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Abstract. Reservoir regulation affects various streamflow characteristics from low to high flows, with important implications
for downstream water users. However, information on past reservoir operations is rarely publicly available and it is hardly
known how reservoir operation signals, i.e. information on when water is stored in and released from reservoirs, vary over a
certain region. Here, we propose a statistical model to reconstruct reservoir operation signals in catchments without information
on reservoir operation. The model uses streamflow time series observed downstream of a reservoir that encompass a period
before and a period after a known year of reservoir construction. In a first step, a generalized additive model (GAM) regresses
streamflow time series from the unregulated pre-reservoir period on four covariates including temperature, precipitation, day
of the year, and glacier mass balance changes. In a second step, this GAM, which represents natural conditions, is applied
to predict natural streamflow, i.e. streamflow that would be expected in the absence of the reservoir, for the regulated period.
The difference between the observed regulated streamflow signal and the predicted natural baseline should correspond to
the reservoir operation signal. We apply this approach to reconstruct the seasonality of reservoir regulation, i.e. information
on when water is stored in and released from a reservoir, from a dataset of 74 catchments in the Central Alps with a known
reservoir construction date (i.e. date when reservoir went into operation). We group these reconstructed regulation seasonalities
using functional clustering to identify groups of catchments with similar reservoir operation strategies. We show how reservoir
management varies by catchment elevation and that seasonal redistribution from summer to winter is strongest in high-elevation
catchments. These elevational differences suggests a clear relationship between reservoir operation and climate and catchment
characteristics, which has practical implications. First, these elevational differences in reservoir regulation can and should be
considered in hydrological model calibration. Furthermore, the reconstructed reservoir operation signals can be used to study

the joint impact of climate change and reservoir operation on different streamflow signatures, including extreme events.

1 Introduction

Reservoir regulation affects various streamflow characteristics — including variability (Eisele et al., 2004; Ferrazzi et al., 2019),
seasonality (Biemans et al., 2011; Adam et al., 2007; Rottler et al., 2019), and extreme events (Verbunt et al., 2005; He et al.,
2017; Wang et al., 2017; Wan et al., 2017; Vicente-Serrano et al., 2017; Mahe et al., 2013; Tijdeman et al., 2018; van Oel
et al., 2018; Volpi et al., 2018; Brunner, 2021) — in almost 50% of the world’s large rivers (>1000 m? sul) and in 8% of the
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rivers overall (Lehner et al., 2011). Regulation patterns may vary across regions and hydro-climates as reservoirs are operated
for different purposes including irrigation, energy production, water supply, and recreation, in some cases in a multi-purpose
way (Lehner et al., 2011; Brunner et al., 2019a). However, information on these reservoir operation signals, i.e. on when water
is stored in and when it is released from reservoirs, is hardly publicly available, despite its importance for model calibration
and impact assessments (Yassin et al., 2019; Speckhann et al., 2021; Brunner et al., 2021; Steyaert et al., 2022). In some
cases, reservoir operation records are made available by the operating agencies (e.g. Steyaert et al. (2022)), however, this is the
exception rather than the rule. As a consequence, it is often unclear how reservoir regulations vary across a region and whether
and how the regulation patterns are related to catchment characteristics — knowledge that might be useful to transfer reservoir
regulation information to basins without such information. Because of the lack of reservoir regulation information, hydrological
and land-surface models often use generic reservoir operation schemes that do not necessarily reflect local behavior, which is
particularly problematic when simulating streamflow at sub-monthly resolution or when modelling extreme events (Hanasaki
et al., 2006; Yassin et al., 2019; Turner et al., 2021).

Various attempts have been made to infer reservoir operation signals from different types of data sources including optical
and altimetry remote sensing (Peng et al., 2006; Eldardiry and Hossain, 2019; Hou et al., 2022; Du et al., 2022), reservoir
purpose, simulated inflows and water withdrawals (Hanasaki et al., 2006; Voisin et al., 2013) or in- and outflows (Turner et al.,
2021). To identify the time scales most affected by reservoir operation, White et al. (2005) and Shiau and Huang (2014) used
the wavelet transform on both observed in- and outflow time series and compared their wavelet power spectra. To estimate
reservoir release policies, Coerver et al. (2018) used fuzzy rules to link inflow and storage with reservoir release for a set
of reservoirs in Asia and North America and Turner et al. (2021) developed harmonic regression models using observed and
simulated daily reservoir in- and outflows for large reservoirs in the continental United States (Steyaert et al., 2022). To map
input—output relationships for dams around the world, Ehsani et al. (2016) used artificial neural networks and data on inflow,
release and storage. While these approaches are very helpful for reservoir signal reconstruction in case both in- and outflow
data are available, inferring the reservoir operation signal based on outflow information only remains challenging.

