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Dear HESS Editor, 

Thank you for handling the manuscript. R1 asked why we didn’t use Daymet data --- we have 
included results from the Daymet data for comparison. R2 asked us to show regional breakdown 
of model comparisons which we have provided. Other than that, reviewers have mostly sought 
clarifications like code availability and smaller modifications. We have thoroughly revised the 
manuscript, and believed the manuscript is now in a suitable state for HESS. In this file we use 
italic red text showing the reviewers’ comments and black text showing our responses. The line 
numbers inside the brackets refer to the line number of the revised manuscript (without track 
change). 

Best 
Chaopeng 

 

RC1: 'Comment on hess-2022-245', Anonymous Referee #1, 24 Oct 2022  

The paper proposes a novel hydrologic modeling approach taking advantage of the recent deep-
learning techniques. It appears this approach is quite useful for ungaged basins. It is well 
written. The source code, however, is not very well structured and the example provided is not 
easy to follow. I have asked my ph.D. student who has multi-year's experience in Python to run 
the source code and repeat the example (https://zenodo.org/record/7147450), but he did not 
succeed. The error message he got is below. I'd suggest that the authors perform careful check 
themselves, and also ask a third-party to independently verify their code and example. I will ask 
my student to give it another try later on.  

=========================================== 

Traceback (most recent call last): 

  File "dPLHBVrelease/hydroDL-dev/example/dPLHBV/traindPLHBV.py", line 96, in 

    camels.initcamels( 

  File "dPLHBVrelease/hydroDL-dev/example/dPLHBV/../../hydroDL/data/camels.py", line 549, 
in initcamels 

    calStatAll() 

  File "dPLHBVrelease/hydroDL-dev/example/dPLHBV/../../hydroDL/data/camels.py", line 388, 
in calStatAll 

    x = readForcing(idLst, forcingLst) 

TypeError: readForcing() missing 2 required positional arguments: 'fordata' and 'nt' 

https://hess.copernicus.org/#RC1
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Citation: https://doi.org/10.5194/hess-2022-245-RC1 

 

AC2: 'Reply on RC1', Chaopeng Shen, 24 Oct 2022  

Sorry about this. It just came to our attention that there was a bug for a fresh download. 
We updated the code release and at the Zedono release you should see the following 
information about this bug fix. Could you please give it a try again? 

================================== 

This release contains the codes and related data to train models with differentiable 
parameter learning (dPL) applied to HBV backbone as shown in these papers below. 
Please read the instruction file and this BUG FIX FILE (https://bit.ly/3TOKmqK) for 
running the released codes. 

Citation: https://doi.org/10.5194/hess-2022-245-AC2 

 

RC2: 'Reply on AC4', Anonymous Referee #1, 24 Oct 2022  

My student gave it another try, and it worked this time.  

Congratulation to the authors on the excellent work! 

Citation: https://doi.org/10.5194/hess-2022-245-RC2 

We have updated our code release to a new version with some small issues fixed at this zenodo 
release https://doi.org/10.5281/zenodo.7091334 . We also created a detailed instruction file and a 
help file (https://bit.ly/3TOKmqK) logging some common issues to help readers run and use our 
differentiable models.  

 

RC3: 'Comment on hess-2022-245', Anonymous Referee #2, 11 Nov 2022  

This study analyzes the ability of deep learning, and physics-informed learning models to make 
predictions in regions that are outside of the training set. This is an interesting problem, 
particularly in testing the limits of learning-based models to make predictions in conditions that 
are outside of the training set. This paper is a valuable contribution to the hydrological modeling 
literature, and would like to see it published. While there are some wording issues (listed below), 
and some issues (also listed below) that I would like to see addressed. In particular, there are a 
couple of points on the training procedure for the LSTM, which limit its performance, 
ensembling randomly initialized models and including multiple precipitation products are known 
to boost the LSTM performance in other experiments, it would be good to check if that would 

https://doi.org/10.5194/hess-2022-245-RC1
https://hess.copernicus.org/#AC2
https://doi.org/10.5194/hess-2022-245-AC2
https://hess.copernicus.org/#RC2
https://doi.org/10.5194/hess-2022-245-RC2
https://hess.copernicus.org/#RC3
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have the same result for ungauged regions. In terms of presenting results, since this paper is 
about region specific (as in regions held out of the training set) models, I would hope to see 
region specific results, which are mentioned in the text (in terms of model parameters), but 
results are not quantified nor plotted. 

