
1 
 

The suitability of differentiable, learnable hydrologic models for 

ungauged regions and climate change impact assessment 
 

Dapeng Feng1, Hylke Beck2, Kathryn Lawson1 and Chaopeng Shen*,1 
1 Civil and Environmental Engineering, The Pennsylvania State University 5 
2 Joint Research Centre of the European Commission, Ispra, Italy 

Correspondence to: Chaopeng Shen (cshen@engr.psu.edu) 

 

Abstract. Differentiable, learnable process-based hydrologic models (abbreviated as δ or delta models) with regionalized 

parameterization pipelines were recently shown to provide daily streamflow prediction performance that closely approach 10 

state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic 

physical variables and guaranteed mass conservation. Due to their physical constraints, we hypothesize that they are suitable 

for making extrapolated predictions. Here, we ran experiments to test (1) their ability to extrapolate to regions far from 

streamflow gauges; and (2) their ability to make credible projections of long-term (decadal-scale) change trends. We evaluated 

the models based on daily hydrograph metrics (Nash-Sutcliffe model efficiency coefficient, etc.), as well as projected decadal 15 

streamflow trends. The results show that, for spatial interpolation (test in randomly sampled ungauged basins, or PUB), δ 

models had mixed comparisons with LSTM, presenting better trends for annual mean flow and high flow but slightly worse 

for low flow. For spatial extrapolation (test in regionally held out basins, or PUR, representing a highly data-scarce scenario), 

δ models started to surpass LSTM in daily hydrograph metrics, and its advantages in mean and high flow trends became more 

prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. δ 20 

models’ parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly 

data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-

source observations, δ models are strong candidates for regional and global scale hydrologic simulations for climate change 

impact assessment. 

 25 

1. Introduction 

Hydrologic models are essential tools to quantify the spatio-temporal dynamics of water resources in both data-dense and data-

sparse regions (Hrachowitz et al., 2013). The parameters of hydrologic models are typically calibrated or regionalized for 

regional applications (Beck et al., 2016), which requires streamflow data, while for global-scale applications models are often 

uncalibrated (Hattermann et al., 2017; Zaherpour et al., 2018), leading to large predictive uncertainty. Many regions across the 30 
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world, e.g., parts of South America, Africa, and Asia, suffer from a paucity of publicly available streamflow data (Hannah et 

al., 2011), which precludes calibration. Yet the water resources in many of these regions face severe pressures due to, among 

others, population expansion, environmental degradation, climate change (Boretti & Rosa, 2019), and extreme-weather-related 

disasters, e.g., floods (Ray et al., 2019) and heatwaves in India, and droughts in East Africa. Therefore it is important to better 

quantify the impacts of these pressures in these regions (Sivapalan, 2003) and estimate the future water cycle.  35 

 

There has been a surge of interest in deep learning (DL) models such as long short-term memory (LSTM) networks in 

hydrology due to their high predictive performance, yet DL is not without limitations. LSTMs have made tremendous progress 

in predicting a wide variety of variables including soil moisture (Fang et al., 2017; Liu et al., 2022; O & Orth, 2021), streamflow 

(Feng et al., 2020, 2021; Kratzert, Klotz, Herrnegger, et al., 2019), stream temperature (Qiu et al., 2021; Rahmani et al., 2021), 40 

and dissolved oxygen (Kim et al., 2021; Zhi et al., 2021), among others (Shen, 2018; Shen & Lawson, 2021). DL is able to 

harness the synergy between data points and thus thrives in a big data environment (Fang et al., 2022; Kratzert, Klotz, 

Herrnegger, et al., 2019; Tsai et al., 2021). However, DL models are still difficult to interpret and do not predict variables 

without extensive observations. In addition, it is challenging to answer specific scientific questions using DL models, e.g., 

“what is the relationship between variable soil moisture and runoff?”, as LSTM’s internal relationships may not be 45 

straightforwardly interpretable by humans. 

 

Large-scale predictions for ungauged basins (PUB) (Figure 1 left) or ungauged regions (PUR) (Figure 1 right) challenge the 

ability of a model and its parameterization schemes to generalize in space. For both kinds of tests, regionalized LSTM models 

hold the performance record (Feng et al., 2021; Kratzert, Klotz, Herrnegger, et al., 2019). While no clear definition has been 50 

universally given for PUB, these PUB tests are typically conducted by randomly holding out basins for testing. As such, PUB 

can be considered spatial “interpolation”, as there will always be training gauges surrounding the test basins. While LSTM’s 

performance declines from temporal to PUB tests, it obtains better results than established process-based models calibrated on 

the test basins (Feng et al., 2021; Kratzert, Klotz, Herrnegger, et al., 2019). However, it is uncertain if process-based models’ 

poorer performance is simply due to structural deficiencies and if they would experience similar declines for PUB. Stepping 55 

up in difficulty, prediction for ungauged regions (PUR) refers to tests where a large region is entirely held out for testing. As 

such, PUR better represents the case of spatial “extrapolation” encountered in global hydrologic assessment (Feng et al., 2021). 