Here, we propose a statistical three-step approach for reservoir signal reconstruction in catchments where reservoir outflow
time series are available. The approach is based on a generalized additive model (GAM) that enables reconstructing reservoir
operation signals from observed streamflow time series measured downstream of a reservoir or a set of reservoirs and encom-
passing the period before and after a known year of reservoir construction. In a first step, the approach fits a GAM to streamflow
observations representing natural pre-reservoir conditions using precipitation, temperature, day of the year, and glacier mass
balance changes as covariates. In a second step, this GAM is applied to covariates derived for the regulated post-dam period to
predict natural streamflow for this regulated period. In a last step, the reservoir regulation signal is reconstructed by subtracting
the predicted 'natural signal’ from the observed regulated signal. This resulting signal indicates how much water is stored in
and released from reservoirs in which season (i.e. day of the year). These reservoir-storage-seasonality signals take a reservoir
perspective and provide information on storage in addition to releases, but not on inflow. Therefore, they are distinct from the
signals extracted through other approaches, e.g. simulated water releases (Coerver et al., 2018); spectral differences between

in- and outflows highlighting the time scales most affected by reservoir regulation (White et al., 2005; Shiau and Huang, 2014);
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or water storage and release policies, which define release decisions as percent deviations from long term mean inflow (Turner
et al., 2021). Our approach can be used to reconstruct reservoir operation signals in catchments where streamflow and climate
data are available for a period before and after a known date of reservoir construction. Such information is more widely avail-
able than reservoir in- and outflow measurements, which means that the approach is applicable in different regions around the
globe where streamflow observations and information on reservoir construction dates are available.

Here, we use the proposed approach to shed light on spatial variations in reservoir regulation signals and their relationship
to catchment characteristics. To do so, we apply the approach to extract reservoir signals from observed time series of 74
catchments in the Central Alps (Section 2.2). From this database of 74 extracted signals, we identify groups of catchments
with similar reservoir operation strategies using functional data clustering (Section 2.3) (Chebana et al., 2012; Ternynck et al.,
2016). The functional form is derived from discrete observations (Ramsay and Silverman, 2002) either by smoothing the data
non-parametrically (Jacques and Preda, 2014) or by projecting the data onto a set of basis functions. The basis function (e.g.
B-spline, Fourier, or wavelet bases) coefficients can be used for clustering (Cuevas, 2014). It has been shown in previous
studies that functional data representations can be beneficial to identify groups of similar hydrographs over a range of temporal
scales, such as spring flood events (duration of six months; Ternynck et al., 2016), flood events (duration of several days;
Brunner et al., 2018), low flow events (Laaha et al., 2017), diurnal discharges (duration of one day; Hannah et al., 2000), yearly
hydrographs (Merleau et al., 2007; Jamaludin, 2016), and streamflow regimes (Brunner et al., 2020). Here, we use functional
data clustering to identify groups of catchments with similar reservoir operation seasonalities. We then assess whether and how
catchments with different reservoir operation strategies differ in their location and catchment characteristics. The combination
of the proposed reservoir signal reconstruction approach with functional clustering allows us to provide insights into how

reservoir regulation varies spatially in the Alps and to which degree these variations are related to catchment characteristics.

2 Methods
2.1 Dataset

The Central Alps are an interesting region to study different reservoir regulation patterns because this region is characterized
by diverse hydro-climatic regimes (Bard et al., 2015), which are often heavily influenced by reservoirs (Lehner et al., 2005;
Brunner et al., 2019a). Therefore, we identify a large sample of 74 regulated catchments in the headwater regions of the
four major European rivers originating in the Central Alps, namely, the Rhine, Rhone, Danube, and Po for which the date of
reservoir construction, i.e. date when reservoir went into operation, is known and for which observed daily streamflow data
are available for both a period before and a period after reservoir construction (Figure 1). The observed streamflow time series
were obtained from national agencies in Switzerland (Federal Office for the Environment, FOEN), Austria (Austrian Ministry
of Sustainability and Tourism), and eastern France (Banque HYDRO) and regional agencies in southern Germany (regions
Bavaria [Bavarian State Office for the Environment] and Baden-Wiirttemberg [State Institute for the Environment Baden-
Wiirttemberg]). The streamflow records of the different catchments do not necessarily cover the same time period, however,

each catchment has streamflow data for at least 10 years before and after reservoir construction (see Figure 2 for an example
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time series in the Swiss Alps). Northern Italy was excluded from the analysis because streamflow records provided by the
regional agencies did not cover the pre-reservoir construction period.

