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Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as 10 

δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily 

streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep 

networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, 

we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges; and (2) their ability to make 

credible projections of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics 15 

(Nash-Sutcliffe model efficiency coefficient, etc.) and projected decadal streamflow trends. For prediction in ungauged basins 

(PUB, randomly sampled ungauged basins representing spatial interpolation), δ models’ daily metrics had mixed comparisons 

with LSTM using one set of forcing data and outperformed LSTM with another. They presented comparable trend performance 

to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR, regional 

holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph 20 

metrics, and its advantages in mean and high flow trends became prominent. In addition, an untrained variable, 

evapotranspiration, retained good seasonality even for extrapolated cases. δ models’ deep-network-based parameterization 

pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which 

explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, δ models 

are strong candidates for regional and global scale hydrologic simulations for climate change impact assessment. 25 

 

Short Summary (500 characters). Powerful hybrid models (called δ or “delta” models) embrace the fundamental learning 

capability of AI and can also explain the physical processes. Here we test their performance when applied to regions not in the 

training data. δ models rivaled the accuracy of state-of-the-art AI models under the data-dense scenario and even surpassed 

them for the data-sparse one. They generalize well due to the physical structure included. δ models could be ideal candidates 30 

for global hydrologic assessment. 
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1. Introduction 

Hydrologic models are essential tools to quantify the spatiotemporal changes of water resources and hazards in both data-

dense and data-sparse regions (Hrachowitz et al., 2013). The parameters of hydrologic models are typically calibrated or 35 

regionalized for large-scale applications (Beck et al., 2016) which require streamflow data. For global-scale applications, 

however, models are often uncalibrated (Hattermann et al., 2017; Zaherpour et al., 2018), leading to large predictive 

uncertainty. Many regions across the world, e.g., parts of South America, Africa, and Asia, suffer from a paucity of publicly 

available streamflow data (Hannah et al., 2011), which precludes calibration. Yet the water resources in many of these regions 

face severe pressures due to, among others, population expansion, environmental degradation, climate change (Boretti & Rosa, 40 

2019), and extreme-weather-related disasters, e.g., floods (Ray et al., 2019), heat waves, and droughts. Therefore it is important 

to better quantify the impacts of these pressures in these regions (Sivapalan, 2003) and estimate changes in the future water 

cycle.  

 

There has been a surge of interest in deep learning (DL) models such as long short-term memory (LSTM) networks in 45 

hydrology due to their high predictive performance, yet DL is not without limitations. LSTMs have made tremendous progress 

in the accuracy of predicting a wide variety of variables including soil moisture (Fang et al., 2017; Liu et al., 2022; O & Orth, 

2021), streamflow (Feng et al., 2020, 2021; Kratzert, Klotz, Herrnegger, et al., 2019), stream temperature (Qiu et al., 2021; 

Rahmani et al., 2021), and dissolved oxygen (Kim et al., 2021; Zhi et al., 2021), among others (Shen, 2018; Shen & Lawson, 

2021). DL is able to harness the synergy between data points and thus thrives in a big data environment (Fang et al., 2022; 50 

Kratzert, Klotz, Herrnegger, et al., 2019; Tsai et al., 2021). However, DL models are still difficult to interpret and do not 

predict variables without first having extensive observations to enable model training. In addition, it is challenging to answer 

specific scientific questions using DL models, e.g., “what is the relationship between variable soil moisture and runoff?”, as 

LSTM’s internal relationships may not be straightforwardly interpretable by humans. 

 55 

Large-scale predictions for ungauged basins (PUB) (Figure 1a) or ungauged regions (PUR) (Figure 1b) challenge the ability 

of a model and its parameterization schemes to generalize in space. For both kinds of tests, regionalized LSTM models hold 

the performance record on daily hydrograph metrics (Feng et al., 2021; Kratzert, Klotz, Herrnegger, et al., 2019). While no 

clear definition has been universally given for PUB, these PUB tests are typically conducted by randomly holding out basins 

for testing. As such, PUB can be considered spatial “interpolation”, as there will always be training gauges surrounding the 60 

test basins (Figure 1a). While LSTM’s performance declines from temporal to PUB tests, it obtains better results than 

established process-based models calibrated on the test basins (Feng et al., 2021; Kratzert, Klotz, Herrnegger, et al., 2019). 

However, it is uncertain if process-based models’ poorer performance is simply due to structural deficiencies and if they would 
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https://www.zotero.org/google-docs/?XqUNWs
https://www.zotero.org/google-docs/?blrDPi
https://www.zotero.org/google-docs/?blrDPi
https://www.zotero.org/google-docs/?kSPlgc
https://www.zotero.org/google-docs/?E2yDuR
https://www.zotero.org/google-docs/?Ce30X8
https://www.zotero.org/google-docs/?Ce30X8
https://www.zotero.org/google-docs/?rPqHhZ
https://www.zotero.org/google-docs/?eZDMqg
https://www.zotero.org/google-docs/?eZDMqg
https://www.zotero.org/google-docs/?b9uK6f
https://www.zotero.org/google-docs/?Q370x8
https://www.zotero.org/google-docs/?Q370x8
https://www.zotero.org/google-docs/?ZfONUK
https://www.zotero.org/google-docs/?ZfONUK
https://www.zotero.org/google-docs/?VlRYbu
https://www.zotero.org/google-docs/?FPbK7y
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experience similar declines for PUB. Stepping up in difficulty, prediction for ungauged regions (PUR) refers to tests where a 

large region’s basins are entirely held out of the training dataset and used only for testing (Figure 1b). As such, PUR better 65 

represents the case of spatial “extrapolation” encountered in real global hydrologic assessment (Feng et al., 2021). For PUR, 

LSTM’s performance further declines significantly (Feng et al., 2021). No systematic PUR tests have been done for process-

based models, however, perhaps because there has been a serious underappreciation of the difference between PUB and PUR 

and the risk of model failures due to large data gaps. 

 70 

 
Figure 1. A comparison of spatial generalization tests: (a) prediction in ungauged basin (PUB) and (b) prediction in ungauged regions 
(PUR) tests. The black dots are the training basins while the red stars are the test basins for one fold. In this study we ran cross 
validation to obtain the spatial out-of-sample predictions for basins in the CAMELS dataset.  

