment processes that are often 

neglected in pure flood inundation models (Li et al., 2022). However, several limitations in the current generation of ESMs 75 

impair the realistic representation of coastal backwaters and human–land–river–ocean interactions at the terrestrial-aquatic 

interface (Ward et al., 2020). First, most ESMs are configured with one-way coupled river and ocean models, in which water 

only flows from rivers to oceans and the impact of elevated sea levels on upstream river stage is ignored. Second, the meshes 

used in most ESMs are too coarse to represent backwater effects. For example, in the high-resolution configuration of 

Energy Exascale Earth System Model (E3SM), a uniform resolution of 12.5 km is used for the river model (Caldwell et al., 80 

2019). The resolutions of other widely-used large-scale river models also only range from 5 km to 25 km. Much higher 

spatial resolutions (~ km) are required to resolve the smaller-scale topology near the coastline (Bates et al., 2021; Trigg et 

al., 2016) for coastal backwaters. Last, while most existing ESMs apply structured meshes in their river components, 

unstructured meshes are needed to achieve more flexible variable resolutions within areas of interest, such as high 

resolutions along the coastline, as well as to accommodate the high spatial variation of coastal processes. 85 

Motivated by the increasing flood risks in a warming climate, this study is part of a larger effort to develop capabilities in 

representing land-river-ocean interactions in E3SM for modeling the changing compound flood risks in coastal regions and 

the potential implications for the regional and global water and biogeochemical cycles. More specifically, the objectives of 

this study are to (a) assess the capability of two-way coupled river and ocean models on a regionally-refined mesh to capture 

coastal backwater effects; and (b) understand the major and interactive backwater drivers and their long-term variations 90 

under climate change in two contrasting coastal river basins. The backwater drivers are decomposed using a novel extreme 

flood event selection scheme. Each selected event is identified by the dominant flood drivers. In Section 2, we provide an 

overview of the study domain, the river model, the unstructured mesh, and the methods of extreme event selection and 
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drivers decomposition. Model evaluation and analyses are provided in Sections 3, 4 and 5. In Section 6, we discuss the 

findings and limitations. Finally, the conclusions are provided in Section 7. 95 

2 Methods and Data 

This section describes the study domain of two mid-Atlantic river basins. A global river routing model on a regionally-

refined unstructured mesh and with two-way river-ocean coupling physics is introduced. We also develop a method to select 

extreme events and decompose the flood drivers of the selected events. Two hurricane events are selected to demonstrate the 

applicability of the proposed methods.  100 

2.1 Study domain 

The mid-Atlantic region of the US is exposed to frequent tropical cyclones that bring intense precipitation and storm surge 

(Sun et al., 2021). In this study, we define the mid-Atlantic region as Susquehanna River Basin (SRB) and Delaware River 

Basin (DRB) (Fig. 1). Susquehanna River drains 71,228 km2 to the northern end of Chesapeake Bay, contributing ∼50% of 

freshwater inflow to the estuary (Leathers et al., 2008). Chesapeake Bay is the largest estuary in the US with a surface area 105 

of 11,601 km2 and a shoreline extending over 7000 km. Chesapeake Bay has varied tidal characteristics across the estuary, 

e.g., mixed tide in the northern portion and semidiurnal tide near the bay mouth. In addition to Susquehanna River, several 

other large rivers also drain to this estuary. For Chesapeake Bay, the amount of the freshwater outflow is approximately the 

same as the seawater inflow from the mid-Atlantic coastal waters (Valle-Levinson, 1995). Delaware River drains 35,070 km2 

to Delaware Bay and contributes 58% of freshwater to the estuary (Whitney & Garvine, 2006). Delaware Bay has 2,030 km2 110 

in surface area and is dominated by semidiurnal tide. The tidal range is 1.5 m at the bay mouth and increases towards 

Trenton (USGS gauge 01463500 in Figure 1). Trenton is referred as the downstream limit of freshwater (Sharp, 1983), as 

there is a hydraulic jump at 2.7 km downstream of the station due to an abrupt decrease in channel bathymetry (Zhang et al., 

2020). Together, SRB and DRB have over 4 million residents and DRB provides drinking water to 6% of the US population. 

The locations of in-situ observations are provided in Figure 1. Among over 100 USGS gauges in the mid-Atlantic region, we 115 

selected all USGS gauges in the mainstem of Susquehanna River and Delaware River, respectively, for simulated streamflow 

validation. The water level data at 6 NOAA tidal gauges are also selected for data analysis and/or model validation. While 

the coastal tidal gauge (8534720) is used for identifying storm surge, the two tidal gauges near the river mouths (8573364 

and 8545240) provide the downstream boundary condition (BC) of the river model for Susquehanna River and Delaware 

River, respectively. The four tidal gauges at the downstream section of Delaware River (8545240, 8546252, 8539094 and 120 

8548989) are used in model evaluation. 
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2.2 Global River Routing Model 

The Model for Scale Adaptive River Transport (MOSART) (Li et al., 2013; Li et al., 2015), the river component in E3SM 

(Golaz et al., 2019) is used for river modeling. MOSART is a river routing model applicable across local, regional, and 

global scales. The model is driven by runoff from a land surface model and simulates water flow from hillslopes to tributary 125 

subnetworks and to main channels. The routing schemes in MOSART include kinematic wave and diffusion wave equations, 

two simplified forms of the 1-dimensional Saint Venant equations. The routing of surface runoff in hillslopes and tributary is 

represented using the kinematic wave method. The flow in the main channel is represented by the diffusive wave method. 