In addition to streamflow, we derive daily meteorological time series (precipitation and temperature) for each catchment
from the gridded observational E-OBS dataset at 25 km spatial resolution for the period 1950-2020 (Cornes et al., 2018) by
averaging over all grid cells within a catchment. If present, missing values in the time series of all variables are replaced by
the daily mean over the natural period for the natural data and over the regulated period for the regulated data. Temperature
and precipitation time series are smoothed over a moving time window of 5 days to remove noise because smoothing improves
model performance. Furthermore, data on reservoir locations and construction dates are also obtained from national agencies
(Switzerland: FOEN, Austria: Austrian Ministry of Sustainability and Tourism, France: Comité Francais des Barrages et Reser-
voirs (https://www.barrages-cfbr.eu/)) and open source databases (Germany: Speckhann et al. (2021)). To account for changes
in glacier melt contributions over time, we compute annual glacier mass balance changes for each of the selected catchments
using simulated mass balance changes over the period 1951-2020 for the glaciers in the Randolph Glacier Inventory (RGI
Consortium, 2017; Compagno et al., 2021). After estimating the average mass balance change for each glacier in a catchment
by weighting changes across different elevation bands, each annual mass balance time series is dis-aggregated into daily res-
olution by smoothing the annual signals over 365 days. This smoothing avoids step-like features in the mass balance change

time series.
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Figure 1. 74 catchments in the Central Alps with at least 10 years of streamflow data before and after reservoir construction (black catchment
outlines).
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Figure 2. Streamflow time series for the catchment of the Drance de Bagnes (gauge Le Chable) illustrating streamflow changes induced by
the construction of the Mauvoisin reservoir in 1957.

2.2 Reservoir signal reconstruction using GAMs

Here, we propose a modelling approach to reconstruct the reservoir operation signal from observed streamflow time series
measured downstream of a reservoir before and after reservoir construction, representing natural and regulated conditions,
respectively (Figure 3a,b). Before the reservoir construction date, a regression scheme can learn the natural link between
streamflow times series and some appropriate meteorological explanatory variables. In this work, this natural baseline signal
is obtained by applying a generalized additive model (GAM Hastie and Tibshirani, 1986) during the pre-reservoir time period.
After the reservoir construction, the reservoir operation signal can be defined as the difference between the regulated streamflow
time series and the signal that would have been measured without the reservoir. The latter signal was never observed but it can

be estimated by applying the learning GAM link to post-reservoir meteorological explanatory variables.
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Figure 3. Workflow illustration: (a) Input data used to fit and run the generalized additive model (GAM): streamflow, precipitation, temper-
ature, and glacier mass balance changes for a period before and after reservoir construction representing natural and regulated conditions,
respectively; (b) GAM fitting using the natural data before reservoir construction, GAM use to predict the natural signal for the regulated
period, and reconstructing the regulation signal by subtracting the predicted 'natural time series’ from the observed regulated time series.
That is, determining the seasons with reservoir storage and release; and (c) reservoir signal clustering using functional data analysis (FDA)
using hierarchical clustering on functional representations (i.e. spline basis functions) of the reconstructed signals of all catchments in the
dataset. 6
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Generalized additive models (GAMs) extend the linear regression setup and therefore represent a flexible model structure
to predict streamflow. The classical additive linear link, ZBjX j» between the observational vector Y and the explanatory
variables (X1,...,X,)7 is replaced by a sum of smooth functions > f;(X;) (see e.g. Hastie and Tibshirani, 1986). Hence,
GAMs represent nonlinear relationships between covariates and the target variable. Each smooth function f;(.) corresponds to
a linear projection on a given basis, here a cubic smoothing spline representation (see e.g. Hastie and Tibshirani, 1986; Wood,

2017). Typically, a GAM is written as:

P
ye=Y_ fi(xy)+oe, (1)
j=1

where o > 0 and ¢; represents a standardized random noise. In this study, the response variable y; corresponds to streamflow
time series in mm/d (units). Alternatively, GAMs have in the context of reservoirs also been used to predict other variables
than streamflow such as eutrophication levels (Catherine et al., 2010) or downstream water temperatures (Coleman et al.,
2021). The index t represents the time evolution in days and spans the time period before reservoir construction, which varies
by catchment. For example, the construction of the Mauvoisin reservoir in 1957 can be clearly identified in the streamflow
time series of the catchment Drance de Bagnes (gauge Le Chable, Figure 2). In this study, the set of explanatory variables,
(Xi,...,X,)7, contains three climatological parameters including temperature, precipitation, seasonality (day of year), and
modelled glacier mass balance changes. During the unregulated pre-reservoir period, the GAM learns the non-linear relation-
ship between streamflow time series and corresponding climatological parameters. Then, the estimated transfer function f;
calibrated on the unregulated period is applied via (1) to the regulated period to predict natural streamflow. The approach relies
on the assumption that the relationship between climate variables and streamflow remains stable over time. The main advan-
tage of GAMs is that cubic spline modeling offers flexibility for each covariate and goes beyond a restrictive linear regression
framework, while the additive structure among covariates remains simple. This balance between non-parametric modeling and
a simple additive link facilitates the interpretation of the contribution of each explanatory variable. Still, other regression tech-
niques (neural networks, random forest and other ML algorithms) could replace our GAM approach in the scheme displayed in
Figure 3. Keeping in mind that our training period can be short (a few decades) at some locations, this lack of a large training
dataset may also limit the application of fully data-driven machine learning techniques.

The model covariates include the following three climatological drivers: (1) smoothed daily temperatures, (2) smoothed daily
precipitation, and (3) day of the year (seasonality), and interpolated daily glacier mass balance changes (Figure 3a; for details
on datasets see 2.1). The last variable takes into account non-stationarities induced by changing glacier melt. Discharges during
the natural and regulated period can have different magnitudes as a result of water diversions, e.g. in the case of hydropower
production. Therefore, we normalize both the natural and regulated streamflow time series by dividing by the mean flow over
the corresponding period. Such normalization makes natural and regulated flow magnitudes comparable. All other variables
were used on their original scales. We use these covariates to fit a GAM for the prediction of streamflow under natural flow
conditions (Figure 3b). To do so, we fit the GAM to the streamflow observations of the pre-dam period. As positive and skewed

random variables, it is unlikely that streamflow time series follow a Gaussian distribution given the four covariates. To handle
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this issue, we choose a Gamma family within the GAM approach and study the following additive link:

f1(pe) + fa(he) + f3(de) + fa(ge), 2

where p; corresponds to smoothed precipitation, h; to smoothed temperature, d; to the day of the year, and g; to the interpolated
glacier mass balance changes (for the implementation, we used the R-package mgcv (Simon Wood, 2022; Wood, 2017)). We
assess the model’s performance by comparing observed with predicted streamflow values and by computing a range of different
performance metrics including the Kling—Gupta (KGE) and Nash—Sutcliffe efficiencies (NSE) (Gupta et al., 2009; Nash and
Sutcliffe, 1970), volumetric efficiency (VE, Criss and Winston, 2008), mean absolute error (MAE), root mean squared error
(RMSE), and percent bias (PB). The model captures the observed values and their distribution quite well, as illustrated by
comparisons of observed vs. predicted values (panel a), observed and predicted quantiles (panel b), and observed and predicted
time series (panel c¢) (for an example catchment see Figure 4). This visual impression is confirmed by the goodness-of-fit
statistics computed across all 74 catchments (Table 1). KGE values range between a first quartile of 0.38 and a third quartile
of 0.75, NSE values between 0.23 and 0.64, volumetric efficiencies between 0.49 and 0.73, which means that mean flows
and volumes are slightly better simulated than high-flows. MAEs range between 0.27 and 0.51 mm/d (normalized flow), the
RMSEs between 0.45 and 0.96, and the percentage bias is 0. This performance assessment suggests that the model is suitable
for predicting streamflow under natural conditions. Model performance is independent of the length of the record available
to fit the GAM but depends on catchment area and elevation (Figure B1). The best performance is achieved in large and

high-elevation catchments, while performance is worst in small and low-elevation catchments.
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Figure 4. Evaluation of the GAM model fitted using natural streamflow data of the Drance de Bagnes (before reservoir construction 1911—
1956) and used to predict streamflow with precipitation, temperature, day of year, and glacier mass balance changes as predictors. (a)
Observed vs. predicted values (1911-1956), (b) Q-Q plot, observed vs. simulated quantiles (1911-1956), and (c) observed vs. predicted time
series (3-years 1950-1953).