 75 

Recently, a new class of models adopting differentiable programming (a computing paradigm where the gradient of each 

operation is tracked) (Baydin et al., 2018) has shown great promise (Innes et al., 2019; Tsai et al., 2021). Differentiable 

modeling is a genre of physics-informed machine learning (or scientific machine learning) (Baker et al., 2019). Regardless of 

the computational platforms chosen for them, differentiable models mix physical process descriptions with neural networks 

(NNs), which serve as learnable elements for parts of the model pipeline. The paradigm supports backpropagation and neural-80 

network-style end-to-end training on big data so no ground-truth data is required for the direct outputs of the neural network. 

The first demonstration in geosciences was a method we called differentiable parameter learning (dPL), which uses NNs to 

provide parameterization to process-based models (or their differentiable surrogate models) (Tsai et al., 2021). Not only did 

the work propose a novel large-scale parameterization paradigm, it further uncovered the benefits of big data: we gain stronger 

optimization results, acquire parameters which are more spatially generalizable and physically coherent (in terms of 85 

uncalibrated variables), and save orders of magnitude in computational power. Only a framework that can assimilate big data, 

such as a differentiable one, could fully leverage these benefits. However, dPL is still limited by the presence of imperfect 

structures in most existing process-based models, and some performance degradation is further introduced when a surrogate 

model is used. As a result, with a LSTM-based surrogate for the VIC hydrologic model, dPL’s performance is still lower than 

that of LSTM. One plausible avenue to boost performance is to append neural networks as a postprocessor to the physics-90 

based model (Frame et al., 2021; Jiang et al., 2020), but this is not the path we explore here. 

https://www.zotero.org/google-docs/?seC1A1
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https://www.zotero.org/google-docs/?M2Xs4p
https://www.zotero.org/google-docs/?Qtt0P6


4 
 

 

Strikingly, differentiable models that evolved the internal structures of the process-based models with insights from data can 

be elevated to approach the performance level of state-of-the-art LSTM models without postprocessors (Feng et al., 2022). We 

obtained a set of differentiable, learnable process-based models, which we call δ models, by updating model structures based 95 

on the conceptual hydrologic model HBV. Driven by insights provided by data, we made changes to represent heterogeneity, 

effects of vegetation and deep water storage, and optionally replaced modules with neural networks. For the same CAMELS 

benchmark, we obtained a median NSE of 0.71 for the NLDAS forcing data, which is already very similar to LSTM (0.72). 

Furthermore, we can now output diagnostic physical fluxes and states such as baseflow, evapotranspiration, water storage, and 

soil moisture. Differentiable models can thus trade a rather small amount of performance to gain a full suite of physical 100 

variables, process clarity, and the possibility to learn science from data.  

 

There are two perspectives with which we can view δ models: they can be regarded as deep networks whose learnable 

functional space is restricted to the subspace permitted by the process-based backbone; or they can be viewed as process-based 

models with learnable and adaptable components provided by NNs. The flow of information from inputs to outputs is regulated. 105 

For example, in the setup in Feng et al. (2022), the parameterization network can only influence the groundwater flow process 

via influencing the parameters (but not the flux calculation itself). It does not allow information mixing at all calculation steps 

(as opposed to LSTM, in which most steps are dense matrix multiplications that mix information between different channels). 

For another example, because mass balance is observed, a parameter leading to larger annual mean evapotranspiration will 

necessarily reduce long-term streamflow output. Mass balance is the primary connective tissue between different hydrologic 110 

stores and fluxes. These important constraints can lead to tradeoffs between processes if there are errors with inputs like 

precipitation, but impose a stronger constraint on the overall behavior of the model. Nevertheless, the work in Feng et al. 

(2022) was conducted only for temporal tests (training on some basins and testing on those same basins but for a different time 

period), and not for PUB or PUR, which may show a different picture. For these new types of models, their generalizability 

under varied data density scenarios is highly uncertain. Before we use those models for the purpose of learning knowledge, 115 

we seek to understand their ability to generalize. 

 

Our main research question in this paper is whether differentiable process-based models can generalize well in space and 

provide reliable large-scale hydrologic estimates in data-scarce regions. Our hypothesis is that, since the differentiable models 

have stronger structural constraints, they should exhibit some advantages in extrapolation compared to both LSTM and existing 120 

process-based models. An implicit hypothesis is that the relationships learned by the parameterization component are general, 

so they can be transferred to untrained regions. If these hypotheses are true, it would make this category of models appropriate 

for global hydrologic modeling. Since δ models have similar performance to LSTM in temporal tests, they represent a chance 

to truly test the value of model structures and the impact of extrapolation. In this paper, we designed both PUB and PUR 

experiments. Furthermore, apart from typical metrics calculated on the daily hydrographs, we also evaluated the simulated 125 

https://www.zotero.org/google-docs/?KrBF7f
https://www.zotero.org/google-docs/?mlTLBx
https://www.zotero.org/google-docs/?WHtQ6Q
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trends of mean annual flow and different flow regimes, which are critical aspects for climate change impact assessments but 

had not previously been adequately assessed. 

2. Data and Methods 

2.1. Differentiable models 

As an overview, a differentiable model implements a process-based model as an evolvable backbone on a differentiable 130 

computing platform such as PyTorch, Tensorflow, JAX, or Julia, and uses intermingled neural networks (NNs) to provide 

parameterization (meaning a way to infer parameters for the model using raw information) or process enhancement. In our 

setup, the parameterization and processes are learned from all the available data using a whole-domain loss function, therefore 

supporting regionalized PUB applications and even out-of-training-region (PUR) applications.  

 135 

For the process-based backbone, we employed the Hydrologiska Byråns Vattenbalansavdelning (HBV) model (Aghakouchak 

& Habib, 2010; Beck, Pan, et al., 2020; Bergström, 1976, 1992; Seibert & Vis, 2012), a relatively simple, bucket-type 

conceptual hydrologic model. HBV has state variables like snow storage, soil water, and subsurface storage, and can simulate 

flux variables like evapotranspiration (ET), recharge, surface runoff, shallow subsurface flow, and groundwater flow. The 

parameters of HBV are learned from basin characteristics by a DL network (gA, an LSTM unit in Figure 2) just as in dPL . 140 

Here, we made two changes to the HBV structure. The first modification was to increase the number of parallel storage 

components of the HBV model (16 used here), to represent the heterogeneity within basins. The state and flux variables were 

calculated as the average of different components, and the parameters of all these components were learned from the neural 

network gA. The second modification was that, for some tested versions of the model, we turned some static parameters of 

HBV into time-dependent parameters with a different value for each day (we call this dynamic parameterization, or DP). For 145 

example, we set the runoff curve shape coefficient parameter to be time-dependent (βt) as explained in Appendix A. The 

dynamic parameters are also learned by the neural network gA, from basin characteristics and climate forcings (Figure 2). More 

details about differentiable models can be found in our previous study (Feng et al., 2022).  

