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Abstract. Reservoir regulation affects various streamflow characteristics from low to high flows with important implications

for downstream water users. Still, information on past reservoir operations is rarely publicly available and it is hardly known

how reservoir operation signals, i.e. information on when water is stored in and released from reservoirs, vary over a certain

region. Here, we develop a statistical model to reconstruct reservoir operation signals from observed streamflow time series

that encompass a period before and a period after a known year of reservoir construction. In a first step, a generalized additive5

model (GAM) regresses streamflow time series from the unregulated pre-reservoir period on four covariates including temper-

ature, precipitation, day of the year, and glacier mass balance changes. In a second step, this GAM, which represents natural

conditions, is applied to predict natural streamflow, i.e. streamflow that would be expected in the absence of the reservoir, for

the regulated period. The difference between the observed regulated streamflow signal and the predicted natural baseline should

correspond to the reservoir operation signal. We apply this approach to reconstruct the seasonality of reservoir regulation, i.e.10

information on when water is stored in and released from a reservoir, from a dataset of 74 catchments in the Central Alps with

a known reservoir construction date. We group these reconstructed regulation seasonalities using functional clustering to iden-

tify groups of catchments with similar reservoir operation strategies. We find that reservoir management varies by catchment

elevation, with seasonal redistribution from summer to winter being strongest in high-elevation catchments. These elevational

differences suggests a clear relationship between reservoir operation and climate and catchment characteristics, which has15

practical implications. First, these elevational differences in reservoir regulation can and should be considered in hydrological

model calibration. Furthermore, the reconstructed reservoir operation signals can be used to study the joint impact of climate

change and reservoir operation on different streamflow signatures, including extreme events.

1 Introduction

Reservoir regulation affects various streamflow characteristics – including variability (Eisele et al., 2004; Ferrazzi et al., 2019),20

seasonality (Biemans et al., 2011; Adam et al., 2007; Rottler et al., 2019), and extreme events (Verbunt et al., 2005; He et al.,

2017; Wang et al., 2017; Wan et al., 2017; Vicente-Serrano et al., 2017; Mahe et al., 2013; Tijdeman et al., 2018; van Oel

et al., 2018; Volpi et al., 2018; Brunner, 2021) – in almost 50% of the world’s large rivers (>1000 m3 s˘1) and in 8% of the

rivers overall (Lehner et al., 2011). Regulation patterns may vary across regions and hydro-climates as reservoirs are operated
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for different purposes including irrigation, energy production, water supply, and recreation, in some cases in a multi-purpose25

way (Lehner et al., 2011; Brunner et al., 2019a). However, information on these reservoir operation signals, i.e. on when water

is stored in and when it is released from reservoirs, is hardly publicly available, despite its importance for model calibration

and impact assessments (Yassin et al., 2019; Speckhann et al., 2021; Brunner et al., 2021; Steyaert et al., 2022). In some

cases, reservoir operation records are made available by the operating agencies (e.g. Steyaert et al. (2022)), however, this is the

exception rather than the rule. As a consequence, it is often unclear how reservoir regulations vary across a region and whether30

and how the regulation patterns are related to catchment characteristics – knowledge that might be useful to transfer reservoir

regulation information to basins without such information. Because of the lack of reservoir regulation information, hydrological

and land-surface models often use generic reservoir operation schemes that don’t necessarily reflect local behavior, which is

particularly problematic when simulating streamflow at sub-monthly resolution or when modelling extreme events (Hanasaki

et al., 2006; Yassin et al., 2019; Turner et al., 2021).35

Various attempts have been made to infer reservoir operation signals from different types of data sources including optical

and altimetry remote sensing (Peng et al., 2006; Eldardiry and Hossain, 2019; Hou et al., 2021; Du et al., 2022), reservoir

purpose, simulated inflows and water withdrawals (Hanasaki et al., 2006; Voisin et al., 2013) or in- and outflows (Turner et al.,