The momentum equation in the diffusive wave method is (Chow, 1988) 
!"
!#
− 𝑆$ + 𝑆% = 0,                                                                                  (1) 130 

where ℎ is the water depth in the channel, 𝑆$ is riverbed slope and 𝑆% is the friction slope. Compared to the diffusive wave 

method, the kinematic wave method neglects the first term of Eq. 1 in its momentum equation. The flow velocity (𝑣) is 

estimated using the Chezy-Manning equation 

𝑣 = &'!&

'!
𝑛()𝑅

"
#+𝑆%+

$
",                                                                                                                      (2) 

in which Manning’s 𝑛  is used as the frictional coefficient and 𝑅  is the hydraulic radius. The backwater effect can be 135 

represented in the diffusive wave method, as the flow velocity is determined by both the riverbed slope (𝑆$) and the water 

level variations (ℎ) along the river channels (Luo et al., 2017). In extreme conditions, when the downstream water stage is 

higher than that of the current channel, 𝑆% becomes negative, resulting in a backwater. The extreme reverse flow is recently 

observed in Mississippi River during Hurricane Ida (Miller, 2021). In our study domain, the backwater processes in 

Susquehanna River and Delaware River were reported by USGS (U.S. Geological Survey, 2016) and showed significant 140 

impacts during Hurricane Irene (Zhang et al., 2020).   

The cross-section of the main channel is specified as rectangular in MOSART when channel water depth is no more than the 

bankfull depth (𝐻). The channel width (𝑊) and bankfull depth (𝐻) are estimated from the total upstream drainage area 

(𝐴*+*,-) using empirical formulations (Bent & Waite, 2013): 

𝑊 = 𝑎(𝐴*+*,-).,                                                                                                          (3)  145 

𝐻 = 𝑎(𝐴*+*,-).,                                                                                                          (4) 

where 𝑎 and 𝑏 are empirical parameters. When channel water depth exceeds 𝐻, an elevation profile is invoked to capture the 

elevation variation in the floodplain (Luo et al., 2017). 

In this study, the runoff inputs for MOSART are obtained from Global Reach-level Flood Reanalysis (GRFR) (Yang et al., 

2021), an offline simulation from a high-resolution land surface model that has been calibrated and bias corrected. The 150 

original configuration of the MOSART diffusive wave method applies a static coastal boundary condition (CBC), i.e., either 

normal depth or fixed mean sea level at the river mouth (Luo et al., 2017). The normal depth boundary assumes that the 

friction slope (𝑆%) equals to the riverbed slope (𝑆$) at the river outlet cell. This simplification, while reasonable for global 
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simulations in which the influence of coastal processes is limited, can be problematic in low-lying coastal regions. To 

represent the backwater effects induced by the dynamic sea level variation, this study introduces a new, dynamic CBC option 155 

in MOSART to read in time-varying water level data at a time interval consistent with the land-river coupling frequency in 

E3SM. The coupling time interval is set as 1 hour in this study. This dynamic CBC is only configured for the rivers of 

interest, while the static CBC is used in all other outlet boundaries due to the limited data availability. 

2.3 Coastal refined global unstructured mesh and flow direction map 

A global unstructured mesh with a resolution of ~100 km has been developed using the JIGSAW mesh library (Engwirda & 160 

Ivers, 2016; Engwirda, 2017), which enables: (a) the flexibility of embedding high-resolution subdomain within the ESM’s 

global configuration; (b) oversampled geometrical features (O(<100m)), e.g., river network and coastline, to be simplified to 

coarser ESM length scales on orders of 2-60km; (c) close alignment of the complex geography of coastline, watershed 

boundaries and river networks (Engwirda & Chang, 2021). The global mesh is developed to allow for more seamless 

coupling of the land, river and ocean components in E3SM (Fig. 2) for more consistent modeling of global surface processes. 165 

In the mid-Atlantic region, the mesh resolution is refined to ~3 km to better resolve local coastal and watershed processes 

(Fig. 2b). Significant effort is also made to ensure that the cells in the high-resolution mesh match the prescribed dam 

locations and the orientations of the edges conforming to the flow direction along the main channel. 

The river networks and flow directions are modeled using HexWatershed (Liao et al., 2020; Liao et al., 2022; Liao, 2022), a 

watershed and flow direction model that supports both structured and unstructured meshes for river routing models. 170 

HexWatershed uses a topological relationship-based approach to define river networks in the mid-Atlantic region (Lehner et 

al., 2008). To generate the flow direction for the entire domain, HexWatershed uses a hybrid depression filling and breaching 

stream burning algorithm to remove local depressions while minimizing modifications to surface elevation and produces 

flow routing parameters including the flow direction map, channel slope, and drainage area, which are critical for accurately 

representing coupled land-river-ocean processes. 175 

2.4 Extreme event selection 

The extreme events of fluvial flood (FF) and storm surge (SS) are separately selected based on their corresponding time-

series observations. The selection of FF follows the strategy proposed in (Zhang et al., 2021). In the time-series of discharge 

data, a flood event is identified by first selecting the flood peaks using the peaks-over-threshold (POT) approach (Lang et al., 

1999). The threshold is determined based on automatic threshold selection and the independence of the peak series is 180 

examined with a declustering method (Zhang et al., 2021). The start and end dates are specified using the empirical 

formulation:  

𝑄' ≤ 𝑎𝑄/; 	𝑇/ − 𝑇' ≤ 𝑏(5 + ln	( 0
).2$3"

)),                                                               (5)  

𝑄4 ≤ 𝑎𝑄/; 	𝑇4 − 𝑇' ≤ 𝑏(5 + ln	( 0
).2$3"

)),                                                               (6) 
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where  𝑇/, 𝑇' and 𝑇4 are the peak date, start date and end date, 𝑄/, 𝑄' and 𝑄4 are the discharge on the corresponding date, 185 

and 𝐴 is the basin drainage area. The empirical parameters 𝑎 and 𝑏 are specified as 0.5 and 1.5, respectively. 

The selection of storm surge (SS) is performed in three major steps. The 1st major step is to extract the SS component from 

the hourly total water level (TWL) data at the NOAA tidal gauge (i.e. 8534720 in Figure 1): (i) the TWL time series is 

detrended by extracting the annual mean sea level, which removes the effects of SLR; (ii) the predicted astronomical tides 

are then derived from the harmonic tidal analysis performed on the detrended TWL on a year-by-year basis using 8 major 190 

tidal constituents; (iii) SS is the non-tidal residual obtained by extracting the tides from the detrended TWL. 