 

2.2. Comparison models 150 

We compared the performance of δ models with a pure LSTM streamflow model for spatially out-of-sample predictions. The 

regionalized LSTM model was based on Feng et al. (2020), taking meteorological forcings and basin attributes (detailed below) 

as inputs. The hyperparameters of both LSTM and δ models were manually tuned in the previous studies and retained in this 

study. The loss function was calculated as root-mean-square error (RMSE) for a minibatch of basins with a one-year look-

back period, but across many iterations the training process will allow the model to go through the entire training dataset. Same 155 

as Feng et al., (2022), the RMSE was calculated on both the unnormalized predictions and transformed predictions to improve 

https://www.zotero.org/google-docs/?G2kT3t
https://www.zotero.org/google-docs/?G2kT3t
https://www.zotero.org/google-docs/?dRqzjs
https://www.zotero.org/google-docs/?ejENlg
https://www.zotero.org/google-docs/?x7HITa
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low flow representation, and a loss with a two-part weighted combination was used for the δ models, while the RMSE was 

calculated on the normalized predictions for the LSTM model since the transformation to represent low flow had already been 

applied in the data preprocessing. Deep learning models need to be trained on minibatches, which are collections of training 

instances running through the model in parallel, to be followed by a parameter update operation. In our case, a minibatch is 160 

composed of 100 training instances, each of which contains two consecutive years’ worth of meteorological forcings randomly 

selected from the whole training period for one basin. The first year was used as a warmup period, so the loss was only 

calculated on the second year of simulation. The model ran on this minibatch and the errors were calculated as a loss value, 

and then an update of the weights was applied using gradient descent. We also used streamflow simulations from the multiscale 

parameter regionalization (MPR) scheme (Samaniego et al., 2010) applied to the mHM hydrologic model (Rakovec et al., 165 

2019) to represent a traditional regionalized hydrologic model, but only the temporal test (training and testing in same basins 

but different time periods) is available for this model.  

 

 
Figure 2. The flow diagram of δ models with HBV as the backbone (Edited from Feng et al. (2022)). An LSTM unit estimates the 170 
parameters for the differentiable HBV model, which has snow, evapotranspiration, surface runoff, shallow subsurface, and deep 
groundwater reservoirs. Outflows are released from different compartments using a linear formula with proportionality parameters 
(θk’s). gA is the parameterization network with dynamic input forcing x and static input attributes A. The buckets represent mass 
storage states (S’s); θ, β and γ refer to all HBV parameters. The model referred to simply as δ has static parameters (red font). The 
model referred to as δ(βt,γt) sets γ and β as time-dependent parameters (green font), with a new value each day. We only show the 175 

https://www.zotero.org/google-docs/?Iuj2eJ
https://www.zotero.org/google-docs/?Iuj2eJ
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original HBV with one set of storage component as illustration while we use 16 parallel storage components in δ models. The state 
and flux variables were calculated as the average of different components, and the parameters of all these components were learned 
from the neural network gA. Importantly, there are no intermediate target variables to supervise the neural networks – the whole 
framework is trained on streamflow as the only focus of the loss function, in an end-to-end fashion. For simplicity, we did not use 
the optional NN replacement in this study, but the high performance was retained. Abbreviations: P -- precipitation; T -- 180 
temperature; Ep -- potential evapotranspiration; Q0 -- quick flow; Q1 -- shallow subsurface flow; Q2 -- baseflow; Ea -- actual 
evapotranspiration; Sp -- snowpack water storage; Ss -- soil water storage; Suz -- upper subsurface zone water storage; Slz -- lower 
subsurface zone water storage; θuzl -- upper subsurface threshold for quick flow; β -- shape coefficient of the runoff relationship; γ -
- newly added dynamic shape coefficient of the ET relationship. 

 185 

2.3. Data 

We used the CAMELS dataset (Addor et al., 2017; Newman et al., 2014) which includes 671 basins across the contiguous 

United States (CONUS) to run the experiments. The Maurer et al. (2002) meteorological forcing data was selected from the 

three forcings available in CAMELS to be comparable with existing regionalized model results. We also ran experiments with 

Daymet (Thornton et al., 2020) forcings to show the impacts of different forcing data. To train regionalized models for dPL 190 

and LSTM, we used 35 attributes as shown in Table A1 in Appendix A. For the LSTM streamflow model, the attribute data 

were directly concatenated with the forcings and provided as inputs. With the δ models, the neural network gA receives 

attributes and historical forcing data as inputs, and outputs parameters for the evolved HBV model. The LSTM model takes 5 

forcing variables including precipitation, temperature, solar radiation, vapor pressure, and day length, while the HBV model 

only takes precipitation (P), temperature (T), and potential evapotranspiration (Ep). We used the temperature-based Hargreaves 195 

(1994) method to calculate Ep and the daily Maurer minimum and maximum temperature for CAMELS basins were acquired 

from Kratzert et al., (2019). The training target for all the models was streamflow observations. We trained all models on all 

671 basins in CAMELS and reported the test performance on a widely used 531-basin subset, which excludes some basins due 

to unclear watershed boundaries (Newman et al., 2017). The results of some previous regionalized modeling efforts are also 

used to provide benchmark context (Kratzert, Klotz, Shalev, et al., 2019; Rakovec et al., 2019). For the comparison of 200 

evapotranspiration, we used a product derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite 

(Mu et al., 2011; Running et al., 2017). This ET product served as a completely independent, uncalibrated validation for the 

evapotranspiration simulated by the differentiable HBV models. 

  

2.4. PUB and PUR experiments 205 

As mentioned earlier, we designed two sets of experiments to benchmark the models: predictions in ungauged basins (PUB) 

and predictions in large ungauged regions (PUR) (illustrated in Figure 1). For PUB experiments, we randomly divided all the 

CAMELS basins into 10 groups, trained the models on 9 groups, and tested it on the one group held out. By running this 

experiment for 10 rounds and changing out the group held out for testing, we can get the out-of-sample PUB result for all 

basins. For the PUR experiment, we divided the whole CONUS into 7 continuous regions (as shown in Figure A1 in Appendix 210 

B), trained the model on 6 regions, and tested it on the holdout region. We ran the experiment 7 times so that each region could 

https://www.zotero.org/google-docs/?uPsPLz
https://www.zotero.org/google-docs/?ZZvb2v
https://www.zotero.org/google-docs/?Rkg36Y
https://www.zotero.org/google-docs/?ZX2tjU
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serve as the test region once. The study period was from October 1, 1989, to September 30, 1999. These spatial generalization 

tests were trained and tested in the same time period but for different basins.  