 
Thanks a lot for the to-the-point suggestions. We replied in detail to each comment as below. 

 

Line 18: Is “PUR” an acronym for “Prediction in Ungauged Region”, or is it a general term for 
“regionally held out basins”? 

 
PUR is an acronym for “Prediction in Ungauged Regions” which means holding out large 

continuous regions for spatial extrapolation tests as proposed in Feng et al., 2021. We have 

modified the original statement as “For prediction in ungauged regions (PUR, regional 

holdout test representing spatial extrapolation in a highly data-sparse scenario)”{line 19} to 

avoid confusion. 

 
Feng, D., Lawson, K., & Shen, C. (2021). Mitigating prediction error of deep learning streamflow 

models in large data‐sparse regions with ensemble modeling and soft data. Geophysical Research 

Letters, 48(14), e2021GL092999. 

 

Lines 148-149: Can you please clarify the training periods for all the models. You mention that 
“Each training instance had two years’ worth of meteorological forcings, but the first year was 
used as a warmup period so the loss was only calculated on the subsequent one year of 
simulation”, this reads to me that your models were trained on just one year of data. This isn’t 
the case, is it? I imaging that, in the training process you cycle through many more years, you 
just train the model with batches of these individual year? Oh. I read on line 245 that “we used 
only 10 years of training period”. Okay, can you maybe re-word this? 

 
Thanks for reminding us of this potential confusion. We want to clarify that the training period 

and the length of training instances are two different concepts. Training period refers to the 

time periods over which data was made available for training, but each iteration, we could just 

take smaller sequences from the training data, form a minibatch, run the update and complete a 

weight update. This is frequently done in big data training. More details are as follows. 

For the training period of spatial generalization tests (PUB and PUR, training and testing in 

different basins), we originally stated in line 190 and now modified it slightly as “The study 

period was from October 1, 1989, to September 30, 1999. These spatial generalization tests 

were trained and tested in the same time period but for different basins” {Line 212}. We use 

data from this ten-year period to train the models. As for the statement in line 148 as “Each 

training instance had two years’ worth of meteorological forcings…”, this is talking about how 
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we form a minibatch consisting of short training instances from the whole 10-year period. We 

added the following clarifications: 

“Deep learning models need to be trained on minibatches, which are collections of training 

instances running through the model in parallel, to be followed by a parameter update 

operation. In our case, a minibatch is composed of 100 training instances, each of which 

contains two consecutive years’ worth of meteorological forcings randomly selected from the 

whole training period for one basin. The first year was used as a warmup period, so the loss 

was only calculated on the second year of simulation. The model ran on this minibatch and the 

errors were calculated as a loss value, and then an update of the weights was applied using 

gradient descent.” {Line 159} 

 

Line 169: Why was Maurer selected? Especially since many studies suggest Daymet is the more 
informative forcing, including Feng et al., 2022? It is also the case that using a combination of 
the three forcing products from CAMELS results in improved model performance (Kratzert et 
al., 2021), can you expand on your decision in the context of using multiple precipitation 
sources? 