For PUR, LSTM’s performance further declines significantly (Feng et al., 2021). No systematic PUR tests have been done for 

process-based models, however, perhaps because there has been a serious underappreciation of the difference between PUB 

and PUR and the risk of model failures due to large data gaps. 60 
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Figure 1. A comparison of spatial generalization tests: (left) prediction in ungauged basin (PUB) and (right) prediction in ungauged 
region (PUR) tests. The black dots are the training basins while the red stars are the test basins for one fold. In the study we ran 
cross validation to obtain the spatial out-of-sample predictions for basins in the CAMELS dataset.  65 

 

Recently, a new class of models adopting differentiable programming (the computing paradigm where the gradient of each 

operation is tracked) (Baydin et al., 2018) has shown great promise (Innes et al., 2019; Tsai et al., 2021). Regardless of the 

computational platforms chosen for them, differentiable models mix physical process descriptions with neural networks (NNs), 

which serve as learnable elements for parts of the model pipeline. The paradigm supports backpropagation and neural-network-70 

style end-to-end training on big data so no ground-truth data is required for the direct outputs of the neural network. The first 

demonstration in geosciences was a method we called differentiable parameter learning (dPL), which uses NNs to provide 

parameterization to process-based models (or their differentiable surrogate models) (Tsai et al., 2021). Not only did the work 

propose a novel large-scale parameterization paradigm, it further uncovered the benefits of big data: we gain stronger 

optimization results, acquire parameters which are more spatially generalizable and physically coherent (in terms of 75 

uncalibrated variables), and save orders of magnitude in computational power. Only a framework that can assimilate big data, 

such as a differentiable one, could fully leverage these benefits. However, dPL is still limited by the presence of flawed 

structures in most existing process-based models, and some performance degradation is further introduced when a surrogate 

model is used. As a result, with a LSTM-based surrogate for the VIC hydrologic model, dPL’s performance is still significantly 

lower than that of LSTM. One valuable avenue to boost performance is to append neural networks as a postprocessor to the 80 

physics-based model (Frame et al., 2021; Jiang et al., 2020), but this is not the path we choose here. 

 

Strikingly, differentiable models can be elevated to approach the performance level of state-of-the-art LSTM models with 

postprocessors (Feng et al., 2022). We obtained a set of differentiable, learnable process-based models, which we call δ models, 

by updating model structures based on the conceptual hydrologic model HBV. For the same CAMELS benchmark, we obtained 85 

a median NSE of 0.715 for the NLDAS forcing data, which is already very similar to LSTM (0.720). Furthermore, we can 

now output diagnostic physical fluxes and states such as baseflow, evapotranspiration, water storage, and soil moisture. 

Differentiable models can thus trade a small amount of performance metric for the full suite of physical variables, process 

clarity, and the possibility to learn science from data.  

 90 
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There are two perspectives with which we can view δ models: they can be regarded as deep networks whose learnable 

functional space is restricted to the subspace permitted by the process-based backbone; or they can be viewed as process-based 

models with learnable and adaptable components provided by NNs. The flow of information from inputs to outputs is regulated. 

For example, in the setup in Feng et al. (2022), the parameterization network can only influence the groundwater flow process 

via influencing the parameters (but not the flux calculation itself). It does not allow information mixing at all calculation steps 95 

(as opposed to LSTM, in which most steps are full matrix multiplications that mix information between different channels). 

For another example, because mass balance is observed, a parameter leading to larger annual mean evapotranspiration will 

necessarily reduce long-term streamflow output. Mass balance is the primary connective tissue between different hydrologic 

stores and fluxes. This important constraint can lead to tradeoffs between processes if there are errors with inputs like 

precipitation, but it imposes a stronger constraint on the overall behavior of the model. Nevertheless, Feng et al. (2022) was 100 

conducted only for temporal tests (training on some basins and testing on those same basins but for a different time period) 

but not for PUB or PUR, which may show a different picture. For these new types of models, the generalizability of these 

models under varied data density scenarios is highly uncertain. Before we use those models for the purpose of learning 

knowledge, we seek to understand their ability to generalize. 

 105 

Our main research question in this paper is whether differentiable process-based models can generalize well in space and 

provide reliable large-scale hydrologic estimates in data-scarce regions. Our hypothesis is that, since the differentiable models 

have stronger structural constraints, they should exhibit some advantages in extrapolation, both in space and time, compared 

to LSTM and existing process-based models. An implicit hypothesis is that the relationships learned by the parameterization 

component are general, so they can be transferred to untrained regions. If these hypotheses are true, it would make this category 110 

of models appropriate for global hydrologic modeling, which is desirable considering they can also provide a full narrative of 

the hydrologic processes, fluxes and states. Since δ models have similar performance to LSTM in temporal tests, they represent 

a chance to truly test the value of model structures and the impact of extrapolation. In this paper, we designed both PUB and 

PUR experiments. Furthermore, apart from typical metrics calculated on the daily hydrographs, we also evaluated the 

simulated trends of mean annual flow and different flow regimes, which are critical aspects for climate change impact 115 

assessments but have not been adequately assessed before. 