The 2nd major step is to filter the extreme SS events using a peak detection algorithm (Brakel, 2014). When a data point is m-

fold standard deviations away from the moving mean, an event peak is identified. The start and end times of the 

corresponding event are the nearest data points that change signs. In addition to 𝑚, the other input parameters of this 

algorithm are lag and influence: lag is the number of observations to smooth the data, or the length of the moving window; 195 

influence represents the influence of new signals on the threshold. Here we performed the SS event selection by setting 𝑚 = 

5, lag = 30 and influence = 0. These parameters are determined to ensure that the selected SS events include all documented 

hurricane events in the mid-Atlantic region.  

The 3rd major step is to select the extreme SS events of interest by extracting the events with SS peaks larger than the 99.5th 

percentile. When there is an overlap between the FF and SS events, a compound flood event is identified, for which the 200 

duration is defined as the combined period of the two events. The applied event selection method can be more accurate than 

those used in continental and global applications, where the event period is simply determined using a predefined time-

window (e.g. ±1 days of a peak event) (Nasr et al., 2021; Ward et al., 2018; Wu et al., 2021). 

2.5 Decomposition of backwater drivers 

The backwater drivers are decomposed into three different levels (Fig. 3). The first level considers the river topology and the 205 

forcing that affects the river flow directly. The direct forcing in the backwater zone is considered as the upstream discharge 

and the TWL at the river mouth. To address the impact of topology, we compare the backwater effects in Susquehanna River 

and Delaware River, which differ significantly in terms of the riverbed elevation along the downstream section and the 

receiving water body. As previous studies have shown the crucial impact of sea level variations on the backwater effects 

(Yamazaki et al., 2012), we further decompose the TWL into low-frequency surge (LFS) and tide in the second level. The 210 

predicted tide is estimated using harmonic tidal analysis and the LFS is obtained by subtracting the tide from the TWL. It 

should be noted that this level of decomposition must be applied to a tidal gauge as the harmonic tidal analysis requires 

measurable tidal effects.   The third level decomposes the LFS to high discharge, SS and their compound effects. It is worth 

noting that the LFS differs from the SS in that the LFS is extracted from the TWL at the NOAA gauge nearest to the river 

mouth (e.g., 8545240 in Figure 1) where the river discharge can have a significant influence on the LFS. In particular, the 215 

LFS is dominated by both river discharge and storm surge in narrow tidal rivers, such as Delaware Bay. In contrast, the river 

discharge influence is negligible in larger estuaries or coastal oceans, such as Chesapeake Bay. Previous studies mainly 
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focused on the drivers of river discharge and SS (Nasr et al., 2021; Ward et al., 2018), assuming they are distinct 

mechanisms that have little mutual interactions. Such assumption is valid when the river drains directly to a large receiving 

water body. However, cases with a river ending within a small estuary have not been explored. In such cases, the high 220 

discharge during fluvial flood increases the water level within the estuary and attenuates the spatial variation of water stage 

along the river (Luo et al., 2017), creating backwater effects. Thus, in the third level, we attempt to understand the respective 

role of high discharge, SS and their interactive impacts on the LFS induced backwater effects. These drivers are separated 

based on the selected flood events in Section 2.4. Events dominated by the drivers of high discharge, SS and their compound 

effects are denoted as 𝐿𝐹𝑆 ∩ 𝐹𝐹 ∩ 𝑆𝑆??? , 𝐿𝐹𝑆 ∩ 𝑆𝑆 ∩ 𝐹𝐹????  and 𝐿𝐹𝑆 ∩ 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑 , respectively. The symbol ∩  means the 225 

intersection period between two events and the overline means to exclude the different drivers if there is an intersection. 

Each event is measured in terms of the event duration and the peak water level during the event.  

The trend analysis was performed to assess the annual trends of the backwater drivers. For each event type, we calculated the 

annual duration, occurrence and the maximum peak value on an annual basis. The impact of SLR is addressed by selecting 

the SS event without detrending the TWL data, while the other steps are the same as those in Section 2.4. The corresponding 230 

case is referred as SS+SLR. The nonparametric Mann-Kendall (MK) test (Tosunoglu & Kisi, 2017) was employed to 

statistically assess if there is a monotonic trend. The null hypothesis (𝐻$) and the alternative (𝐻,) are: no monotonic trend is 

present; and monotonic trend is present, respectively. For each MK test, we set the significance level at 0.1 and calculated 

the standard MK statistics (𝑍) and p-value. The positive (negative) value of 𝑍 corresponds to the increase (decrease) trend.    

2.6 Numerical experiments 235 

MOSART simulations were performed from 1990 to 2019 with the first year excluded from analysis as the spin-up time. 

This period has sufficient data coverage of both runoff and the water level at NOAA gauges. We configured five simulations 

based on the aforementioned downstream CBCs: (a) normal depth; (b) total water level (TWL); (c) mean sea level (MSL); 

(d) low-frequency surge (LFS); (e) tide. The backwater effects are quantified by comparing the TWL and MSL simulations 

in terms of two quantification metrics along the main channel: water depth change ∆ℎ and water volume change ∆𝑉: 240 

∆ℎ(𝑡, 𝑖) = ℎ5#6(𝑡, 𝑖) − ℎ7'8(𝑡, 𝑖),                                                                (7)  

∆𝑉(𝑡) = ∑ Lℎ5#6(𝑡, 𝑖) − ℎ7'8(𝑡, 𝑖)M9
: 𝐿(𝑖)𝑊(𝑖),                                                               (8)  

where the subscript 𝑒𝑥𝑝 represents TWL, LFS or tide, ℎ is the main channel water depth, 𝑡 is the model output time step and 