 
This is a good point. Actually, we hesitated for a while regarding which forcing to use for 

showing our results. We finally chose Maurer because we want to compare with traditional 

regionalized models like MPR+mHM , which used that forcing. We agree that different 

forcings will impact the modeling results and the key point is the used forcing should be 

comparable for performance comparison. In the revised manuscript, now we also show the 

performance under Daymet forcings, and compare the results to using Maurer forcings. In the 

previous manuscript, LSTM was slightly better for the PUB (interpolation under data-sparse 

scenario) case, but, in the revised manuscript and with Daymet forcing, the differentiable 

models are better than LSTM for PUB. We added these below two figures as new Figure 3b 

and 6b, and modified related discussions in the main text (copied below). 
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“For the randomized PUB test, which represents spatial interpolation in a data-dense scenario 

(Figure 1a), the δ models approached (under the Maurer forcings) or surpassed (under the 

Daymet forcings) the performance of the LSTM on the daily hydrograph metrics. Under the 

Maurer forcing, δ(βt,γt) had a median PUB NSE of 0.64, only slightly lower than LSTM (0.65) 

and considerably higher than MPR+mHM (0.53, this model is in sample -- all basins were 

included in training). When one moves from in-sample prediction to PUB, the performance of all 

types of models drop, as demonstrated by δ(βt,γt) (Figure 3a). For KGE, δ(βt) and δ(βt,γt) 

models had median values of 0.66 and 0.65, respectively, which were essentially the same as 

LSTM, but also had a smaller spread (Figure 3a). LSTM had lower errors for FLV and FHV 

than the δ models (Figure 3a), which is possibly because LSTM is not subject to physical 

constraints like mass balances and therefore possesses more flexibility in terms of base and peak 

flow generation than HBV.” {line 235} 

“Under the Daymet forcings, δ(βt) and δ(βt,γt) models reached NSE(KGE) median values of 

0.68(0.68) and 0.69(0.67), respectively, surprisingly higher than LSTM at 0.66(0.66) (Figure 

3b). Both the LSTM and δ models showed better performance when driven by Daymet forcings, 

which is consistent with previous studies using different forcings (Feng et al., 2022; Kratzert et 

al., 2020a), but δ models improved even more noticeably, showing a clear outperformance of the 

other models. This result suggests that precipitation in the Maurer forcing data may have a 

larger bias and, as δ models conserve mass and cannot by default apply corrections to the 

precipitation amounts, they are more heavily impacted by such bias.” {line 245} 

“Under Maurer forcings, the median NSE values for LSTM, δ, and δ(βt,γt) models were 0.55, 

0.56 and 0.59, respectively, and the corresponding KGE values were 0.52, 0.59 and 0.61, 

respectively. The performance gap between LSTM and δ models was larger under Daymet 

forcings. The LSTM had a minor performance gain when using Daymet forcings, while the δ 

models had significant performance improvements. The median NSE (KGE) values for LSTM, δ, 

and δ(βt,γt) models were 0.55(0.51), 0.60(0.61) and 0.62(0.63), respectively. We see that for the 

low flow dynamics, δ(βt) had a slightly smaller low flow bias (FLV). For high flow, δ models still 

had negative biases but they were smaller than those of LSTM (Figure 6a).” {line 344} 
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We agree that using multiple forcings can be beneficial when pursuing the best performance 

for DL models, and DL models also have advantages to efficiently integrate multi-source data 

compared with physical models. Using multiple forcings will require more effort for 

differentiable models which maintain mass balance, and we will get to it in the future as our 

method is so new. We added some discussions on this as copied below from the revised 

manuscript. However, the key point here is to make all experiments comparable (keep the 

same setup) rather than gain the best performance. It’s worth emphasizing that we don’t aim at 

invalidating the power of LSTM models, and LSTM is part of the parameterization pipeline for 

the differentiable models. Instead, we want to show how well the differentiable models can 

generalize in space with the previous regionalized methods providing context. We also added 

discussions in the revised manuscript to further clarify this point. 