2. Data and Methods 

2.1. Differentiable models 

As an overview, a differentiable model implements a process-based model as an evolvable backbone on a differentiable 

computing platform such as PyTorch, Tensorflow, or Julia, and uses intermingled neural networks (NNs) to provide 120 

parameterization (meaning a way to infer parameters for the model using raw information) or process enhancement. In our 
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setup, the parameterization and processes are learned from all the available data using a whole-domain loss function, therefore 

supporting regionalized PUB applications and even out-of-training-region (PUR) applications.  

 

For the process-based backbone, we employed the Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak 125 

& Habib, 2010; Beck, Pan, et al., 2020; Bergström, 1976, 1992; Seibert & Vis, 2012), a simple, bucket-type conceptual 

hydrologic model. HBV has state variables like snow storage, soil water, and subsurface storage, and can simulate flux 

variables like evapotranspiration (ET), recharge, surface runoff, shallow subsurface flow, and groundwater flow. The 

parameters of HBV are learned from basin characteristics by a DL network just as in dPL (Figure 2). Here, we made two 

changes to the HBV structure. The first modification was to increase the number of parallel storage components of the HBV 130 

model (16 used here), to represent the heterogeneity within basins. The state and flux variables were calculated as the average 

of different components, and the parameters of all these components are learned from the neural network gA. The second 

modifcation was that, for some tested versions of the model, we turned some static parameters of HBV into time-dependent 

parameters with a different value for each day (we call this dynamic parameterization, or DP). For example, we set the runoff 

curve shape coefficient parameter to be time-dependent (βt) as explained in Appendix B. The dynamic parameters are also 135 

learned by the neural network gA, from basin characteristics and climate forcings. More details about differentiable models 

can be found in our previous study (Feng et al., 2022).  

 

2.2. The comparison models 

We compared the performance of δ models with a pure LSTM streamflow model for spatially out-of-sample predictions. The 140 

regionalized LSTM model was based on Feng et al. (2020), taking meteorological forcings and basin attributes (detailed below) 

as inputs. The hyperparameters of both LSTM and δ models were manually tuned in the previous studies and retained in this 

study. The loss function was calculated as root-mean-square error (RMSE) for a minibatch of basins with a one year look-back 

period, but across many iterations the training will go through the entire training dataset. Same as Feng et al., (2022), the 

RMSE was calculated on both the unnormalized predictions and transformed predictions to improve low flow representation 145 

and a loss with weighted combination of two parts are used for the dPL models, while the RMSE was calculated on the 

normalized predictions for the LSTM model since the transformation to represent low flow has been applied in the data 

preprocessing. Each training instance had two years’ worth of meteorological forcings, but the first year was used as a warmup 

period so the loss was only calculated on the subsequent one year of simulation. We also used streamflow simulations from 

the multiscale parameter regionalization (MPR) scheme applied to the mHM hydrologic model (Rakovec et al., 2019) to 150 

represent a traditional regionalized hydrologic model, but only the temporal test is available for this model.  
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Figure 2. The flow diagram of δ models with HBV as the backbone. An LSTM unit estimates the parameters for the differentiable 155 
HBV, which has snow, evapotranspiration, surface runoff, shallow subsurface, and deep groundwater reservoirs. Outflows are 
released from different compartments with a linear formula with proportionality parameters (K’s). gA is the parameterization 
network with dynamic input x and static input attributes A. The buckets represent storage mass storage states (S’s); θ refers to all 
HBV parameters. The model δ has static parameters while γ and β are two of the parameters. δ(βt,γt) sets γ and β as time-dependent 
parameters, with a new value each day. Importantly, there are no intermediate target variables to supervise the neural networks -- 160 
the whole framework is trained on streamflow as the only loss, in an end-to-end fashion. For simplicity, we did not use the optional 
NN replacement in this study, but the high performance is retained. Abbreviations: P -- precipitation; T -- temperature; Ep -- 
potential evapotranspiration; Q0 -- quick flow; Q1 -- shallow subsurface flow; Q2 -- baseflow; Ea -- actual evapotranspiration; Sp -- 
snowpack water storage; Ss -- soil water storage; Suz -- upper subsurface zone water storage; Slz -- lower subsurface zone water 
storage; L -- upper subsurface threshold for quick flow.  165 

 

2.3. Data 

We used the CAMELS dataset (Addor et al., 2017a, 2017b) which includes 671 basins across the contiguous United States 

(CONUS) to run the experiments. The Maurer et al. (2002) forcing was selected from the three forcings available in CAMELS. 