 

From the daily hydrograph, we calculated the Nash-Sutcliffe (NSE) (Nash & Sutcliffe, 1970) and Kling-Gupta (KGE) (Gupta 215 

et al., 2009) model efficiency coefficients as performance metrics. NSE characterizes the variance in the observations explained 

by the simulation and KGE accounts for correlation, variability bias, and mean bias. We also reported the percent bias of the 

top 2% peak flow range (FHV), and the percent bias of the bottom 30% low flow range (FLV) (Yilmaz et al., 2008), which 

characterizes peak flows and baseflow, respectively.  

 220 

We also evaluated the multi-year trend for streamflow values at different percentiles (Q98, Q50, Q10) as well as the mean annual 

flow. Q98, Q50, and Q10 represent the peak flow, median flow, and low flow values, respectively. To this end, for each year we 

calculated one data point corresponding to a flow percentile. Then, Sen’s slope estimator (Sen, 1968) for the trend of that flow 

percentile was calculated for the 10 years in the test period and compared with the equivalent slope for the observations. Since 

streamflow records contain missing values, we only considered years with <61(about two months) daily missing values (not 225 

necessarily consecutive) for this purpose. 

3. Results and Discussion 

In this section, we first compared LSTM and the differentiable models (and, when available, the traditional regionalized model) 

for PUB and PUR, in terms of both the daily hydrograph metrics (NSE, KGE, FLV, and FHV) and decadal-scale trends. We 

then attempted to examine why δ models had robust performance and how well they could predict untrained variables 230 

(evapotranspiration). We use “δ models” to generically refer to the whole class of differentiable models, presented in this work 

with evolved HBV, while we use δ, δ(βt) or δ(βt,γt) to refer to particular models with static, one-parameter dynamic, and two-

parameter dynamic parameterizations, respectively. The meanings of β and γ are described in Appendix A. 

3.1. The randomized PUB test 

For the randomized PUB test, which represents spatial interpolation in a data-dense scenario (Figure 1a), the δ models 235 

approached (under the Maurer forcings) or surpassed (under the Daymet forcings) the performance of the LSTM on the daily 

hydrograph metrics. Under the Maurer forcing, δ(βt,γt) had a median PUB NSE of 0.64, only slightly lower than LSTM (0.65) 

and considerably higher than MPR+mHM (0.53, this model is in sample -- all basins were included in training). When one 

moves from in-sample prediction to PUB, the performance of all types of models drop, as demonstrated by δ(βt,γt) (Figure 3a). 

For KGE, δ(βt) and δ(βt,γt) models had median values of 0.66 and 0.65, respectively, which were essentially the same as LSTM, 240 

but also had a smaller spread (Figure 3a). LSTM had lower errors for FLV and FHV than the δ models (Figure 3a), which is 

https://www.zotero.org/google-docs/?3SvWZm
https://www.zotero.org/google-docs/?RZ2lLW
https://www.zotero.org/google-docs/?RZ2lLW
https://www.zotero.org/google-docs/?ebBhI7
https://www.zotero.org/google-docs/?h8bjBb
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possibly because LSTM is not subject to physical constraints like mass balances and therefore possesses more flexibility in 

terms of base and peak flow generation than HBV.  

 

Under the Daymet forcings, δ(βt) and δ(βt,γt) models reached NSE(KGE) median values of 0.68(0.68) and 0.69(0.67), 245 

respectively, surprisingly higher than LSTM at 0.66(0.66) (Figure 3b). Both the LSTM and δ models showed better 

performance when driven by Daymet forcings, which is consistent with previous studies using different forcings (Feng et al., 

2022; Kratzert et al., 2020a), but δ models improved even more noticeably, showing a clear outperformance of the other 

models. This result suggests that precipitation in the Maurer forcing data may have a larger bias and, as δ models conserve 

mass and cannot by default apply corrections to the precipitation amounts, they are more heavily impacted by such bias. It is 250 

worthwhile to note, the performance shown here is for a PUB test with a higher holdout ratio (lower k-fold which means larger 

gaps for spatial interpolation), which degrades the performance compared to the metrics we reported earlier (Feng et al., 2021). 

As mentioned earlier, LSTM may potentially learn to correct biases in precipitation (Beck, Wood, et al., 2020), but the impact 

of precipitation bias is under debate (Frame et al., 2022). Overall, the similar performance and smaller spread of the δ models 

compared to the LSTM are highly encouraging. 255 

 

In terms of the projection of decadal trends in ungauged basins, δ models again demonstrated high competitiveness, showing 

mixed comparisons to LSTM (Figure 4). Both LSTM and δ models accurately captured the trends in annual mean flow 

(R2>0.80) and high-flow bands (R2>0.70), but both struggled with low flow Q10 (trend evaluated in the annual 10th-percentile 

flow, R2<0.40). δ(βt,γt) had similar trend performance to LSTM in terms of annual mean flow, median flow Q50, and peak flow 260 

Q98, while LSTM had the advantage for low flow, Q10. Overall, just as with LSTM, δ models seem appropriate for long-term 

trend predictions in the data-dense PUB scenario.  

https://www.zotero.org/google-docs/?njiNfn
https://www.zotero.org/google-docs/?idlepZ
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Figure 3. Performance of simulated daily hydrographs from the models for (a) the randomized PUB experiment using Maurer 265 
meteorological forcing data, and (b) comparison of PUB results using either Maurer or Daymet forcing data. Each box summarizes 
531 values (one for each CAMELS basin) obtained in a cross-validation manner. All models except those noted “in-sample”  (which 
means all sites are included in the training set and thus is at an advantage in testing) were evaluated out-of-sample spatially, i.e. they 
were trained on some basins and tested on other holdout basins. For MPR+mHM (Rakovec et al., 2019), all test basins were included 
in the training dataset. NSE is the Nash Sutcliffe model efficiency coefficient, KGE is the Kling Gupta efficiency, FLV is the low flow 270 
bias, and FHV is the high flow bias. δ, δ(βt) or δ(βt,γt) refer to the differentiable, learnable HBV models with static, one-parameter 
dynamic, and two-parameter dynamic parameterizations, respectively. The horizontal line in each box represents the median and 
the bottom and top of the box represent the first and third quantiles, respectively, while the whiskers extend to 1.5 times the 
interquartile range from the first and third quantiles, respectively. The PUB was run in a computationally economic manner to be 
comparable to other models while also reducing computational demand: we used only 10 years of training period, did not use an 275 
ensemble, and used a lower k-fold. When we previously ran the experiments using the same settings as Kratzert et al. (2019), our 
LSTM was able to match the PUB performance in their work (Feng et al., 2021). 
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The challenge with low flow projection for all models is probably attributable to multiple factors: (i) A lack of reliable 

information on subsurface hydraulic properties which hampers all models. (ii) The inherent challenge with baseflow trends --280 