 

“This study demonstrated how well the novel differentiable models can generalize in space 

with other regionalized methods providing context. To ensure comparability across different 

models, we have chosen the same setups, e.g., meteorological forcings, training and testing 

samples and periods, and random seeds, rather than configurations that would maximize 

performance metrics. This work also does not invalidate deep learning models as valuable 

tools, as LSTM is a critical part of the parameterization pipeline for the differentiable 

models. The point of differentiable models is to maximally leverage the best attributes of both 

deep networks (learning capability) and physical models (interpretability). Several strategies 

can be applied to enhance the pure data-driven LSTM’s performance as shown in earlier 

studies. For example, some auxiliary information like soil moisture can be integrated by a 

kernel to constrain and enhance the extrapolation (Feng et al., 2021). LSTM models can 

utilize multiple precipitation inputs simultaneously to gain better performance (Kratzert et 

al., 2020b), which can be more complicated to achieve for models with physical structures. 

Ensemble average prediction from different initializations (Kratzert et al., 2020b) or different 

input options (Feng et al., 2021; Rahmani et al., 2021) can often lead to higher performance 

metrics. Here, however, we used a less computationally-expensive but comparable setup 

without these strategies applied, which can certainly be studied in the future.” {line 474}  

 

There should be a direct link to the analysis done for this paper. I browsed around the HydroDL 
github repository, and it was not clear to me where I should look for the code that was used for 
these particular experiments. NEVERMIND ABOUT THIS. I NOW SEE THE AUTHOR'S 
RESONSE TO ANOTHER REVIEWER. 

 

Yes. For anyone who has not seen it, the codes were released at zenodo with this link to access: 

https://doi.org/10.5281/zenodo.7091334 

 
The issue of ungauged regions is not particularly relevant to the United States (U.S.), but I do 

see the value of using the U.S. gauged basins for this experiment. Other groups (Le et al., 
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2022) have done ungauged region experiments outside the U.S., and this could be a bit more 

compelling. Perhaps this is worth some discussion in the paper? 

 
We agree that PUR is very important for global hydrologic modeling but the significant 

uncertainty involved in spatial extrapolation has not gained enough attention. There should be 

extensive work on global hydrologic modeling using differentiable models in the future. The 

final aim would be better modeling the global ungauged regions and we think the most 

difficult problem is the cross-continent prediction. We added the following discussion about 

the global modeling topic to motivate future research for PUR at the global scale. 

 

“We used CONUS basins and large regional hold-outs to examine the spatial generalization of 
different models. PUR is a global issue because many large regions in the world lack consistent 
streamflow data. We ran experiments over the CONUS in this paper to ensure comparability 
with previous work and to benchmark on a well-understood dataset. It has been demonstrated 
that  models trained on data-rich continents can be migrated to data-poor continents: Ma et al. 
(2021) showed that deep learning models may learn generic hydrologic information from data-
rich continents and leverage the information to improve predictions in data-poor continents 
with transfer learning. More recently, Le et al. (2022) examined PUR in global basins for 
monthly prediction with traditional machine learning methods, and the results demonstrated the 
difficulties of this issue. In future work, we will establish differentiable models for a large 
sample of global basins by integrating modern DL and physical representations that have 
shown promising spatial generalizability, and examine their value for accurate daily PUR at 
the global scale.” {Line 487} 
 

 
Line 245: You mention that there was no ensembling of models trained from random 

initialization. But then go on to say that you used the same settings as Kratzert et al., 2019, but 

they used ensembles of 10 models trained with random initializations. From their paper: 

“Because of this, the LSTM-type models give better predictions when used as an ensemble. 

It is not necessarily the case that if one particular LSTM model performs poorly in one catch-

ment that a different LSTM trained one exactly the same data will also perform poorly.” This 

is generally an accepted practice when using deep learning models. Can you explain further 

why you decided not to use model ensembles? 

 
Thanks for pointing out ensemble modeling. As we stated in a previous response, our primary 

goal is to make the setup of all models and experiments comparable to examine the spatial 

extrapolation capabilities. With our LSTM, we already repeated the same setup (best 

performance setup) as the ensemble LSTM job in Kratzert et al., 2019 for benchmarking and 

found identical results (Feng et al., 2021). So we already know that our LSTM can be used as a 

good benchmark level. 