𝑖 is the grid cell index, 𝐿 and 𝑊 are the length and width of the main channel within the 𝑖th cell, respectively, and 𝑁 is the 

number of cells with nonzero ∆ℎ. The two metrics measure the backwater-induced changes within the river channel that are 245 

created from the variation in the downstream water level. The model performance is assessed using coefficient of 

determination (𝑟;), root mean square error (RMSE) and Kling–Gupta efficiency (KGE) (Gupta et al., 2009) 

𝐾𝐺𝐸 = 1 −V(𝑟 − 1); + L<%
<&
− 1M

;
+ L∑>%∑>&

− 1M
;
,                                   (9)  
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where 𝑋? and 𝑋+ represents the model simulation and the observation, 𝛿? and 𝛿+ are the corresponding standard deviations, 

and 𝑟 is their linear correlation.  250 

2.7 Extreme Events 

The flood events in Delaware River during Hurricane Irene (followed by Tropical Storm Lee) and Hurricane Sandy are used 

to demonstrate the selection of extreme events and the quantification of the backwater effects. Hurricane Irene, one of the 

most destructive tropical cyclones in the US history, made its first landfall on the coast of North Carolina on August 27, 

2011 as a Category 1 hurricane, followed by another landfall in the southeastern New Jersey on August 27 and a third 255 

landfall in New York City. The storm surge peaked at 1.8 m along the coast of New Jersey and the wind speed was up to 105 

km/h. The maximum rainfall is 10 inches in DRB. Tropical Storm Lee is the subsequent storm event that formed over the 

gulf coast and swept the east coast. Lee brought 10~12 inches of precipitation to the mid-Atlantic region, resulting in mainly 

fluvial processes rather than coastal surges (Ye et al., 2020). The combined events caused two consecutive flow peaks in 

Delaware River from Aug 28 to Sep 10, 2011 (Fig. 4). Irene is affected by the interactive storm surge and precipitation-260 

induced fluvial flood and has been studied extensively as an example of compound flood (Xiao et al., 2021; Zhang et al., 

2020). Hurricane Sandy, the largest Atlantic hurricane on the US record, made landfall on the coast of New Jersey on 

October 29, 2012 with a sustained wind speed of 130 km/h. Sandy caused a maximum storm surge of 4 m near New York 

city and 1.5 m near the Delaware coast. The observed peak flow during Sandy is ∼800 m3/s at Trenton. 

3 Model evaluation 265 

In this section, the MOSART performance for simulating river discharge and water level is compared between the 

experiments using the downstream CBC of normal depth, TWL and MSL to demonstrate the importance of imposing an 

appropriate downstream CBC. The model performance in reproducing the observed water level in the downstream section of 

Delaware River is significantly improved when the TWL is enforced at the boundary.  

3.1 River discharge 270 

The MOSART simulated daily discharge is compared with the USGS observations over the simulation period (1991–2019) 

at the gauges along the main stem of Susquehanna River and Delaware River (Fig. 4). The coefficient of determination 𝑟; 

and KGE are calculated for each gauge. The MOSART simulation compares reasonably well with 𝑟; and KGE with both 

over 0.5 across all gauges (Towner et al., 2019). The model performance is generally higher in Susquehanna River and 

decreases towards the upstream regions. The highest 𝑟; and KGE (≥0.75) are found at the downstream gauges of the two 275 

rivers, as the forcing may not capture the runoff accurately for smaller drainage areas. A closer look at the time series of 

discharge at these two gauges from 2011 to 2012 shows that the model can capture the hydrograph and smaller peaks of river 

discharge well, and there is no significant difference of model performance among the different CBC configurations because 
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even the USGS gauges closest to the river outlets are still too far upstream to capture effects of dynamic CBCs. The model 

has a large bias in Susquehanna River during Hurricane Irene (August 21 to 30, 2011) with the extreme flood peak 280 

significantly underestimated. While the observed peak flow is about 20000 m3/s, the simulated flow is about 5000 m3/s. This 

bias is likely caused by uncertainty in the GRFR runoff forcing (Yang et al., 2021). The global runoff forcing, although is 

bias corrected, may underestimate the extremes over specific regions. This is a known challenge in global runoff generation 

schemes. Additionally, there also exists uncertainty in USGS discharge data estimated from rating curve during extreme 

events (Di Baldassarre et al., 2012), because these measurements occur less frequently and usually do not cover extreme 285 

events (Turnipseed & Sauer, 2010). Overall, the evaluation indicates that the MOSART simulated river discharge reasonably 

captures the spatial and temporal variability of the observed discharge in the mid-Atlantic region. 

3.2 Water level 

The simulated water level is compared with the observations at four NOAA tidal gauges along the downstream section of 

Delaware River. The model performance is quantified in terms of r2 and RMSE (Fig. 5). The TWL simulation results in the 290 

best performance, in which r2 is over 0.5 among all the gauges, much higher than the other two configurations. The lowest 

RMSE is also obtained from the TWL simulation. By setting the TWL as the downstream CBC, the model’s capability at 

reproducing the water level variation is greatly enhanced. The same conclusion can also be drawn in the time-series 

comparison from 2011 to 2012 (Fig. 6). The TWL simulation accurately captures the small variations in the observed water 

level, which are missing in the simulations with normal depth and MSL boundary conditions. The extreme peaks are 295 

overestimated in the TWL simulation, as well as the normal depth simulation in which no data are enforced at the 

downstream boundary. The MSL simulation tends to produce smaller variations and lower peaks as the downstream 

boundary is forced by a constant water level. The overestimation in water level peaks by the TWL and normal depth 

simulations is likely a result of the uncertainties in the channel topology in MOSART. Moreover, the diffusive wave 

equation (Eq. 1) simplifies the momentum transport by neglecting the inertia terms (local and convective). In the diffusive 300 

wave method, because the flood wave is considered as subcritical and diffusive (Trigg et al., 2009), the water level is mainly 

controlled by the upstream discharge. In low-lying rivers, while gravity and friction may not be the dominant forcing, the 

inertial force related with velocity changes in space and time dominates the flow momentum. As such, the flood wave 

propagation from the downstream boundary is underestimated in the backwater zone. As shown in Fig. 5, the improvement 

of the TWL simulation in predicting water level is reduced towards upstream. This is not unexpected in a reduced-physics 305 

river model (Hodges, 2013) because implied in the diffusive wave equation (Eq. 1), the energy head at the downstream CBC 

is created by the pressure gradient as a result of the variation in water surface but it is lost rapidly upstream due to the 

increase in riverbed elevation. 