- the magnitude of the Q10 change trends is in the range of -0.5 to 1 m3/s/year while that for the annual mean flow is -2 to 10 

m3/s/year. Even a small error in absolute terms can result in a large decrease in R2. (iii) Inadequacy of the low-flow modules -

-- the linear reservoir formulation in the present HBV groundwater modules may not capture the real-world dynamics, while 

even LSTM may not have the memory that is long enough to represent a gentle multi-year baseflow trend change. (iv) The 

greater impact of human activities such as reservoir operations on low flow (Döll et al., 2009; Suen & Eheart, 2006). (v) The 285 

greater sensitivity of the training loss function to high flows than low flows due to the difference in their magnitudes. High 

flows are direct reflections of recent precipitation events in the basin while low flows are under large impacts of the geological 

system.  

 

For completeness, we also evaluated the trends for the temporal tests (models trained and tested on the same basins but in 290 

different time periods) (Figure 5). For the temporal test, the model δ’s Q98 trends (0.88) are as accurate as those of LSTM for 

high flows (0.87), but LSTM outperformed δ models for the median and low flows (Q50 and Q10). This test, which excluded 

the impact of spatial generalization, suggests δ models’ surface runoff routine has the ability to transform long-term forcing 

changes into the correct streamflow changes, but the current groundwater module may be suboptimal (or, stated in another 

way, it loses information). Also, compared to LSTM,  δ models are more subject to trade-offs due to maintaining mass balances 295 

and thus could be trained to put more focus on the peaks of the hydrograph while sacrificing the low flow end.  

 

Both LSTM and δ models surpassed MPR+mHM in the temporal test by varying extents for all flow percentiles, which 

demonstrated the potential from adaptive, learnable models. MPR+mHM’s high flow (Q98, R2=0.69) and median flow (Q50, 

R2=0.63) trends lagged noticeably behind while the difference in the low flow (Q10, R2=0.24) was smaller. It was previously 300 

shown in Feng et al. (2022) (and thus omitted here) that median NSEs of MPR+mHM, δ(βt,γt), and LSTM were 0.53 , 0.711, 

and 0.719, respectively (the first using Maurer while the other two using NLDAS forcing data). Compared to the learnable 

models, MPR+mHM tends to underestimate the wetting trend for the high flow and overestimate the wetting trend for the low 

flow. The fact that MPR+mHM correctly predicted the annual mean flow trend despite having lower metrics for flow 

percentiles suggests it had a decent overall mass balance, but might have directed flows through different pathways than δ 305 

models. Note that the temporal test is the only comparison that we can carry out with existing process-based hydrologic models. 

Common benchmark problems certainly help the community understand the advantages and disadvantages of each model 

(Shen et al., 2018) and we encourage work towards obtaining PUB or PUR experimental results from existing models, which 

would facilitate such comparisons.  

 310 

 

 

https://www.zotero.org/google-docs/?WgpodH
https://www.zotero.org/google-docs/?65lBLk
https://www.zotero.org/google-docs/?F9mlmS


12 
 

 

 

 315 
Figure 4. Decadal trends (m3/s/year) of flow for different flow percentiles for the randomized PUB cross-validation experiment (using 
Maurer forcing data), as compared to the observed trends. Chart columns are organized by flow percentile; Q10, Q50, and Q98 mean 
the trends were evaluated in the annual 10th-, 50th- and 98th- percentile flows, respectively (or more simply, “low”, “median”, and 
“high” flows). Chart rows are organized by model; results for LSTM are shown in pink, results for δ are in red, δ(βt) are in blue, 
and δ(βt,γt) are in black. δ, δ(βt) or δ(βt,γt) refer to the differentiable, learnable HBV models with static, one-parameter dynamic, 320 
and two-parameter dynamic parameterizations, respectively. For each flow percentile, a corresponding value was extracted from 
each year’s daily data and Sen’s slope was estimated and evaluated between hydrologic years 1989 and 1999.  

 

 

 325 
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Figure 5. Observed vs. simulated decadal trends (m3/s/year) of streamflow for the temporal test for 447 basins where MPR+mHM 330 
has predictions (all models trained with Maurer forcing from 1999 to 2008 and tested from 1989 to 1999 of hydrologic years on the 
same basins). We could only compare the trends with an existing process-based model with a parameter regionalization scheme on 
the temporal test because we did not have their systematic PUB results on the same dataset. Chart columns are organized by flow 
percentile; Q10, Q50, and Q98 mean the trends were evaluated in the annual 10th-, 50th- and 98th- percentile flows, respectively (or 



14 
 

more simply, “low”, “median”, and “high” flows). Chart rows are organized by model; results for MPR+MHM are shown in green, 335 
LSTM are in pink, results for δ are in red, δ(βt) are in blue, and δ(βt,γt) are in black. δ, δ(βt) or δ(βt,γt) refer to the differentiable, 
learnable HBV models with static, one-parameter dynamic, and two-parameter dynamic parameterizations, respectively. For each 
flow percentile, a corresponding value was extracted from each year’s daily data and Sen’s slope was estimated and evaluated 
between hydrologic years 1989 and 1999.  

 340 

3.2. The region-based PUR test 

For the regional holdout test (PUR), surprisingly, δ models noticeably outperformed LSTM in most of the daily hydrograph 

metrics (KGE, NSE, and FHV) and again had smaller spreads in these metrics (Figure 6). The LSTM’s performance dropped 

substantially from PUB to PUR, while the δ models’ performance dropped less. Under Maurer forcings, the median NSE 

values for LSTM, δ, and δ(βt,γt) models were 0.55, 0.56 and 0.59, respectively, and the corresponding KGE values were 0.52, 345 

0.59 and 0.61, respectively. The performance gap between LSTM and δ models was larger under Daymet forcings. The LSTM 

had a minor performance gain when using Daymet forcings, while the δ models had significant performance improvements. 