 
When comparing different models for spatial generalization, we employed a less expensive but 

consistent setup without using the ensemble simulations. We also kept all the modes using the 

same random seed for initialization. The PUR and PUB tests already use cross validation with 



   

 

8 
 

7 and 10 models running for each experiment which can ensemble will be too time-consuming. 

In addition, we wish to do a more thorough evaluation of various ensemble methods in the 

future, e.g., we can even make an ensemble by perturbing the inputs to neural networks 

(referred to as an input-selection ensemble) as shown in Feng et al., 2021. It is indeed possible 

that a particular ensemble method would give advantages to certain methods under different 

conditions, but we think this complication would need a lot more computational and 

experimental time to examine, and is outside the scope of this work. We discussed this point as 

a limitation and a future work plan item and we hope the reviewer can see that there are many 

things to do on our plate right now with the new differentiable models - their optimal setup is 

still very much fluid. 

 

In the caption of Figure 3 we gave explanations as “The PUB was run in a computationally 

economic manner to be comparable to other models while also reducing computational 

demand: we used only 10 years of training period, did not use an ensemble, and used a lower 

k-fold. When we previously ran the experiments using the same settings as Kratzert et al. 

(2019), our LSTM was able to match the PUB performance in their work (Feng et al., 

2021).”{line 274}  

 

We added this to the Discussion: “ Several strategies can be applied to enhance the LSTM’s 

performance as shown in earlier studies. For example, some auxiliary information like soil 

moisture can be integrated by a kernel to constrain and enhance the extrapolation (Feng et al., 

2021). LSTM models can utilize multiple precipitation inputs simultaneously to gain better 

performance (Kratzert et al., 2020), which can be more complicated to achieve for models 

with physical structures. Ensemble average prediction from different initializations (Kratzert 

et al., 2020) or different input options (Feng et al., 2021; Rahmani et al., 2021) can often lead 

to higher performance metrics. Here, however, we used a less computationally-expensive but 

comparable setup without these strategies applied, which can certainly be added in the 

future.” {line 479} 

Please also kindly refer to the responses we added above (on page 6 of this Response) for the 

added paragraph. 

Feng, D., Lawson, K., & Shen, C. (2021). Mitigating prediction error of deep learning streamflow 

models in large data‐sparse regions with ensemble modeling and soft data. Geophysical Research 

Letters, 48(14), e2021GL092999. 

Beck, H. E., Pan, M., Lin, P., Seibert, J., van Dijk, A. I., & Wood, E. F. (2020). Global fully 

distributed parameter regionalization based on observed streamflow from 4,229 headwater 

catchments. Journal of Geophysical Research: Atmospheres, 125(17), e2019JD031485. 

 
Line 308: Breaking down Figure 6 by region would add a lot more value to the results. This 

would be super valuable for understanding some of the regional trends in model performance 

in general, particularly in Regions 4 and 5. 
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Thanks for this good idea and we added below figures showing the NSE/KGE metric in all the 

seven PUR regions as well as the related discussions in the revised manuscript. 

 

“With the exception of Regions 4 and 5, the δ models have advantages over LSTM in nearly 

all other PUR regions, suggesting that the benefits of physical structure for extrapolation are 

robust in most situations (Figure A2). Region 5 is the Southern Great Plains, with frequent 

flash floods and karst geology, and both types of models performed equally poorly. δ(βt,γt) 

showed significant performance advantages in Regions 3, 6 and 7. It is unclear why larger 

differences exist in these regions rather than others. We surmise that these regions feature 

large diversity in the landscape (as opposed to Regions 2, 4, and 5, which are more 

homogeneous forest or prairie on the Great Plains), which when missing from the training 

data could cause a data-driven model like LSTM to incur large errors. Meanwhile, all the 

models achieve their best PUR results in Region 1 (Northeast) and Region 7 (Northwest) with 

NSE/KGE medians larger than or close to 0.6 (Figure 7), which are consistent with our 

previous PUR study using LSTM (Feng et al., 2021). We also observe that both LSTM and 

HBV models have difficulty with accurately characterizing hydrologic processes in arid 

basins as shown by Regions 4 and 5 in the middle CONUS.” {line 360} 

 

 

 

REFERENCES: 
 

Le, M.-H., Kim, H., Adam, S., Do, H. X., Beling, P., and Lakshmi, V.: Streamflow Estimation in 
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Ungauged Regions using Machine Learning: Quantifying Uncertainties in Geographic 

Extrapolation, Hydrol. Earth Syst. Sci. Discuss. [preprint], 

https://doi.org/10.5194/hess-2022-320, in review, 2022. 
 