2021). To identify the time scales most affected by reservoir operation, White et al. (2005) and Shiau and Huang (2014) used

the wavelet transform on both observed in- and outflow time series and compared their wavelet power spectra. To estimate40

reservoir release policies, Coerver et al. (2018) used fuzzy rules to link inflow and storage with reservoir release for a set

of reservoirs in Asia and North America and Turner et al. (2021) developed harmonic regression models using observed and

simulated daily reservoir in- and outflows for large reservoirs in the continental United States (Steyaert et al., 2022). To map

input–output relationships for dams around the world, Ehsani et al. (2016) used artificial neural networks and data on inflow,

release and storage. While these approaches are very helpful for reservoir signal reconstruction in case both in- and outflow45

data are available, inferring the reservoir operation signal based on outflow information only remains challenging.

Here, we shed light on spatial variations in reservoir regulation signals and their relationship to catchment characteristics,

by developing a statistical two-step approach for reservoir signal reconstruction. The approach is based on a generalized

additive model (GAM) that enables reconstructing reservoir operation signals from observed streamflow time series measured

downstream of a reservoir or a set of reservoirs and encompassing the period before and after a known year of reservoir50

construction.

Generalized additive models (GAMs) extend the linear regression setup. The classical additive linear link,
∑

βjXj , be-

tween the observational vector Y and the explanatory variables (X1, . . . ,Xp)T is replaced by a sum of smooth functions
∑

fj(Xj) (see, e.g. Hastie and Tibshirani, 1986). Hence, GAMs represent nonlinear relationships between covariates and the

target variable. Each smooth function fj(.) corresponds to a linear projection on a given basis, here a cubic smoothing spline55

representation (see, e.g. Hastie and Tibshirani, 1986; Wood, 2017). Typically, a GAM is written as

yt =
p∑

j=1

fj(xtj) +σ ϵt, (1)
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where σ > 0 and ϵt represents a standardized random noise. In this study, the response variable yt corresponds to streamflow

time series in mm/d (units). The index t represents the time evolution in days and spans the time period before reservoir

construction, which varies by catchment. For example, the construction of the Mauvoisin reservoir in 1957 can be clearly60

identified in the streamflow time series of the catchment Drance de Bagnes (gauge Le Châble, Figure 2). In this study, the set

of explanatory variables, (X1, . . . ,Xp)T , contains three climatological parameters: temperatures, precipitation, seasonality (day

of year), and modelled glacier mass balance changes. During the unregulated pre-reservoir period, the GAM learns the non-

linear relationship between streamflow time series and corresponding climatological parameters. Then, the estimated transfer

function fj calibrated on unregulated periods will be applied via (1) to regulated periods. The difference between the observed65

regulated streamflow signal and the predicted natural baseline according to our definition corresponds to the reservoir operation

signal.

We extract this reservoir signal from observed time series of 74 catchments in the Central Alps for which streamflow

data are available before and after a known date of reservoir construction (Section 2.2). From this database of 74 extracted

signals, we identify groups of catchments with similar reservoir operation strategies using functional data clustering (Section70

2.3) (Chebana et al., 2012; Ternynck et al., 2016). The functional form is derived from discrete observations (Ramsay and

Silverman, 2002) either by smoothing the data non-parametrically (Jacques and Preda, 2014) or by projecting the data onto

a set of basis functions. The basis function (e.g. B-spline, Fourier, or wavelet bases) coefficients can be used for clustering

(Cuevas, 2014). It has been shown in previous studies that functional data representations can be beneficial to identify groups

of similar hydrographs over a range of temporal scales, such as spring flood events (duration of six months; Ternynck et al.,75

2016), flood events (duration of several days; Brunner et al., 2018), low flow events (Laaha et al., 2017), diurnal discharges

(duration of one day; Hannah et al., 2000), yearly hydrographs (Merleau et al., 2007; Jamaludin, 2016), and streamflow regimes