The median NSE (KGE) values for LSTM, δ, and δ(βt,γt) models were 0.55(0.51), 0.60(0.61) and 0.62(0.63), respectively. We 

see that for the low flow dynamics, δ(βt) had a slightly smaller low flow bias (FLV). For high flow, δ models still had negative 

biases but they were smaller than those of LSTM (Figure 6a). 350 

 

 



15 
 

 
 
Figure 6. Same as Figure 3 but for the regional holdout (PUR) test: performance of simulated daily hydrographs from the models 355 
for (a) the regionalized PUR experiment using Maurer meteorological forcing data, and (b) comparison of PUR results using either 
Maurer or Daymet forcing data.. Each box summarizes the metrics of 531 basins obtained in a regional cross-validation fashion. We 
see clear outperformance of LSTM by the δ models for these daily hydrograph metrics (NSE, KGE, and FHV).  

 

With the exception of Regions 4 and 5, the δ models have advantages over LSTM in nearly all other PUR regions, suggesting 360 

that the benefits of physical structure for extrapolation are robust in most situations (Figure A2). Region 5 is the Southern 

Great Plains, with frequent flash floods and karst geology, and both types of models performed equally poorly. δ(βt,γt) showed 

significant performance advantages in Regions 3, 6 and 7. It is unclear why larger differences exist in these regions rather than 

others. We surmise that these regions feature large diversity in the landscape (as opposed to Regions 2, 4, and 5, which are 

more homogeneous forest or prairie on the Great Plains), which when missing from the training data could cause a data-driven 365 

model like LSTM to incur large errors. Meanwhile, all the models achieve their best PUR results in Region 1 (Northeast) and 
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Region 7 (Northwest) with NSE/KGE medians larger than or close to 0.6 (Figure 7), which are consistent with our previous 

PUR study using LSTM (Feng et al., 2021). We also observe that both LSTM and HBV models have difficulty with accurately 

characterizing hydrologic processes in arid basins as shown by Regions 4 and 5 in the middle CONUS. 

 370 

 

The decadal flow trends showed a stronger contrast -- while LSTM’s trend metrics declined noticeably from PUB to PUR, the 

δ models’ trend accuracy barely budged (Figure 7). For the annual mean flow, the points for δ(βt,γt) tightly surrounded the 

ideal 1-to-1 line and correctly captured the basins with strong wetting trends toward the higher end of the plot. In contrast, 

LSTM showed an underestimation bias and a tendency to plateau for the wetting basins. The same pattern is obvious for the 375 

high flow (Q98). We previously also noticed such a flattening tendency for LSTM in multi-year soil moisture trend projection 

(see Figure 9 in Fang et al. (2019)), although there the model was trained on satellite data which could also have played a role. 

LSTM’s R2 for annual mean discharge dropped from 0.82 for PUB to 0.64 for PUR, but R2 remained at 0.88 for δ(βt,γt). 

LSTM’s R2 for high flow (Q98) trends dropped significantly, from 0.70 for PUB to 0.27 for PUR, whereas this metric remained 

around 0.77 for the δ models. The results highlight the δ models’ robust ability to generalize in space, possibly due to the 380 

simple physics built into the model. 

 

 

https://www.zotero.org/google-docs/?ZqZDqY
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 385 
Figure 7. Same as Figure 4 but for the regional holdout (PUR) experiment (using Maurer forcing data). δ models outperformed 
LSTM for the decadal trends (m3/s/year) of mean annual flow and the high flow regime. Chart columns are organized by flow 
percentile; Q10, Q50, and Q98 mean the trends were evaluated in the annual 10th-, 50th- and 98th- percentile flows, respectively (or 
more simply, “low”, “median”, and “high” flows). Chart rows are organized by model; results for LSTM are shown in pink, results 
for δ are in red, δ(βt) are in blue, and δ(βt,γt) are in black. δ, δ(βt) or δ(βt,γt) refer to the differentiable, learnable HBV models with 390 
static, one-parameter dynamic, and two-parameter dynamic parameterizations, respectively. For each flow percentile, a 
corresponding value was extracted from each year’s daily data and Sen’s slope was estimated and evaluated between hydrologic 
years 1989 and 1999.  
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 395 

What makes δ models more robust than LSTM for PUR, especially in terms of high flow and mean annual flow? As indicated 

earlier, δ models can be considered as machine learning models that are restricted to a subspace allowable by the backbone 

structure. There are two structural constraints: (i) the static attributes can only influence the model via fixed interfaces (model 

parameters); and (ii) the whole system can only simulate flow as permitted by the backbone model, HBV. Hence, we can force 

the parameterization to learn a simpler and more generic mapping relationship, and when it succeeds, the relationship could 400 

be more transferable than that from LSTM, which mixes information from all variables in most steps.  

 

The δ model-based parameter maps reveal that the in-sample, PUB, and PUR experiments all produced similar overall 

parameter patterns (Figure 8 -- for PUB and PUR, these parameters were generated when the basins were used as the test 

basins and excluded from training). Between in-sample (temporal) and PUB tests, most of the points had similar colors, except 405 

for a few isolated basins (e.g., some basins in New Mexico). Between PUB and PUR, there were more regional differences 

(e.g., in the Dakotas, North Carolina, and Florida), but the overall CONUS-scale patterns were still similar. Recall that (i) these 

parameters were estimated by the parameter network gA, which was trained on streamflow, and there are no ground-truth 

values for the parameters; and (ii) in the PUR experiments, a large region was held out. Despite these strong perturbations to 

the training data, such parameter stability under PUB and PUR is impressive. This stability is part of the reason for the mild 410 

performance drop under PUR. Had we used a basin-by-basin parameter calibration approach, the parameter values would have 

been much more stochastic and interspersed (similar to Figure 6b in Tsai et al. (2021)).  

 

We note that δ models found advantages in the annual mean flow and high flow regimes rather than the low flow regime for 

the PUR test. As described above, we attribute the advantage in high flow to learning a more generalizable mapping between 415 

raw attributes and runoff parameters. For the low flow component, we hypothesize that the δ models’ groundwater module, 

which is inherited from HBV and based on a simple linear reservoir, cannot adequately represent long-term groundwater 

storage changes. This part of the model will likely require additional structural changes, e.g., by adopting nonlinearity (Seibert 

& Vis, 2012) or considering feedback between layers in the groundwater modules. Further, due to the guaranteed mass balance, 

the δ models face more tension (or trade-offs) between the low and high flow regimes during training. The peak flow part 420 

tends to receive more attention due to its larger values. Because pure LSTM models do not guarantee the conservation of mass, 

they are subject to fewer trade-offs and are more likely to capture both high and low flows. We believe future work can further 

improve the groundwater representation by considering better topographic distributions. 