The model evaluation results illustrate that a river model on a regionally-refined global mesh can represent backwater effects 

at the basin scale when properly specified downstream CBC is used. Thus, the model can be used to further examine the 310 

contribution of the backwater drivers. It should be noted that the 1D river models are by no means comparable to 3D 
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hydrodynamic models (e.g. models in (Gori et al., 2020) and (Zhang et al., 2020)) at reproducing coastal flood events or 

resolving the complex flow dynamics (Neal et al., 2012). Therefore, our analysis focuses on a larger temporal scale by 

extracting the extreme events from a long period, which are then used to quantify the backwater drivers. 

4 Flood event simulation 315 

The event selection method (Section 2.4) is used to select the extreme SS, LFS and FF events during Hurricane Irene, 

Tropical Storm Lee and Hurricane Sandy from long-term observations at the NOAA coastal gauge (8534720), the NOAA 

gauge closest to the river mouth (8545240) and the USGS gauge at Trenton (01463500), respectively (Fig. 7). Gauge 

8545240, despite located at the upstream reach of Delaware Bay, is dominated by semidiurnal tides even at high-flow 

conditions during extreme storm events (Xiao et al., 2021). A lag time of 4 hours is added to the water level data at the 320 

coastal gauge to compensate for the phase lag between this NOAA tidal gauge and that at the river mouth. As there is an 

overlap between the SS and FF events during Irene (Fig. 7a), a compound flood is identified over the combined period. The 

obvious difference is observed between the LFS and SS events, which were obtained using the same method but at different 

locations. At the Delaware River mouth, the LFS event can be attributed to both SS and river discharge, resulting in a 

duration period comparable to an FF event and much longer than a SS event. This highlights the importance of considering 325 

the influence of high river discharge on compound flooding, particularly for rivers contributing to a small receiving water 

body. Sandy did not induce significant fluvial processes, and the LFS event was primarily caused by SS. Thus, no compound 

flood is identified over this period. 

Because the TWL simulation shows a reasonable performance at reproducing both river discharge and water level during the 

hurricane periods (Section 3), the TWL simulation is used to estimate the water depth change (Δℎ	) and water volume change 330 

(Δ𝑉	) in Eq (7) and (8) to assess the backwater effects. ∆ℎ shows the backwater propagation extent, which is roughly 60 km 

upstream from the river mouth (Figure 7). This extent is determined by the riverbed elevation. Increasing the elevation to ~5 

m, ∆ℎ implies a large increase in the downstream water level. As a spatially aggregated quantity ∆ℎ, ∆𝑉 is also consistent 

with LFS, with ∆𝑉 following the LFS variation and peaking on the same dates. By comparing ∆ℎ and ∆𝑉 over the two 

hurricanes, it is not difficult to conclude that the compound flood caused by two consecutive events of Hurricane Irene and 335 

Tropical Storm Lee has a much larger impact on the backwater effects than that of Hurricane Sandy, even though their LFS 

peaks are at similar levels. This is probably because the duration of the SS event during Sandy is much shorter than the 

combined SS and FF events during Irene. 
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5 Backwater drivers 

The interactive effects of water level and discharge inspire us to further decompose the backwater drivers. This section 340 

provides the analysis on the drivers based on the three-level decomposition introduced in Section 2.5. We examine the 

contribution of each driver to the backwater effects and their corresponding long-term trend under climate change. 

5.1 Decomposition of backwater drivers 

5.1.1 Discharge, TWL and topology 

The first decomposition level assesses the impacts of river discharge (Q), TWL and topology by comparing ∆𝑉 between 345 

Susquehanna River and Delaware River over the entire simulation period (Fig. 8). While ∆𝑉 is computed from the TWL 

simulation, Q and TWL are obtained from the paired streamflow and tidal gauges nearest to the river outlets, that is, gauge 

01578310 and 8573364 for Susquehanna River and gauge 01463500 and 8545240 for Delaware River. The result shows the 

key role of river topology and TWL in affecting backwaters. The maximum ∆𝑉 in Susquehanna River is roughly 3 orders of 

magnitude smaller than that in Delaware River. This is the result of a larger gradient in riverbed elevation profile of 350 

Susquehanna River that impedes the backwater propagation. Over the 5-km downstream section, the elevation increases 

from 0 to ~20 m in Susquehanna River but by less than 1 m in Delaware River. 

In both rivers, ∆𝑉 is dominated by TWL, with the corresponding correlation coefficient (r) over 0.9 (Fig. 9). However, the 

influence of Q differs significantly between the two rivers. In Susquehanna River, Q is negatively correlated with ∆𝑉 (r = 

−0.11). The increase in Q reduces the TWL impact on ∆𝑉. For instance, at the same TWL, a smaller Q could result in a 355 

higher ∆𝑉 (Fig. 8a). This behavior is also evident in the slopes of the fitted linear regression lines: the fitted slope for 𝑄 ≥ 

1000 m3/s is smaller than those for low discharge (Fig. 8a). This result is expected because high upstream discharge can 

attenuate the propagation of downstream backwaters. In Delaware River, ∆𝑉 increases with Q and r between ∆𝑉 and Q is 

0.36. The regression slopes are similar at different discharge conditions. These contrasting results between the two rivers 

imply that the impact of Q on the backwater effects depends on the river’s receiving water body. Because Delaware River 360 

contributes to Delaware Bay, a much narrower estuary than Chesapeake Bay, the effect of its discharge on the water level 

variation of the estuary is much stronger than that of Susquehanna River.  Consistently, there is a much higher r between Q 

and the TWL (0.27) in Delaware River than that (-0.03) in Susquehanna River (Fig. 9). In addition, the channel constriction 

in Delaware River might also facilitate the formation of backwaters (Castelltort et al., 2020). 