To train regionalized models for dPL and LSTM, we used 35 attributes as shown in Table A1 in the Appendix A. For the 170 

LSTM streamflow model, the attribute data were directly concatenated with the forcings and provided as inputs. With the δ 

models, the neural network gA takes attributes and historical forcing data as inputs, and outputs parameters for the evolved 

HBV model. The LSTM model takes 5 forcing variables including precipitation, temperature, solar radiation, vapor pressure, 

and day length, while the HBV model only takes precipitation (P), temperature (T), and potential evapotranspiration (Ep). We 

used the temperature-based Hargreaves (1994) method to calculate Ep and the daily Maurer minimum and maximum 175 

temperature for CAMELS basins were acquired from Kratzert et al., (2019). The training target for all the models was 

streamflow observations. We trained all models on all 671 basins in CAMELS and reported the test performance on a widely 
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used 531-basin subset, which excludes some basins due to unclear watershed boundaries. The results of some previous 

regionalized modeling efforts are also used to provide benchmark context (Kratzert, Klotz, Shalev, et al., 2019; Rakovec et al., 

2019). For the comparison of evapotranspiration, we used a product derived from the Moderate Resolution Imaging 180 

Spectroradiometer (MODIS) satellite (Mu et al., 2013). 

  

2.4. PUB and PUR experiments 

As mentioned earlier, we designed two sets of experiments to benchmark the models: predictions in ungauged basins (PUB) 

and predictions in large ungauged regions (PUR) (illustrated in Figure 1). For PUB experiments, we randomly divided the 185 

whole CAMELS basins into 10 groups, trained the models on 9 groups, and tested it on the one group held out. By running 

this experiment for 10 rounds, we can get the out-of-sample PUB result for all basins. For the PUR experiment, we divided 

the whole CONUS into 7 continuous regions (as shown in Figure A1 in Appendix B), trained the model on 6 regions, and 

tested it on the holdout region. We ran the experiment 7 times so that each region could serve as the test region once. The study 

period was from October 1, 1989, to September 30, 1999. These spatial generalization tests were done in the same time period 190 

as the training samples (but for different basins).  

 

From the daily hydrograph, we calculated the Nash-Sutcliffe (NSE) (Nash & Sutcliffe, 1970) and Kling-Gupta (KGE) (Gupta 

et al., 2009) model efficiency coefficients as performance metrics. NSE characterizes the variance in the observations explained 

by the simulation and KGE accounts for correlation, variability bias, and mean bias. We also reported the percent bias of the 195 

top 2% peak flow range (FHV) and the percent bias of the bottom 30% low flow range (FLV) (Yilmaz et al., 2008), which 

characterizes peak flows and baseflow, respectively.  

 

We also evaluated the multi-year trend for streamflow values at different percentiles (Q98, Q50, Q10) as well as the mean annual 

flow. Q98, Q50, and Q10 represent the peak flow, median flow, and low flow value, respectively. To this end, we calculated for 200 

each year, one data point corresponding to a flow percentile. Then, Sen’s slope estimator (Sen, 1968) for the trend of that flow 

percentile was calculated for the 10 years in the test period and compared with the equivalent slope for the observations. Since 

streamflow records contain missing values, we only considered years with <61(about two months) daily missing values (not 

necessarily consecutive) for this purpose. 

3. Results and Discussion 205 

In this section, we first compared LSTM and the differentiable models (and, when available, the traditional regionalized model) 

for PUB and PUR, in terms of both the daily hydrograph metrics (NSE, KGE, FLV, and FHV) and decadal-scale trends. We 

then attempted to examine why δ models had robust performance and how well they could predict untrained variables 
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(evapotranspiration). We use “δ models” to generically refer to the whole class of differentiable models with evolved HBV, 

while we use δ, δ(βt) or δ(βt,γt) to refer to particular models with static, one-parameter dynamic and two-parameter dynamic 210 

parameterization, respectively. The meanings of β and γ are described in the Appendix B. 

3.1. The randomized PUB test 

For the randomized PUB test, which represents a data-dense scenario (Figure 1a), the δ models approached the performance 

of the LSTM in terms of median NSE and KGE but with less spread in NSE and KGE, indicating robustness in the predictions. 

The δ(βt,γt) model’s PUB test produced median NSEs of 0.64 (Figure 3), only slightly below the LSTM median NSE (0.66) 215 

and considerably higher than the MPR+mHM NSE (0.53, in sample -- all sites included in training), similar to our previous 

temporal tests (Feng et al., 2022). For KGE, δ(βt) and δ(βt,γt) model had a median of 0.66 and 0.65, respectively, which were 

the same as LSTM, but also with a smaller spread. It is worthwhile to note, however, this performance is for a PUB test with 

more holdout data (lower k fold) and less computation, which degrades the performance compared to the higher metrics we 

reported earlier (Feng et al., 2021). LSTM had lower errors for FLV and FHV than the δ models, which is likely because 220 

LSTM is not subject to physical constraints and therefore possesses more flexibility in terms of base and peak flow generation 

than HBV. LSTM does not obey mass balances and may potentially learn biases in precipitation (Beck, Wood, et al., 2020) 

and other forcing terms and make internal corrections for them. Such biases could cause issues for models honoring mass 

balances, but the impact of precipitation bias is under debate (Frame et al., 2022). Overall, LSTM represents a high benchmark 

and the similar performance and smaller spread of the δ models are highly encouraging. 225 

 

In terms of the projection of future trends, δ models again demonstrated high competitiveness, showing mixed comparisons to 

LSTM (Figure 4). Both LSTM and δ models accurately captured the trends in annual mean flow and high-flow bands 

(R2>0.80), but both struggled somewhat with low flow Q10 (trend evaluated in the annual 10th-percentile flow, R2<0.40). 