(Brunner et al., 2020). Here, we use functional data clustering to identify groups of catchments with similar reservoir operation

seasonalities. We then assess whether and how catchments with different reservoir operation strategies differ in their location

and catchment characteristics.80

2 Methods

2.1 Dataset

The Central Alps are an interesting region to study different reservoir regulation patterns because this region is characterized

by diverse hydro-climatic regimes (Bard et al., 2015), which are often heavily influenced by reservoirs (Lehner et al., 2005;

Brunner et al., 2019a). Therefore, we identify a large sample of 74 regulated catchments in the headwater regions of the85

four major European rivers originating in the Central Alps, namely, the Rhine, Rhône, Danube, and Po for which the date

of reservoir construction is known and for which observed daily streamflow data are available for both a period before and

a period after reservoir construction (Figure 1). The observed streamflow time series were obtained from national agencies

in Switzerland (Federal Office for the Environment, FOEN), Austria (Austrian Ministry of Sustainability and Tourism), and

eastern France (Banque HYDRO) and regional agencies in southern Germany (regions Bavaria [Bayerisches Landesamt für90
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Umwelt] and Baden-Württemberg [Landesanstalt für Umwelt Baden-Württemberg]). The streamflow records of the different

catchments do not necessarily cover the same time period, however, each catchment has streamflow data for at least 10 years

before and after reservoir construction (see Figure 2 for an example time series in the Swiss Alps). Northern Italy was excluded

from the analysis because streamflow records provided by the regional agencies did not cover the pre-reservoir construction

period.95

In addition to streamflow, we derive daily meteorological time series (precipitation and temperatures) for each catchment

from the gridded E-OBS dataset at 25 km spatial resolution for the period 1950–2020 (Cornes et al., 2018) by averaging

over all grid cells within a catchment. Temperature and precipitation time series are smoothed over a moving time window

of 5 days to remove noise and NA values are replaced by the mean flow across the whole time period. Furthermore, data on

reservoir locations and construction dates are also obtained from national agencies (Switzerland: FOEN, Austria: Austrian100

Ministry of Sustainability and Tourism, France: Comité Francais des Barrages et Reservoirs (https://www.barrages-cfbr.eu/))

and open source databases (Germany: Speckhann et al. (2021)). To account for changes in glaciermelt contributions over time,

we compute annual glacier mass balance changes for each of the selected catchments using simulated mass balance changes

over the period 1951–2020 for the glaciers in the Randolph Glacier Inventory (RGI Consortium, 2017; Compagno et al.,

2021). After estimating the average mass balance change for each glacier in a catchment by weighting changes across different105

elevation bands, each annual mass balance time series is dis-aggregated at a daily resolution. This smoothing avoids a step-like

mass balance change time series.

Figure 1. 74 catchments in the Central Alps with at least 10 years of streamflow data before and after reservoir construction (black catchment

outlines).
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Figure 2. Streamflow time series for the catchment of the Drance de Bagnes (gauge Le Châble) illustrating streamflow changes induced by

the construction of the Mauvoisin reservoir in 1957.

2.2 Reservoir signal reconstruction using GAMs

Here, we propose a modelling approach to reconstruct the reservoir operation signal from observed streamflow time series

measured downstream of a reservoir before and after reservoir construction, representing natural and regulated conditions,110

respectively. Before the reservoir construction date, a regression scheme can learn the natural link between streamflow times

series and some appropriate meteorological explanatory variables. In this work, this natural baseline signal is obtained by

applying a generalized additive model (GAM) (Hastie and Tibshirani, 1986) during the pre-reservoir time period. After the

reservoir construction, the reservoir operation signal can be defined as the difference between the regulated streamflow time

series and the signal that would have been measured without the reservoir. The later signal was never observed but it can be115

estimated by applying the learning GAM link to post-reservoir meteorological explanatory variables. These covariates include