Between the two draining estuaries, Chesapeake Bay behaves more like an ocean as the river impact is limited and the 365 

coastal and fluvial processes are distinct. Such situation is usually taken as the general case for compound effects and has 

been addressed extensively using statistical models (Nasr et al., 2021; Ward et al., 2018) and large-scale river models 

(Ikeuchi et al., 2017). In contrast, cases like Delaware River have rarely been documented in any global-scale studies, even 

though they are ubiquitous and may witness more coastal backwaters. A possible reason for why such cases were overlooked 
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is that previous global meshes have large deficiency in resolving narrow estuaries properly. Thus, we focus the following 370 

analysis on Delaware River. 

5.1.2 LFS and tide 

Given the key impact of TWL, the second decomposition level examines the respective role of the LFS and tide. The 

simulations configured with the downstream BCs of the TWL, LFS and tide (Section 2.6) are used to derive the maximum 

water depth change (∆ℎ?,#) for each grid cell: 375 

∆ℎ?,#(𝑖) = max	{∆ℎ(𝑡, 𝑖): 𝑡 = 1,2, … , 𝑇},                                                                 (9)  

where 𝑇 is the simulation period.  

The ∆ℎ?,# comparison shows the dominance of LFS over tide in increasing the maximum water depth (Fig. 10). In the 

along-channel profile (Fig. 10a), the value of ∆ℎ?,# in the LFS simulation is close to that in the TWL simulation: ≥1 m 

within the 40 km upstream range of the outlet and then gradually reduced to 0 with a sharp increase of the riverbed elevation. 380 

In contrast, the tide simulation produces a much smaller ∆ℎ?,# with the value never exceeding 0.5 m. Among the simulation 

cases, the highest ∆ℎ?,#  occurs at roughly 25 km upstream from the mouth. This along-channel profile reveals the 

interaction of the discharge and the upstream propagation of tide and surge momentum. It is also observed that ∆ℎ?,# is 

slightly higher in the LFS simulation than in the TWL simulation, which is likely the result of the negative impact of low 

tide on TWL. The spatial variation of ∆ℎ?,# is shown in Figure 10b. The backwater effects are limited to the low-lying 385 

section of Delaware River, i.e. the downstream of Trenton. Backwater propagation occurs along the main channel as well as 

some small contributing tributaries, for which the extent is determined by the corresponding elevation. The propagation 

extent is similar between the TWL and LFS simulations and is much smaller in the tide simulation. 

5.1.3 High discharge, SS and compound effect 

The LFS impact is further decomposed into high discharge, SS and their compound effect using the LFS simulation. We 390 

compared the variation of the event accumulated ∆𝑉 with respect to the event duration and peak water level among the 

drivers (Fig. 11). Regardless of the drivers, ∆𝑉 is mainly determined by the event duration. Its value linearly increases with 

the duration with high correlations. The peak water level provides the secondary effect. Higher peaks generally increase ∆𝑉, 

resulting in values above the fitted regression line. 

Our result indicates that the influence of each driver on 𝛥𝑉  is more dependent on the frequency and duration of the 395 

corresponding events rather than their extremes. For example, the FF events are more influential on 𝛥𝑉 because they are 

more frequent than the SS and compound flood events.  Also, the 𝛥𝑉 is higher in the FF and compound flood events than in 

the SS events because the latter lasts much shorter. A remarkable case occurred during Hurricane Irene when the highest 

𝛥𝑉	in our study period was produced by the combined long-lived FF and compound flood events (Fig. 7). Noticeably, the 

slope and correlation between 𝛥𝑉 and duration is the largest in the compound events, which means that the strength of the 400 
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compound events increases more rapidly with duration. In all, our driver comparison indicates that high discharge is the key 

driver of the backwaters in Delaware River due to the higher frequency and longer duration of the corresponding FF events. 

5.2 Trend analysis 

This section performs an analysis of annual trend on the LFS and decomposed drivers, as well as their influences on the 

backwater effects. The result reveals the impacts of SLR and increasing frequency of SS events during 1990-2019 in 405 

exacerbating the backwater effects. 

5.2.1 Trend in the backwater drivers 

The annual trend of the backwater drivers shows an increasing trend of SS due to both SLR and increasing SS frequency 

(Fig. 12), with p-value as 0.039 and 0.031, respectively, for annual duration and occurrence in the SS+SLR case (Table 1). 

When SLR is considered, the number of SS occurrence increases from ~1 to 2~5 times per year over the study period (Fig. 410 

12b). Accordingly, the annual duration of the SS event increases from ≤15 days (1990-2005) to >25 days over multiple 

years (2005-2019) and is up to over 50 days in 2016 (Fig. 12a). The SS peaks are also increased by SLR but do not present 

any trend (Fig. 12c). Neither do we notice clear trends from the FF events nor the compound events (Table 1). The annual 

characteristics of the FF events vary significantly between wet and dry years. In the very wet year of 1996, the duration of 

the FF events reaches 100 days with up to 6 events per year. The frequency of compound flood events is low, only occurring 415 

1~3 times per year between 2003 and 2012. 