δ(βt,γt) superseded LSTM in terms of annual mean flow and 98 percentile peak flow, while LSTM had a small advantage for 230 

Q50 (trend evaluated in the annual median flow) and Q10. Overall, just as with LSTM, δ models seem appropriate for long-term 

trend predictions in the data-dense PUB scenario. They even have advantages over LSTM with respect to assessing future risks 

of flooding. 
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 235 
Figure 3. Performance of simulated daily hydrographs from the models for the randomized PUB experiment. Each box summarizes 
531 values (one for each CAMELS basin) obtained in a cross-validation manner. All models except MPR+mHM (noted “in-sample”, 
which means all sites are included in the training set) were evaluated out-of-sample spatially, i.e. they were trained on some basins 
and tested on other holdout basins. For MPR+mHM (Rakovec et al., 2019), all test basins were included in the training dataset. NSE 
is the Nash Sutcliffe model efficiency coefficient, KGE is the Kling Gupta efficiency, FLV is the low flow bias, and FHV is the high 240 
flow bias. δ and δ(βt,γt) (or δ(βt)) are respectively the differentiable, learnable HBV model without and with dynamical parameters. 
The horizontal line in each box represents the median and the bottom and top of the box represent the first and third quantiles, 
respectively, while the whiskers represent the minimum and maximum values, respectively. The PUB was run in a less 
computationally-expensive training experiment to be comparable to other models and also to reduce computational demand: we 
used only 10 years of training period, did not use an ensemble, and used a lower k-fold. When we ran the experiments using the 245 
same setting as Kratzert et al. (2019), our LSTM was able to match the PUB performance in their work (Feng et al., 2021). 

 

The challenge with low flow projection for all models is probably attributable to multiple factors: (i) a lack of reliable 

information on subsurface hydraulic properties which hampers all models; (ii) the inherent challenge with baseflow trends --- 

the magnitude of the Q10 change trends is in the range of -0.5 to 1 m3/s/year while that for the annual mean flow is -2 to 10 250 

m3/s/year. Even a small error in absolute terms can result in a large decrease in R2; (iii) inadequacy of the low-flow modules -

-- the linear reservoir formulation in the present HBV groundwater modules may not capture the real-world dynamics, while 

even LSTM may not have the memory that is long enough to represent a gentle multi-year baseflow trend change; and (iv) the 

greater impact of human activities such as reservoir operations on low flow (Döll et al., 2009; Suen & Eheart, 2006). (v) the 

greater sensitivity of the training loss function to high flows than low flows due to the difference in their magnitudes. High 255 

flows are direct reflections of recent precipitation events in the basin while low flows are under large impacts of the geological 

system.  
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For completeness, we also evaluated the trend for the temporal tests (trained and tested on the same basins but different time 

periods) (Figure 5). For the temporal test, the model δ’s Q98 trends (0.88) are as accurate as those of LSTM for high flows 260 

(0.87), but LSTM outperformed δ models for the median and low flows (Q50 and Q10). δ(βt,γt) follow closely behind. This test, 

which excluded the impact of spatial generalization, suggests δ models’ surface runoff routine has the ability to transform 

long-term forcing changes into the correct streamflow changes, but the current groundwater module may be suboptimal (or, 

stated in another way, it loses information). Also, compared to LSTM,  δ models are more subject to trade-offs due to 

maintaining mass balances and thus could be trained to put more focus on the peaks of the hydrograph while sacrificing the 265 

low flow end.  

 

Both LSTM and δ models surpassed MPR+mHm in the temporal test, by varying extents, for all flow percentiles, which 

demonstrated the potential from adaptive, learnable models. MPR+mHM’s high flow (R2=0.69) and median flow (R2=0.63) 

trends lagged noticeably behind while the difference in the 10-th percentile flow was smaller. It was previously shown in Feng 270 

et al., (2022) (thus omitted here) that median NSEs of MPR+mHm, δ(βt,γt) and LSTM were 0.53, 0.715, and 0.722, 

respectively. Compared to the learnable models, MPR+mHM tends to underestimate the wetting trend for the high flow and 

overestimate the wetting trend for the low flow. The fact that the annual mean flow trend is correct despite different flow 

percentiles getting lower metrics suggests in MPR+mHM some rainfall input was released from the wrong compartments. 

Note that the temporal test is the only comparison that we can carry out with existing process-based hydrologic models. 275 

Common benchmark problems certainly help the community understand the advantages and disadvantages of each model 

(Shen et al., 2018) and a PUB or PUR experiments from existing models would facilitate such comparisons.  

 

 

 280 
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Figure 4. Decadal trends (m3/s/year) of flow for different flow percentiles for the randomized PUB cross-validation experiment, as 285 
compared to the observed trends. Q10, Q50 and Q98 mean the trends were evaluated in the annual 10th-, 50th- and 98th- percentile 
flows, respectively. For each flow percentile, a corresponding value was extracted from each year’s daily data and Sen’s slope was 
estimated between hydrologic years 1989 and 1999.  