the following three climatological drivers: (1) smoothed daily temperatures, (2) smoothed daily precipitation, and (3) day of the

year (seasonality), and interpolated daily glacier mass balance changes (for details on datasets see 2.1). The last variable takes

into account non-stationarities induced by changing glacier melt. Discharges during the natural and regulated period can have

different magnitudes as a result of water diversions, e.g. in the case of hydropower production. Therefore, we standardize both120

the natural and regulated streamflow time series by subtracting the mean. Such standardization makes natural and regulated

flow magnitudes comparable. As positive and skewed random variables, it is unlikely that streamflow time series follow a

Gaussian distribution given the four covariates. To handle this issue, we choose a Gamma family within the GAM approach

and study the following additive link

f1(pt) + f2(ht) + f3(dt) + f4(gt), (2)125

where pt corresponds to smoothed precipitation, ht to smoothed temperature, dt to the day of the year, and gt to the interpolated

glacier mass balance changes (for the implementation, we used the R-package mgcv (Simon Wood, 2022; Wood, 2017)). We

assess the model’s performance by comparing observed with predicted streamflow values (Figure 3). The model captures the

observed values and their distribution quite well, as illustrated by comparisons of observed vs. predicted values (panel a),

observed and predicted quantiles (panel b), and observed and predicted time series (panel c).130
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Figure 3. Evaluation of the GAM model fitted using natural streamflow data of the Drance de Bagnes (before reservoir construction [1911–

1956]) and used to predict streamflow with precipitation, temperature, day of year, and glacier mass balance changes as predictors. (a)

Observed vs. predicted values (1911–1956), (b) Q-Q plot, observed vs. simulated quantiles (1911–1956), and (c) observed vs. predicted time

series (3-years 1911–1913).

Next, we apply this model to deduce the never-observed “natural" flow after the reservoir construction. In this case, the GAM

inputs are the same four covariables: temperature, precipitation, day of year, and glacier mass balance changes, but taken over

the period after the reservoir construction. As an application example, Figure 4 compares the natural streamflow regime (i.e.

the mean annual hydrograph) of the Drance de Bagnes derived using the model for the regulated period (red) with the natural

observed (grey) and the regulated observed streamflow regimes (black). The observed regulated regime has a seasonality135

distinct from the simulated natural regime. We assume that the difference between the observed regulated streamflow signal

and the predicted natural baseline represents the reservoir operation signal.
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Figure 4. Comparison of the observed natural streamflow regime (i.e. the mean annual hydrograph) of the Drance de Bagnes before reservoir

construction (grey, 1911–1956), observed regulated regime after reservoir construction (black, 1957–2020), and simulated natural regime for

period after reservoir construction (red, 1957–2020).

Under this assumption, we derive the reservoir operation signal by subtracting the predicted ’natural signal’ from the ob-

served regulated signal (Figure 5a). To remove noise and retrieve a clear signal, we smooth the signal using regression splines

(Figure 5b). Positive values represent release conditions as the regulated signal is higher than the natural signal, while negative140

values represent storage conditions as the natural signal would be higher than the observed regulated signal. The reconstructed

signal informs about regulation at a daily scale but can also be aggregated to mean daily values to represent regulation season-

ality, i.e. the regulation regime. We here derive reservoir regulation seasonality by averaging the reconstructed daily signals for

each day of the year (Figure 5c).
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Figure 5. Reservoir signal for the Drance de Bagnes reconstructed for the period 1960–2020 using the GAM predictions by subtracting

predicted natural discharge from observed regulated discharge, where positive and negative values indicate release and storage, respectively:

(a) Raw daily signal, (b) smoothed signal (spline smoothing), and (c) mean seasonal signal.