Next, we apply this model to deduce the never-observed “natural” flow after the reservoir construction. In this case, the GAM
inputs are the same four covariables: temperature, precipitation, day of year, and glacier mass balance changes, but taken over

the period after the reservoir construction. As an application example, Figure 8 compares the natural streamflow regime (i.e.
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Table 1. Performance of GAM in predicting natural streamflow for the pre-regulation period across catchments quantified by different
goodness-of-fit statistics including the Nash—Sutcliffe efficiency (NSE, values between 0—1 with an optimum at 1), Kling—Gupta efficiency
(KGE, values between 0—1 with an optimum at 1), volumetric efficiency (VE, values between 0—1 with an optimum at 1), mean absolute
error (MAE, mm/d), root mean squared error (RMSE, mm/d), and percentage bias (PB, %).

Statistic  1st quartile Median Mean 3rd quartile

KGE 0.38 0.48 0.53 0.75
NSE 0.23 0.31 0.34 0.64
VE 0.49 0.56 0.58 0.73
MAE 0.27 0.44 0.42 0.51
RMSE 0.45 0.77 0.84 0.96
PB 0 0 0 0

the mean annual hydrograph) of the Drance de Bagnes derived using the model for the regulated period (red) with the natural
observed (grey) and the regulated observed streamflow regimes (black). The observed regulated regime has a seasonality
distinct from the simulated natural regime. We assume that the difference between the observed regulated streamflow signal

and the predicted natural baseline represents the reservoir operation signal.
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Figure 5. Comparison of the observed natural streamflow regime (i.e. the mean annual hydrograph) of the Drance de Bagnes before reservoir

construction (grey, 1911-1956), observed regulated regime after reservoir construction (black, 1957-2020), and simulated natural regime for
period after reservoir construction (red, 1957-2020).

Under this assumption, we derive the reservoir operation signal by subtracting the predicted 'natural signal’ from the ob-

served regulated signal (Figure 6a). To remove noise and retrieve a clear signal, we smooth the signal using regression splines
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(Figure 6b). Positive values represent release conditions as the observed regulated signal is higher than the predicted natural
signal, while negative values represent storage conditions as the predicted natural signal would be higher than the actually ob-
served regulated signal. The reconstructed signal informs about regulation at a daily scale but can also be aggregated to mean
daily values to represent regulation seasonality, i.e. the regulation regime. We here derive reservoir regulation seasonality by

averaging the reconstructed daily signals for each day of the year (Figure 6¢).
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Figure 6. Reservoir signal for the Drance de Bagnes reconstructed for the period 1960-2020 using the GAM predictions by subtracting
predicted natural discharge from observed regulated discharge, where positive and negative values indicate release and storage, respectively:
(a) Raw daily signal, (b) smoothed signal (spline smoothing), and (c) mean seasonal signal.

A direct evaluation of the extracted seasonal reservoir signals is unfortunately not possible because observed inflow and
outflow data are not publicly available. Therefore, we evaluated the approach using an alternative validation strategy. The
Swiss Federal Office of Energy provides weekly reservoir storage estimates aggregated over a larger region (i.e. canton).
We use these regional storage estimates to compute seasonal changes in regional storage. We then use the regional storage
change curve derived for the region Valais to evaluate the reservoir signal extracted using the GAM for a catchment located
in that region (Figure 7). That is, we apply the GAM approach to the catchment Rhone (Porte-du-Scex) using temperature,

precipitation, and glacier mass balance changes as covariables. We then compare the extracted reservoir regulation signal to

10
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the reservoir signal extracted from the regional storage curve. The regulation signal estimates for the Rhone catchment using

the GAM approach compares very well to the signal derived from observed regional reservoir storage data.
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Figure 7. Observed reservoir storage change curve for the region Valais derived from regional reservoir storage data provided by the Swiss
Federal Office of Energy compared to the reservoir regulation signal of the catchment Rhone (Porte-du-Scex), which is located in the Valais
region, estimated using the GAM approach.