 

 290 

 

 

https://doi.org/10.5194/hess-2022-245
Preprint. Discussion started: 8 August 2022
c© Author(s) 2022. CC BY 4.0 License.



12 
 

 
Figure 5. Observed vs. simulated decadal trends (m3/s/year) of streamflow for the temporal test for 447 basins where MPR+mHM 
has predictions (all models trained from 1999 to 2008 and tested from 1989 to 1999 of hydrologic years on the same basins). We 295 
could only compare the trends with an existing process-based model with a parameter regionalization scheme on the temporal test 
because we did not have their systematic PUB results on the same dataset. 
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3.2. The region-based PUR test 

For the regional holdout test (PUR), surprisingly, δ models moderately outperformed LSTM in terms of the daily hydrograph 300 

metrics (KGE, NSE, and FHV) and again had smaller spreads in these metrics (Figure 6). The LSTM performance dropped 

substantially from PUB to PUR, while the δ model performance dropped less. The median NSE values for LSTM, δ, and 

δ(βt,γt) models were 0.56, 0.57 and 0.59, respectively, and the corresponding KGE values were 0.49, 0.58 and 0.61, 

respectively. We see that for the low flow dynamics, δ(βt,γt) had a slightly smaller low flow bias (FLV). For high flow, δ 

models still had negative biases but they were smaller than those of LSTM. 305 

 

 
Figure 6. Same as Figure 3 but for the regional holdout (PUR) test. Each box summarizes the metrics of 531 basins obtained in a 
regional cross-validation fashion. We see clear outperformance of LSTM by the δ models for these daily hydrograph metrics (NSE, 
KGE, and FHV). 310 

 

The decadal flow trends showed a stronger contrast -- while LSTM’s trend metrics declined noticeably from PUB to PUR, the 

δ and δt models’ trend accuracy barely budged. For the annual mean flow, the points for δ(βt,γt) tightly surrounded the ideal 1-

to-1 line and correctly captured the basins with strong wetting trends toward the higher end of the plot. In contrast, LSTM 

showed an underestimation bias and a tendency to plateau for the wetting basins. The same pattern is obvious for the high flow 315 

(Q98). We previously also noticed such a flattening tendency in multi-year soil moisture trend projection (see Figure 9 in Fang 

et al., (2019)), although there the model was trained on satellite data which could also have played a role. LSTM’s R2 for 

annual mean discharge dropped from 0.82 for PUB to 0.72 for PUR, but R2 remained at 0.88 for δ(βt,γt). LSTM’s R2 for high 

flow (Q98) trends dropped significantly, from 0.70 for PUB to 0.55 for PUR, whereas this metric remained around 0.77 for the 
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δ models. The results highlight the δ models’ robust ability to generalize in space, possibly due to the simple physics built into 320 

the model. 

 

 
Figure 7. Same as Figure 4 but for the regional holdout (PUR) test. δ models outperformed LSTM for the trends (m3/s/year) of mean 
annual flow and the high flow regime. 325 

 

 

What makes δ models more robust than LSTM for PUR, especially in terms of high flow and mean annual flow? As indicated 

earlier, δ models can be considered as machine learning models that are restricted to a subspace allowable by the backbone 
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structure. There are two structural constraints: (i) the static attributes can only influence the model via fixed interfaces (model 330 

parameters); and (ii) the whole system can only simulate flow as permitted by the backbone model, HBV. Hence, we can force 

the parameterization to learn a simpler and more generic mapping relationship, and when it succeeds, the relationship could 

be more transferable than that from LSTM, which mixes information from all variables in most steps.  

 

The δ model-based parameter maps reveal that the in-sample, PUB, and PUR models all produced similar overall parameter 335 

patterns (Figure 8 -- for PUB and PUR, these parameters were generated when the basins were used as the test basins). Between 

in-sample and PUB, most of the points had similar colors, except for a few isolated basins (e.g., some basins in New Mexico). 

Between PUB and PUR, there were more regional differences (e.g., in the Dakotas, North Carolina, and Florida), but the 

overall CONUS-scale patterns were still similar. Recall that (i) these parameters were estimated by the parameter network gA, 

which was trained on streamflow, and there are no ground-truth values for the parameters; and (ii) in the PUR experiments, a 340 

large region was held out. Despite these strong perturbations to the training data, such parameter stability under PUB is 

impressive. This stability is part of the reason for the mild performance drop under PUR. Had we used a basin-by-basin 

parameter calibration approach, the parameter values would have been much more stochastic and interspersed (similar to 

Figure 6b in Tsai et al. (2021)).  

 345 

We note that δ models found advantages in the annual mean flow and high flow regimes rather than the low flow regime for 

the PUR test. As described above, we attribute the advantage in high flow to learning a more generalizable mapping between 

raw attributes and runoff parameters. For the low flow component, the δ models were close to the LSTM for performance in 

PUR and PUB but were outperformed by the LSTM for the temporal tests. We hypothesize that this was because the 

groundwater module inherited from the HBV model, which is based on a simple linear reservoir, cannot adequately represent 350 

long-term groundwater storage changes. This part of the model will require additional structural changes, e.g., by adopting 

nonlinearity (Seibert & Vis, 2012) or considering feedback between layers in the groundwater modules. Further, due to the 

guaranteed mass balance, the δ models face more tension (or trade-offs) between the low and high flow regimes during training. 