2.3 Reservoir signal variation analysis145

We apply the GAM modelling approach introduced in the section above to reconstruct the mean reservoir signals (i.e. reservoir

seasonality) of 74 catchments in the Central Alps with streamflow data for a period before and after reservoir construction. We

then use these reconstructed reservoir seasonalities to identify groups of catchments with similar reservoir operation patterns

using functional data clustering (Ramsay and Silverman, 2002). To do so, we follow the approach proposed by Brunner et al.

(2020) to cluster streamflow regimes, i.e. mean annual streamflow hydrographs. First, we project the discrete observations,150

i.e. the reconstructed reservoir operation seasonalities at daily resolution, to a set of B-spline basis functions (R-package fda;

Ramsay et al., 2014). Similar to Brunner et al. (2020), we use five spline basis functions of order four, which corresponds to

a minimal number of basis functions still allowing for sufficient flexibility in representing diverse shapes of reservoir oper-

ation seasonalities. The projection of the observed reservoir operation seasonalities to the five basis functions results in five

coefficients per observed operation signal, one per spline base. The analysis is performed in R using the packages fda.usc155

(Febrero-Bande and Oviedo de la Fuente, 2012) and fda (Ramsay et al., 2014). Second, we compute a Euclidean distance ma-
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trix using the matrix of n = 74 × 5 spline coefficients. Third, we use a hierarchical clustering algorithm (hclust) with Ward’s

minimum variance criterion, which minimizes the total within-cluster variance (Ward, 1963). We cut the tree at k = 2 clusters,

because this seems to be the most suitable number of clusters given the symmetry of the tree.

3 Results160

Reservoir operation in the Central Alps varies by season and across catchments (Figure 6). While some catchments are strongly

regulated (i.e. those with strong signal amplitudes), less water is stored and released in other catchments (i.e. those with weak

amplitudes). Independent of magnitude, the seasonal release-storage signal appears to be similar in most catchments. Water

is mostly stored in summer (negative values), when snowmelt, precipitation, and runoff are abundant (Frei and Schär, 1998;

Brunner et al., 2019b; Vorkauf et al., 2021), and released in winter (positive values) when electricity demand is high because165

of cold temperatures and elevated heating needs (Thornton et al., 2016; Wenz et al., 2017).
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Figure 6. Reservoir regulation seasonality reconstructed using the GAM modelling approach for the 74 catchments in the Central Alps,

where positive and negative values indicate release and storage, respectively.

This regulation seasonality is particularly pronounced in the catchments in the Central Alps, which are identified as a first

cluster of catchments sharing similar reservoir operation patterns (Figures 7a and 8). In this region, reservoirs are mostly oper-

ated for hydropower production (Panduri and Hertach, 2013; Brunner et al., 2019a). In contrast, reservoir operation seasonality

is weaker in the catchments in the pre-Alps and lowland areas (Figures 7b and 8), the second cluster of catchments with similar170

reservoir operation signals. In this region, reservoirs are operated for a wider variety of purposes including flood protection,

recreation, energy production, water and industrial supply (Speckhann et al., 2021).
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Figure 7. Reservoir regulation seasonality patterns clustered into two groups: (a) release in winter and storage in summer and (b) weak

seasonal storage pattern.

Cluster 1
Cluster 2

Figure 8. Catchments belonging to cluster 1 (green) and 2 (blue) with similar seasonal regulation patterns.

The catchments belonging to the two clusters clearly differ by elevation and to a weaker degree in catchment area (Figure

9). That is, high-elevation catchments show much stronger regulation signals than low-elevation catchments.
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Figure 9. Characteristics of catchments belonging to the two reservoir regulation clusters: (a) logarithm of catchment area, (b) elevation.

These high-elevation catchments with strong regulations tend to be the catchments with glacier- and/or snowmelt-influenced175

streamflow regimes (i.e. mean annual hydrographs) (Figure 10a), while the low-elevation catchments are more rainfall-dominated

with some still being substantially snowmelt influenced (Figure 10b).
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Figure 10. Natural streamflow regimes (computed using the undisturbed streamflow time series before reservoir construction) belonging to

the two reservoir regulation clusters.