Kratzert, F., Klotz, D., Herrnegger, M., Sampson, A. K., Hochreiter, S., & Nearing, G. S. 

(2019). Toward improved predictions in ungauged basins: Exploiting the power of machine 

learning. Water Resources Research, 55(12), 11344–11354. https://doi.org/10/gg4ck8 

 
Kratzert et al., 2021. A note on leveraging synergy in multiple meteorological data sets with 

deep learning for rainfall–runoff modeling. https://doi.org/10.5194/hess-25-2685-2021 

 

CC1: 'Comment on hess-2022-245', John Ding, 12 Aug 2022  

An autoregressive process of the streamflow as a candidate model 

The paper presents results from a model comparison of an LSTM vs. HBV and its two surface-

runoff-storage variants called the delta models and having one or two time-dependent "dynamic 

parameters." Their Figure 3 for PUB (B for basins in Prediction for Ungauged Basins) and, 

especially, Figure 6 for PUR (R for regions) call into question a prevailing claim about the 

superiority of the LSTM in hydrology, Mai et al. (2022) being a latest. 

To cover the spectrum/range of hydrologic models, the authors may want to include one from 

time series models, such as autogressive processes of (only) the streamflow. 

I suggest the authors consider a simplest AR(2) model, a second-order autoregressive process of 

the form, e.g., Mizukami et al. (2021, SC1 by Ding therein): 

Qsim[t+1]=2.0*Qobs[t]-Qobs[t-1]. 

This has been put forward as an alternate  reference or baseline model to the observed mean 

flow one in the  popular though rudimentary NSE (Nash-Sutcliffe efficiency) criterion. Azmi et al. 

(2021, SC1 by Ding & AC1 therein) showed this a good performance model. 

I look forward to seeing an expansion of Figures 3 and 6 in a future study covering the AR(2). 
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Lakes Runoff Intercomparison Project Phase 4: the Great Lakes (GRIP-GL), Hydrol. Earth Syst. 

Sci., 26, 3537–3572, https://doi.org/10.5194/hess-26-3537-2022, 2022. 

https://hess.copernicus.org/#CC1
https://doi.org/10.5194/hess-25-1103-2021
https://doi.org/10.5194/hess-25-1103-2021
https://doi.org/10.5194/hess-26-3537-2022


   

 

11 
 

Mizukami, N., Rakovec, O., Newman, A. J., Clark, M. P., Wood, A. W., Gupta, H. V., and Kumar, 

R.: On the choice of calibration metrics for “high-flow” estimation using hydrologic models, 
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Citation: https://doi.org/10.5194/hess-2022-245-CC1  

 

AC7: 'Reply on CC1', Chaopeng Shen, 04 Dec 2022  

Thanks a lot for the comments regarding autoregressive models. Since the main topic discussed 

in this paper is the prediction in ungauged regions which assume there are no observations in the 

target regions, we don’t think autoregressive models with observations at previous time steps as 

inputs are appropriate for the topic. Moreover, we have already compared the deep learning 

LSTM models with AR models for streamflow forecasting in our previous studies (please see 

Table 3 in Feng et al., 2020, and also Fang et al., 2017), which has shown deep learning models 

can largely outperform AR models for integrating historical observations.  

Feng et al., 2020. https://doi.org/10.1029/2019WR026793 

Fang et al., 2017. http://onlinelibrary.wiley.com/doi/10.1002/2017GL075619/full 

Citation: https://doi.org/10.5194/hess-2022-245-AC7 
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