The peak flow part tends to receive more attention due to its larger values. Because pure LSTM models do not guarantee the 

conservation of mass, they are subject to fewer trade-offs and are more likely to capture both high and low flows. We believe 355 

future work can further improve the groundwater representation by considering better topographic distributions. 
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Figure 8. Parameter maps for the β parameter of the HBV model for (a) the in-sample temporal test; (b) PUB; and (c) PUR. For 
PUB and PUR, all the parameters were produced from cross-validation experiments when the sites were used as test sites and were 360 
not included in training. With other conditions being the same, higher β yields less runoff, but other parameters such as the 
maximum soil water storage also influence runoff. For simplicity, this parameter is generated from a δ model without dynamical 
parameterization and is the output of the parameterization network (gA). Again, there is no ground truth parameter to supervise gA. 

 

3.3. The impacts of extrapolation on evapotranspiration 365 

Spatial interpolation and extrapolation seemed to have a moderate impact on ET seasonality and muted impact on annual mean 

ET (Figure 9). For δ(γt, βt), from temporal tests to PUB and then PUR, the median correlation and RMSE between simulated 
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ET and ET from the MODIS satellite product didn’t vary much, around 0.84 and 6.4 mm/8day, respectively. The impact of 

extrapolation on ET was more muted compared to streamflow. Understandably, ET is controlled by the energy input and 

physics-based calculations, and thus the models cannot deviate too much from each other.  370 

 

Moreover, the dynamic parameterization (DP) models, δ(γt, βt) and δ(βt), were better than static parameter models in all 

comparable cases (temporal test, PUB, or PUR). The decline due to spatial interpolation or extrapolation was minimal. Even 

for the most adverse case, i.e., PUR, δ(γt, βt) provided a high-quality ET seasonality as compared to MODIS (median 

correlation of 0.84) and low RMSE. It appears that DP indeed captured missing dynamics in data, possibly attributable to long-375 

term water storage and vegetation dynamics, and presented “better models for the right reasons”.  

 

 
Figure 9. Comparison of the agreement of simulated ET and the MODIS satellite product for different models under the temporal 
test, PUB and PUR scenarios using two different metrics - (a) correlation and (b) root-mean-square error (RMSE). All models were 380 
trained only with streamflow as the target.  

 

3.3. Further discussion 

For all cases tested and for both streamflow and ET, the model with dynamical parameterization (DP), δ(γt, βt), had better 

generalization than the δ models without DP. In theory, the model with DP has more flexibility, and, correspondingly, we had 385 

expected DP to be more overfitted in some cases. However, the results showed δ(γt, βt) to be comparable or slightly better in 
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most cases (either trends or NSE/KGE) than δ and δ(βt), thus the expected overfitting did not occur. Although the LSTM-based 

parameterization unit gA has a large amount of weights, it can only influence the computation through restricted interfaces (the 

parameters). In contrast, the full LSTM model we tested allows attributes to influence all steps of the calculations. The fact 

that δ(γt, βt) was more generalizable also suggests that whether the model will overfit or not depends on the way the 390 

computation is regulated, rather than simply the number of weights. It seems DP may have enabled the learning of some true 

processes that are missing from HBV, possibly related to deep soil water storage and/or vegetation dynamics (Feng et al., 

2022). 

 

While not directly tested here, it is easy to imagine that in the future we can constrain the δ models using multiple sources of 395 

observations. So far, the simulation quality seems consistent between streamflow and ET, e.g., δ(γt, βt) is better than δ in 

streamflow (NSE/KGE) and also ET. This was not always true traditionally due to equifinality (Beven, 2006), and it means a 

better conditioning of one of these variables could have positive impacts on other variables. Over the globe, while gauged 

basins are limited, there are many sources of information on soil moisture (ESA, 2022; NSIDC, 2022; Wanders et al., 2014), 

water storage (Eicker et al., 2014; Landerer et al., 2020), in-situ measurements of ET (LBNL, 2022; Velpuri et al., 2013), snow 400 

cover (Duethmann et al., 2014), and other measurements that provide additional opportunities for learning. 

4. Conclusions 

We demonstrated the high competitiveness of differentiable, learnable hydrologic models (δ models) for both spatial 

interpolation (PUB) and extrapolation (PUR). Evidence for such high competitiveness are provided in terms of daily 

hydrograph metrics including NSE and KGE and in terms of decadal-scale trends, which are of particular importance for 405 

climate change impact assessments. For the daily hydrograph metrics, the δ models closely approached the LSTM model in 

the PUB test (while showing less spread) and outperformed the LSTM model in the PUR test. For the decadal-scale trends, 

the δ models outperformed the LSTM model for the PUB test and more noticeably in the PUR tests, especially for the annual 

mean flow and high flows, although LSTM still fared better for the temporal (in-sample) test. In the temporal test, both LSTM 

and δ models surpassed an existing process-based model to varying extents for different flow percentiles, indicating better 410 

rainfall-runoff dynamics.  