4 Discussion and Conclusions

We proposed a generalized additive modelling approach to reconstruct the seasonality and magnitude of reservoir operation

using observed streamflow time series, including a period before and after reservoir construction. This statistical approach180

has the advantage of being observation-based and computationally inexpensive. It does not require setting up a hydrological

model to simulate natural streamflow. However, the approach also has some limitations. First, it is only applicable in catchments

where streamflow observations are available for a natural period before and a regulated period after reservoir construction. This

means that the approach is not applicable in ungauged catchments and in catchments where streamflow is only available for

a post-reservoir construction period. Turner et al. (2021) proposed a regionalization approach for reservoir operation signals.185
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Our signals may also be regionalized by establishing a relationship between group membership and catchment characteristics,

e.g. elevation, which seems to be strongly related to the type of reservoir regulation signal observed (Figure 7). Second,

while the predictive performance of the GAM is satisfactory, there is room for improvement with respect to the simulation

of extreme events, which are as in other approaches not perfectly represented. The residuals not only represent the reservoir

operation signal, but also include residual model error. Nonetheless, by smoothing the residuals, we are able to reconstruct190

a regular pattern representing reservoir regulation. As an alternative to GAMs, we tested the use of Generalized Additive

Models for Location, Scale and Shape (GAMlss) said to be more appropriate for modelling time series following extreme value

distributions. However, such model adaptation did not improve model performance and new statistical modelling frameworks

are needed to better represent extreme events. Third, separating flow changes induced by reservoir operation and other types

of changes induced by climate change, such as glaciermelt contributions, is challenging. While the GAM representing natural195

conditions can theoretically consider changes in glaciermelt contributions by including glacier mass balance changes, these

effects are in practice not perfectly represented because glacier mass balance changes are observed and simulated at a coarse

resolution (annual). This means that the signal reconstructed by comparing the simulated natural signal with the observed

regulated signal may not solely represent reservoir operation, but to some degree also changes in glaciermelt contributions not

accounted for by the model. A better separation of the confounding changes – glaciermelt and reservoir operation – may be200

achieved if more detailed information about glacier mass balance were available or in cases where the seasonality of reservoir

regulation is clearly different from the seasonality of glaciermelt.

The approach proposed here can be used to reconstruct reservoir operation signals in other parts of the world. Depending

on the hydro-climate, the type of predictors used in the GAM might need to be adjusted. For example, the glaciermelt part can

be removed in non-alpine regions where streamflow is uninfluenced by glaciermelt. The GAM modelling approach introduced205

here can also be used to assess changes in reservoir operation over time. Such adaptation in reservoir operation might be

necessary to account for changing environmental conditions (Feng et al., 2017).

By applying our GAM model to 74 regulated catchments in the Central Alps, we identify two main groups of regulated

catchments (Figure 8): those in the Central Alps with storage in summer and release in winter and those in the pre-Alps and

lowland regions with a less pronounced operation seasonality and generally weaker storage and release cycles (Figure 7).210

The catchments with pronounced regulation cycles in group 1 are mainly operated for hydropower production (Brunner et al.,

2019a), while those with less pronounced regulation seasonality in group 2 are operated for a variety of purposes (Speckhann

et al., 2021). This finding that lowland catchments have weak reservoir regulation seasonality is in line with findings by Eisele

et al. (2004) who have shown that reservoir regulations in Baden-Württemberg have a very small impact on the timing of

hydrological extremes. Applied at a larger or even global scale, the GAM approach could help us to even better understand215

spatial variations in reservoir operation. The reservoir signals reconstructed using the GAM modelling approach may be used to

inform hydrological model development and calibration. Furthermore, the reconstructed signals could inform the representation

of reservoir operation in hydrological models. Improving such representation is crucial to advance the field of change attribution

as it will allow for a better separation of climate and regulation signals, which both influence streamflow characteristics.
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