 

https://www.zotero.org/google-docs/?2egcvs
https://www.zotero.org/google-docs/?R3c1u6
https://www.zotero.org/google-docs/?R3c1u6
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 425 
Figure 8. Parameter maps for the β parameter of the HBV model for (a) the in-sample temporal test, (b) PUB, and (c) PUR. For 
PUB and PUR, all the parameters were produced from cross-validation experiments when the sites were used as test sites and were 
not included in the training data. With other conditions being the same, higher β yields less runoff, but other parameters such as the 
maximum soil water storage also influence runoff. For simplicity, this parameter is generated from a δ model without dynamical 
parameterization and is the output of the parameterization network (gA). Again, there is no ground truth parameter to supervise gA. 430 

 

3.3. The impacts of extrapolation on evapotranspiration 

Spatial interpolation and extrapolation seemed to have a moderate impact on evapotranspiration (ET) seasonality and a muted 

impact on annual mean ET (Figure 9). For δ(γt, βt), from temporal tests to PUB and then PUR, the median correlation and 



20 
 

RMSE between simulated ET and ET from the MODIS satellite product didn’t vary much, around 0.84 and 6.4 mm/8day, 435 

respectively. The impact of extrapolation on ET was more muted compared to streamflow. Understandably, ET is controlled 

by the energy input and physics-based calculations, and thus the models cannot deviate too much from each other. It is 

worthwhile to note that we only trained δ models on streamflow and used MODIS ET as an independent data source for 

verification, while the LSTM trained on streamflow is unable to output ET or other physical variables on which it has not been 

explicitly trained. 440 

 

Moreover, the dynamic parameterization (DP) models, δ(γt, βt) and δ(βt), were better than static parameter models in all 

comparable cases (temporal test, PUB, or PUR). The decline due to spatial interpolation or extrapolation was minimal. Even 

for the most adverse case, i.e., PUR, δ(γt, βt) provided a high-quality ET seasonality as compared to MODIS (median 

correlation of 0.84) and low RMSE. It appears that DP indeed captured missing dynamics in data, possibly attributable to long-445 

term water storage and vegetation dynamics, and presented “better models for the right reasons”.  

 
Figure 9. Comparison of the agreement of simulated ET and the MODIS satellite product for different models under the temporal 
test (“In-sample”), PUB, and PUR scenarios using two different metrics - (a) correlation and (b) root-mean-square error (RMSE). 
All models were trained only with streamflow as the target. LSTM is not shown, as it is unable to output physical variables on which 450 
it has not been explicitly trained. 
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3.4. Further discussion and future work 

For all cases tested, and for both streamflow and ET, the models with dynamical parameterization (DP), δ(γt, βt), had better 

generalization than the δ models without DP. In theory, the models with DP have more flexibility, and, correspondingly, we 455 

had expected DP models to be more overfitted in some cases. However, the results showed δ(γt, βt) to be comparable or slightly 

better in most cases (either trends or NSE/KGE) than δ and δ(βt), thus the expected overfitting did not occur. Although the 

LSTM-based parameterization unit gA has a large amount of weights, it can only influence the computation through restricted 

interfaces (the parameters). In contrast, the full LSTM model we tested allows attributes to influence all steps of the 

calculations. The fact that δ(γt, βt) was more generalizable also suggests that whether the model will overfit or not depends on 460 

the way the computation is regulated, rather than simply the number of weights. It seems DP may have enabled the learning 

of some true processes that are missing from HBV, possibly related to deep soil water storage and/or vegetation dynamics 

(Feng et al., 2022). 

 

While not directly tested here, it is easy to imagine that in the future we can constrain the δ models using multiple sources of 465 

observations. So far, the simulation quality seems consistent between streamflow and ET, e.g., δ(γt, βt) is better than δ in 

streamflow (NSE/KGE) and also ET. This has not always been true traditionally due to equifinality (Beven, 2006), and it 

means a better conditioning of one of these variables could have positive impacts on other variables. Over the globe, while 

gauged basins are limited, there are many sources of information on soil moisture (ESA, 2022; NSIDC, 2022; Wanders et al., 

2014), water storage (Eicker et al., 2014; Landerer et al., 2020), in-situ measurements of ET (LBNL, 2022; Velpuri et al., 470 

2013), snow cover (Duethmann et al., 2014), and other measurements that provide additional opportunities for learning from 

multiple types of data sources, or data sources on different scales (Liu et al., 2022). 

 

This study demonstrated how well the novel differentiable models can generalize in space with other regionalized methods 

providing context. To ensure comparability across different models, we have chosen the same setups, e.g., meteorological 475 

forcings, training and testing samples and periods, and random seeds, rather than configurations that would maximize 

performance metrics. This work also does not invalidate deep learning models as valuable tools, as LSTM is a critical part of 

the parameterization pipeline for the differentiable models. The point of differentiable models is to maximally leverage the 

best attributes of both deep networks (learning capability) and physical models (interpretability). Several strategies can be 

applied to enhance the pure data-driven LSTM’s performance as shown in earlier studies. For example, some auxiliary 480 

information like soil moisture can be integrated by a kernel to constrain and enhance the extrapolation (Feng et al., 2021). 

LSTM models can utilize multiple precipitation inputs simultaneously to gain better performance (Kratzert et al., 2020b), 

which can be more complicated to achieve for models with physical structures. Ensemble average prediction from different 

initializations (Kratzert et al., 2020b) or different input options (Feng et al., 2021; Rahmani et al., 2021) can often lead to 

https://www.zotero.org/google-docs/?v7BB2L
https://www.zotero.org/google-docs/?h8tadj
https://www.zotero.org/google-docs/?Tz9cfC
https://www.zotero.org/google-docs/?Tz9cfC
https://www.zotero.org/google-docs/?z5HKwB
https://www.zotero.org/google-docs/?OsYjBI
https://www.zotero.org/google-docs/?OsYjBI
https://www.zotero.org/google-docs/?R4VVYr
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higher performance metrics. Here, however, we used a less computationally-expensive but comparable setup without these 485 

strategies applied, which can certainly be studied in the future.  

 

We used CONUS basins and large regional hold-outs to examine the spatial generalization of different models. PUR is a global 

issue because many large regions in the world lack consistent streamflow data. We ran experiments over the CONUS in this 

paper to ensure comparability with previous work and to benchmark on a well-understood dataset. It has been demonstrated 490 

that  models trained on data-rich continents can be migrated to data-poor continents: Ma et al. (2021) showed that deep learning 

models may learn generic hydrologic information from data-rich continents and leverage the information to improve 

predictions in data-poor continents with transfer learning. More recently, Le et al. (2022) examined PUR in global basins for 

monthly prediction with traditional machine learning methods, and the results demonstrated the difficulties of this issue. In 

future work, we will establish differentiable models for a large sample of global basins by integrating modern DL and physical 495 

representations that have shown promising spatial generalizability, and examine their value for accurate daily PUR at the 

global scale. 