 

Out of the variants of differentiable models tested, δ(γt, βt) stood out for having the best overall test performance, attesting to 

the strength of the structural constraints. Even though its structure is more complex, it was not more overfitted than other 

models. It also showed markedly better ET seasonality, which barely deteriorated in PUB or PUR scenarios, than δ or δ(βt). 415 

As δ models simulate a wide variety of variables, they stand to benefit from assimilating multiple data sources. The need for 

additional memory units (in the LSTM that infers dynamical parameters) suggests that there is still significant room for 

structural improvement of the backbone model (HBV).  
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While LSTM models have achieved monumental advances, the δ models combine the fundamental strength of neural network 420 

learning with an interpretable, physics-based backbone to provide more constraints and better interpretability. The training of 

the δ models resulted in remarkably stable parameter fields despite large differences in training datasets (temporal test vs. PUB 

vs. PUR). δ models are not only reliable candidates for global climate change impact assessment but can also highlight potential 

deficiencies in current process-based model structures (in the case of HBV, in the representations of vegetation and deep 

subsurface water storage). δ models can thus be used as a guide to future improvements of the model mechanisms and what 425 

we learn from δ models can in fact be ported to traditional process-based models. Lastly, we clarify that this conclusion does 

not mean LSTM or existing models are not suitable for global applications. As one can see, LSTM remained a ferocious 

competitor for both PUB and PUR and existing models also presented decent trend metrics. We call for more benchmarking 

on large datasets for different scenarios such as PUB, PUR, and more variables. 
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Appendix A. 

Attribute variables Description Unit 

p_mean Mean daily precipitation mm/day 

pet_mean Mean daily PET mm/day 

p_seasonality Seasonality and timing of precipitation - 

frac_snow Fraction of precipitation falling as snow - 

Table A1 The attribute variables used in this study for regionalized models  
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aridity PET/P - 

high_prec_freq Frequency of high precipitation days days/yr 

high_prec_dur Average duration of high precipitation events days 

low_prec_freq Frequency of dry days days/yr 

low_prec_dur Average duration of dry periods days 

elev_mean Catchment mean elevation m 

slope_mean Catchment mean slope m/km 

area_gages2 Catchment area (GAGESII estimate) km2 

frac_forest Forest fraction - 

lai_max Maximum monthly mean of the leaf area index - 

lai_diff Difference between the maximum and minimum monthly mean 

of the leaf area index 

- 

gvf_max Maximum monthly mean of the green vegetation  - 

gvf_diff Difference between the maximum and minimum monthly mean 

of the green vegetation fraction 

- 
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dom_land_cover_frac Fraction of the catchment area associated with the dominant land 

cover 

- 

dom_land_cover Dominant land cover type - 

root_depth_50 Root depth at 50th percentiles m 

soil_depth_pelletier Depth to bedrock m 

soil_depth_statgso Soil depth  m 

soil_porosity Volumetric soil porosity  - 

soil_conductivity Saturated hydraulic conductivity  cm/hr 

max_water_content Maximum water content  m 

sand_frac Sand fraction % 

silt_frac Silt fraction % 

clay_frac Clay fraction % 

geol_class_1st Most common geologic class in the catchment  - 

geol_class_1st_frac Fraction of the catchment area associated with its most common 

geologic class 

- 

geol_class_2nd Second most common geologic class in the catchment - 
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geol_class_2nd_frac Fraction of the catchment area associated with its 2nd most 

common geologic class 

- 

carbonate_rocks_frac Fraction of the catchment area as carbonate sedimentary rocks - 

geol_porosity Subsurface porosity - 

geol_permeability Subsurface permeability m2 

Appendix B. 

Here we describe the equations related to the parameters β and γ: 

 440 

Peff = min{(Ss/θFC)β, 1}  * (Pr+Isnow)  

Ea = min{[Ss/(θFCθLP)]γ, 1} * Ep  

 

Here Peff represents the effective rainfall to produce runoff, Pr represents the rainfall, Isnow represents the snowmelt infiltration 

to soil, Ss represents the surface soil water, Ep represents the potential evapotranspiration (ET), Ea represents the actual ET, 445 

parameters θFC and θLP (a fraction of θFC) represent the thresholds for maximum soil moisture storage and actual ET reaching 

to potential ET, respectively. β is the shape coefficient of the runoff relation, while γ is a newly added shape coefficient of the 

ET relation. For the dPL models with dynamic parameters in this study, we modify the static β and γ into dynamic parameters 

βt and γt which change with time, based on the meteorological forcings. 

    450 
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Figure A1. Division of the CAMELS dataset into 7 large regions for the PUR cross validation test: for every fold, the models were 
trained on 6 of the 7 regions and tested on the one held out. We ran the experiments for 7 rounds so that each region would be the 
test region once. The results for the test basins were then collected and the metrics were reported for this collection. 

 455 
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