Affected by the drivers of high discharge and SS, the LFS events show an increasing trend in both duration and frequency 

with p-value at 0.094 and 0.042, respectively. No clear trend is found in the LFS peaks (Table 1). The LFS trend is basically 

consistent with that of the SS events with a few exceptions in flood years (i.e., year 1996 and 1998) when the LFS events 

were caused by high discharge. Except for the flood years, the LFS occurrence is as low as one time per year in the 1990s 420 

and increases to 2∼6 times per year since 2003. Correspondingly, the LFS duration increases from ≤5 to 20∼40 days since 

2004. The increased trend in LFS is likely a result of SLR that leads to more frequent occurrences of the SS events. 

5.2.2 Trend in the backwater effects 

The annual trend of the backwater effects is analyzed for the different drivers (Table 1) in terms of the annually accumulated 

∆𝑉 (Fig. 13). The trend of ∆𝑉 is consistent with the event duration and frequency trends of the corresponding drivers. The 425 

SS and LFS induced backwater effects are increasing but no clear trends can be observed for the FF and compound flood 

induced backwater effects. The ∆V trends are significant in the SS+SLR, SS and LFS cases and insignificant in the FF and 

compound cases (Table 1). Our result also demonstrates the critical impact from high discharge. The resulting ∆𝑉 by FF over 

the flood years (e.g., year 1996) can be several times higher than the ∆𝑉 caused by the other drivers. This is likely due to the 

long duration of the FF events. Because SLR and intensified SS increased coastal backwaters in river channels, our analyses 430 



15 
 

call for better representations of the related processes in ESMs for predictive understanding of associated flood risks under 

climate change and effects on the water and biogeochemical cycles through land-river-ocean interactions and possible 

impacts on atmospheric processes. However, we caution attributing changes based on modeling and analysis of a 30-year 

period to climate change as internal climate variability and other anthropogenic effects likely also play important roles in the 

increasing sea level and storm surge frequency. 435 

6 Discussion 

Our study shows that using the diffusive wave method, large-scale river models configured on a coastal refined mesh are 

capable of reproducing backwater effects in low-lying river channels with appropriate downstream boundaries. The global 

unstructured mesh alleviates the computational burden in ESMs by relaxing the resolution in the inland and offshore regions 

to ~100km while embedding regions of “high” resolution of O(1km) near the river-ocean interface. Although the resolution 440 

is still not comparable to that used in local-scale models, the mesh is able to resolve the complex river networks near the 

coastline without having to merge multiple outlets into a single cell. The downstream boundary condition is critical for 

connecting the coastal and fluvial processes, transferring the water head energy upstream and thus simulating the backwater 

effects. The widely used diffusive wave method that uses the normal depth boundary and the more simplified kinematic 

wave method may be only applicable in high-gradient regions, as these methods do not incorporate any downstream 445 

information.  

As an important finding, this study revealed the crucial difference in flood drivers between two distinct coastal rivers (i.e., 

Susquehanna River vs. Delaware River), with the former connected to a wide ocean-like estuary and the latter connected to a 

narrow river-like estuary, which is usually ignored by ESMs. The difference is mainly caused by the effects of river 

geometry and estuary size on LFS which is a direct driver of backwaters. For an ocean-like estuary, such as Chesapeake Bay, 450 

river discharge from its drainage basins hardly affects the water level fluctuations of the estuary. But when a coastal river 

drains to a narrow estuary, its LFS would be driven by not only storm surge but also river discharge and their compounding. 

Further, the backwater effects created by high discharge and storm surge are different. While storm surge generates an 

upstream-propagated energy head, high discharge gradually builds up the water level of the receiving water body. The 

increased water level would slowly move upstream, attenuating the river stage fluctuation and flood waves. High discharge 455 

that presents a higher frequency and a longer duration can occur in close successions with storm surge during compound 

flooding, e.g., Hurricane Irene and Tropical Storm Lee, creating extended backwater effects. In all, we show that in addition 

to the conventional flood drivers, such as riverbed elevation and sea level, ESMs need to properly represent the flood drivers 

for small estuaries, such as river discharge. 

We demonstrated that the backwater effects are significant in the low-lying watersheds and have an increased trend over the 460 

recent 30 years. In Delaware River, the propagated backwaters account for up to 1.2 m increase in water depth and 1×108 m3 

increase in water volume per day during an extreme event. The effects could be several orders higher for larger river basins. 



16 
 

This increased flood risk will otherwise be underestimated if the backwater effects are not properly represented in ESMs. 

Furthermore, our simulation also shows the increased influence of climate change on backwaters, with SLR and more 

frequent storm surge increasing the strength of backwaters in the mid-Atlantic region. 465 

Noticeably, there are still a few limitations in the river model used in this study, which may introduce uncertainties to our 

simulations. First, as a large-scale river transport model, MOSART simplifies the channel cross-section as rectangular and 

trapezoidal when the water depth is below and above the river’s bankfull depth, respectively, partially due to lack of large-

scale river cross-section data (Li et al., 2013). This simplification may affect the accuracy of simulated water depth for rivers 

with very irregular channel cross-section. The river channel width and bankfull depth estimated from empirical formulations 470 

may introduce uncertainties. Even though such estimation achieves reasonable accuracy at local basins, more reliable river 

geometry data should be considered at least for regions wherever the data is available. While global river width datasets have 

been developed for rivers with width >90 m (Allen & Pavelsky, 2018; Yamazaki et al., 2014), the river bankfull depth may 

also be derived from high-resolution remote sensing data. However, it remains challenging to upscale the observed river 

geometry to model resolution given the river is resolution free (Liao et al., 2022). Second, the global runoff forcing may 475 

underestimate the event extremes, such as the discharge peak during Hurricane Irene, affecting the reliability of backwater 

quantifications during the corresponding event. As we target at generalizing the analyses to the global scale, the bias-

corrected global forcing that can capture extremes is desired. Third, we demonstrated that the direct impact of tide on the 

backwater effects is limited compared to LFS, but the quantification assumes that LFS and tide can be separated by 

removing tide from the total water level, ignoring the nonlinear interaction between tide and surge. In reality, as a dynamic 480 

component in Delaware Bay, the interaction between high tide and coastal surge may stimulate a further increase in the 

water level (Krien et al., 2017). Last but not least, because our simulation takes the in-situ observation as the boundary data, 

it does not account for the interaction between fluvial and coastal processes. The backwater effects are constrained by the 

prescribed boundary sea level. However, the river-ocean interface is a dynamic region that features complex multiscale 

processes. In the context of an intense storm, the upstream propagation of storm surge impedes river discharge, which in turn 485 

modulates the water level (Dykstra & Dzwonkowski, 2020). It remains unclear if this mutual interaction is critical in flood 

modeling and how it responds to sea level rise (Kulp & Strauss, 2019) and enhanced tidal dynamics (Talke & Jay, 2020) due 

to climate change. Thus, this study provides a basis for modeling coastal induced flooding in river basins. We aim to couple 

MOSART with the E3SM ocean model interactively in our next step for resolving the complex interactions at the river-

ocean interface and eventually couple all land-river-ocean processes within E3SM to improve predictive understanding of 490 

compound flooding through pluvial, fluvial and coastal processes (Xu et al., 2022).  