 

4. Conclusions 

We demonstrated the high competitiveness of differentiable, learnable hydrologic models (δ models) for both spatial 500 

interpolation (PUB) and extrapolation (PUR). Evidence for such high competitiveness is provided in terms of daily hydrograph 

metrics including NSE and KGE and in terms of decadal-scale trends, which are of particular importance for climate change 

impact assessments. For the daily hydrograph metrics, the δ models closely approached the LSTM model in the PUB test 

(while showing less spread) and outperformed the LSTM model in the PUR test. For the decadal-scale trends, the δ models 

outperformed the LSTM model noticeably in the PUR tests, especially for the annual mean flow and high flows, although 505 

LSTM still fared better for the temporal (in-sample) test. In the temporal test, both LSTM and δ models surpassed an existing 

process-based model by varying extents for different flow percentiles, indicating better rainfall-runoff dynamics.  

 

Out of the variants of differentiable models tested, δ(γt, βt) stood out for having the best overall test performance, attesting to 

the strength of the structural constraints as well as dynamic parameterization. Even though its structure is more complex, it 510 

was not more overfitted than other models. It also showed markedly better ET seasonality than δ or δ(βt), which barely 

deteriorated in PUB or PUR scenarios. As δ models can simulate a wide variety of variables, they stand to benefit from 

assimilating multiple data sources. The need for additional memory units (in the LSTM that infers dynamical parameters) 

suggests that there is still significant room for structural improvement of the backbone model (HBV).  

 515 
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While LSTM models have achieved monumental advances, the δ models combine the fundamental strength of neural network 

learning with an interpretable, physics-based backbone to provide more constraints and better interpretability. The training of 

the δ models resulted in remarkably stable parameter fields despite large differences in training datasets (temporal test vs. PUB 

vs. PUR). δ models are not only reliable candidates for global climate change impact assessment but can also highlight potential 

deficiencies in current process-based model structures (in the case of HBV, we suspect work is needed on the representations 520 

of vegetation and deep subsurface water storage). δ models can thus be used as a guide to future improvements of model 

mechanisms and what we learn from δ models can in fact be ported to traditional process-based models. Lastly, we want to 

clarify that this conclusion does not mean LSTM or existing models are not suitable for global applications. As one can see, 

LSTM remained a ferocious competitor for both PUB and PUR, and existing models also presented decent trend metrics. We 

call for more benchmarking on large datasets for different scenarios such as PUB, PUR, and more variables. 525 
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Appendix A. 

Here we describe the equations related to the parameters β and γ: 

 535 

Peff = min{(Ss/θFC)β, 1}  * (Pr+Isnow)  

Ea = min{[Ss/(θFCθLP)]γ, 1} * Ep  

 

Here Peff represents the effective rainfall to produce runoff, Pr represents the rainfall, Isnow represents the snowmelt infiltration 

to soil, Ss represents the surface soil water, Ep represents the potential evapotranspiration (ET), Ea represents the actual ET, 540 

parameters θFC and θLP (a fraction of θFC) represent the thresholds for maximum soil moisture storage and actual ET reaching 

to potential ET, respectively. β is the shape coefficient of the runoff relationship, while γ is a newly added shape coefficient of 

the ET relationship. For the δ models with dynamic parameters in this study, we modified the static β and γ into dynamic 

parameters βt and γt which change with time, based on the meteorological forcings. 

 545 

https://doi.org/10.5281/zenodo.7091334
http://doi.org/10.5281/zenodo.5015120
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Table 1 The attribute variables used in this study for regionalized models  

Attribute variables Description Unit 

p_mean Mean daily precipitation mm/day 

pet_mean Mean daily potential evapotranspiration (PET) mm/day 

p_seasonality Seasonality and timing of precipitation - 

frac_snow Fraction of precipitation falling as snow - 

aridity Ratio of mean PET to mean precipitation - 

high_prec_freq Frequency of high precipitation days days/yr 

high_prec_dur Average duration of high precipitation events days 

low_prec_freq Frequency of dry days days/yr 

low_prec_dur Average duration of dry periods days 

elev_mean Catchment mean elevation m 

slope_mean Catchment mean slope m/km 

area_gages2 Catchment area (GAGESII estimate) km2 

frac_forest Forest fraction - 
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lai_max Maximum monthly mean of the leaf area index - 

lai_diff Difference between the maximum and minimum monthly mean 

of the leaf area index 

- 

gvf_max Maximum monthly mean of the green vegetation  - 

gvf_diff Difference between the maximum and minimum monthly mean 

of the green vegetation fraction 

- 

dom_land_cover_frac Fraction of the catchment area associated with the dominant land 

cover 

- 

dom_land_cover Dominant land cover type - 

root_depth_50 Root depth at 50th percentiles m 

soil_depth_pelletier Depth to bedrock m 

soil_depth_statgso Soil depth  m 

soil_porosity Volumetric soil porosity  - 

soil_conductivity Saturated hydraulic conductivity  cm/hr 

max_water_content Maximum water content  m 

sand_frac Sand fraction % 

silt_frac Silt fraction % 
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clay_frac Clay fraction % 

geol_class_1st Most common geologic class in the catchment  - 

geol_class_1st_frac Fraction of the catchment area associated with its most common 

geologic class 

- 

geol_class_2nd Second most common geologic class in the catchment - 

geol_class_2nd_frac Fraction of the catchment area associated with its 2nd most 

common geologic class 

- 

carbonate_rocks_frac Fraction of the catchment area as carbonate sedimentary rocks - 

geol_porosity Subsurface porosity - 

geol_permeability Subsurface permeability m2 

 

 

 

 550 

 

 

 

 

 555 
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Appendix B. 

 

Figure A1. Division of the CAMELS dataset into 7 large regions for the PUR cross validation test: for every fold, the models were 560 
trained on 6 of the 7 regions and tested on the one held out. We ran the experiments for 7 rounds so that each region would be the 
test region once. The results for the test basins were then collected and the test metrics were reported for this collection. 
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Figure A2. The PUR performance comparison in different regions (shown in Figure A1) in terms of (a) NSE and (b) KGE. 565 
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