7 Conclusion 

This research assesses the capability of the global-scale MOSART river transport model to simulate the coastal backwater 

effects at the basin scale by imposing the observed water level at the downstream boundary and using a coastal refined 
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unstructured mesh. The simulation is evaluated at two major river basins of the densely populated mid-Atlantic region. 495 

MOSART shows a reasonable agreement with the observed river discharge in both rivers and captures the water level 

variations in the downstream section of Delaware River, indicating the model’s capability in representing the backwater 

effects. We performed numerical experiments and extracted extreme flood events to examine the contribution of various 

backwater drivers. Our analyses revealed the dependence of the backwater drivers on the river geometry and the river’s 

receiving water body. While storm surge is considered a dominant forcing, the impact of high discharge can be significant in 500 

a narrow river-like estuary, such as Delaware River, as the discharge modulates the low-frequency water level variations 

within the estuary. In addition, high discharge when occurring simultaneously with storm surge, creates strong compound 

flooding. The extreme impact of a compound event should be mainly attributed to the extended duration of the combined 

coastal and fluvial processes rather than extreme flood peaks. The trend analysis of the backwater drivers shows that the 

strength of backwaters in Delaware River has been increasing in the recent decades due to SLR and more frequent storm 505 

surge. In the future, we plan to extend the current work from the mid-Atlantic region to the global domain and refine the 

coastal mesh globally. A framework of two-way coupled river and ocean models will be established to understand the 

complex river-ocean interactions. 
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Figure 1: An overview of Susquehanna River Basin (SRB) and Delaware River Basin (DRB). This map is created using the free 
and open source QGIS on the world topographic map (ESRI, 2012). 
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 725 
Figure 2: (a) The global unstructured mesh of E3SM. (b) A magnified view of the mid-Atlantic region (orange rectangle in (a). (c) 

A magnified view near the mouths of Susquehanna River and Delaware River (orange rectangle in (b). The red rectangles in (b) 

and (c) represent the downstream section of Delaware River used for backwater propagation analysis. 

 

 730 
Figure 3: Decomposition of the drivers of backwater effects. TWL is total water level, LFS is low-frequency surge, and SS is storm 

surge. 
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Figure 4: The river discharge evaluation in SRB and DRB: (a) 𝒓𝟐 , (b) KGE, (c) hydrograph at USGS gauge 01463500, (d) 735 
hydrograph at USGS gauge 01578310. The triangles and the circles in (a) and (b) represent the USGS gauges in the main stem of 
Susquehanna River and Delaware River, respectively. 
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Figure 5: The 𝒓𝟐 and RMSE of the MOSART simulations at the 4 NOAA gauges. 740 

 

 
Figure 6: Comparison of daily-averaged simulated and observed water level at NOAA gauge 8546252. 

 

 745 
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Figure 7: The top panels are the three types of selected extreme events (SS, LFS, FF) overlaid on the corresponding time series of 
SS, LFS and discharge, represented by grey solid, dashed and dotted lines, respectively, for Hurricane Irene and Tropical Storm 
Lee (a) and Hurricane Sandy (b). The compound flood event is marked between the two black vertical lines. The bottom left panels 
are the riverbed elevation along the backwater propagation extent in Delaware River and the bottom right panels are ∆h (color 750 
shading) along the upstream distance and ∆V (black curve) derived from the MOSART simulations. 
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Figure 8: Scatter plot of ∆𝑽 against TWL in Susquehanna River (a) and Delaware River (b). Colored circles represent the 755 
corresponding river discharge (𝑸). The TWL and 𝑸 data are respectively obtained from gauges 8573364 and 01578310 for 
Susquehanna River, and from gauges 8546252 and 01463500 for Delaware River. The solid lines are the fitted linear regression 
under different discharge ranges. 
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 760 

Figure 9: The correlation coefficient (r) matrix of ∆𝑽 , 𝑸 and TWL in Susquehanna River (a) and Delaware River (b). 

 

 

Figure 10: (a) The along channel profiles of the maximum ∆h obtained using the TWL, SS and tide configurations. The river outlet 
is at x = 0 km. (b) The corresponding spatial map of the maximum ∆h over a downstream region of Trenton. This region is 765 
specified as the red rectangle in Figure 2. The black dots represent the Delaware River outlet. 
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Figure 11: Scatter plot of the accumulated ∆V against the event duration in days for the LFS events (a), the SS events (b), the FF 770 
events (c) and the compound flood events (d). The color represents the corresponding peak LFS. 
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 775 

Figure 12: The interannual variability of (a) the event annual duration, (b) the event occurrence and (c) the maximum peak value 
for different types of flood events. 



33 
 

 
Figure 13: Similar to Figure 12 but for the interannual variability of ∆𝑽. 

 780 

Table 1: The MK statistics of long-term trends in annual duration, occurrence, peak value, and ∆𝑽. 

  SS+SLR SS FF compound LFS 
Annual 

duration 

𝑍 2.064 0.809 0.794 -0.091 1.674 
p-value 0.039 0.419 0.427 0.928 0.094 

Occurrence 𝑍 2.157 -0.286 0.728 0.976 2.032 
p-value 0.031 0.775 0.467 0.329 0.042 

Peak value 𝑍 0.446 -0.986 0.361 0.968 0.950 
p-value 0.656 0.324 0.718 0.333 0.342 

∆𝑉 
𝑍 2.720 1.900 1.286 0.742 1.900 

p-value 0.007 0.057 0.199 0.458 0.057 

 