2.3 Reservoir signal variation analysis

We apply the GAM modelling approach introduced in the section above to reconstruct the mean reservoir signals (i.e. reservoir
seasonality) of 74 catchments in the Central Alps with streamflow data for a period before and after reservoir construction. We
then use these reconstructed reservoir seasonalities to identify groups of catchments with similar reservoir operation patterns
using functional data clustering (Ramsay and Silverman, 2002) (Figure 3c). To do so, we follow the approach proposed by
Brunner et al. (2020) to cluster streamflow regimes, i.e. mean annual streamflow hydrographs. First, we project the discrete
observations, i.e. the reconstructed reservoir operation seasonalities at daily resolution, to a set of B-spline basis functions
(R-package fda; Ramsay et al., 2014). B-spline functions are defined by their order of polynomial segments and the amount
of knots, which determine their ability to represent sharp features in a curve (Hollig and Horner, 2013). Similar to Brunner
et al. (2020), we use five spline basis functions of order four, which corresponds to a minimal number of basis functions
still allowing for sufficient flexibility in representing diverse shapes of reservoir operation seasonalities. The projection of
the observed reservoir operation seasonalities to the five basis functions results in five coefficients per observed operation
signal, one per spline base. The analysis is performed in R using the packages fda.usc (Febrero-Bande and Oviedo de la
Fuente, 2012) and fda (Ramsay et al., 2014). Second, we compute a Euclidean distance matrix using the matrix of n =74 x 5
spline coefficients. Third, we use a hierarchical clustering algorithm (hclust) with Ward’s minimum variance criterion, which
minimizes the total within-cluster variance (Ward, 1963). We cut the tree at k = 2 clusters, because this seems to be the most
suitable number of clusters given the symmetry of the tree. After cluster identification, we assess various properties of the

catchments in the different clusters including the natural streamflow regime, catchment area, and catchment elevation.
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3 Results of the reservoir signal variation analysis

Reservoir operation in the Central Alps varies by season and across catchments and the types of reservoir signals extracted
using the GAM-approach can be grouped into two classes (Figure 8a,b and 9a). In catchments belonging to cluster 1, seasonal
flow redistribution from summer to winter is much more pronounced than in catchments belonging to cluster 2. This seasonal
redistribution pattern seems to be related to the natural flow regime, which has a more pronounced seasonality in catchments
belonging to cluster 1 than those belonging to cluster 2 (Figure 8c,d). The catchments with stronger seasonal redistribution
are located at higher elevations and have larger storage capacities than catchments with weaker seasonal redistribution (Figure
9c.d) but do not differ in terms of catchment area (Figure 9a). While some catchments are strongly regulated (i.e. those with
strong signal amplitudes), less water is stored and released in other catchments (i.e. those with weak amplitudes) (Figure8a,b).
Independent of magnitude, the seasonal release-storage signal appears to be similar in most catchments. Water is mostly
stored in summer (negative values), when snowmelt, precipitation, and runoff are abundant (Frei and Schir, 1998; Brunner
et al., 2019b; Vorkauf et al., 2021), and released in winter (positive values) when electricity demand is high because of cold
temperatures and elevated heating needs (Thornton et al., 2016; Wenz et al., 2017). This regulation seasonality is particularly
pronounced in the catchments in the Central Alps, which are identified as a first cluster of catchments sharing similar reservoir
operation patterns (Figures 8a and 9a). In this region, reservoirs are mostly operated for hydropower production (Figure 10;
Panduri and Hertach (2013) and Brunner et al. (2019a)). In contrast, reservoir operation seasonality is weaker in the catchments
in the pre-Alps and lowland areas (Figures 8b and 9c), the second cluster of catchments with similar reservoir operation signals.
In this region, reservoirs are operated for a wider variety of purposes including flood protection, recreation, energy production,

water and industrial supply (Figure 10; Speckhann et al. (2021)).
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Figure 8. Reservoir regulation seasonality patterns clustered into two groups: (a) release in winter and storage in summer and (b) weak
seasonal storage pattern. Natural streamflow regimes (computed using the undisturbed streamflow time series before reservoir construction)
belonging to the two reservoir regulation clusters (c,d).
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The catchments belonging to the two clusters clearly differ by elevation and to a weaker degree in catchment area (Figure
9). That is, high-elevation catchments with melt-dominated streamflow regimes show much stronger regulation signals than

low-elevation catchments with rainfall-dominated streamflow regimes (Figure 8c,d).
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Figure 10. Reservoir purpose mix of catchments in regulation clusters 1 and 2 (see Figure 9): Energy production, flood control, and recre-
ational use.

4 Discussion

We proposed a generalized additive modelling approach to reconstruct the seasonality and magnitude of reservoir operation
using observed streamflow time series, including a period before and after reservoir construction. This statistical approach
has the advantage of being observation-based and computationally inexpensive. It does not require setting up a hydrological
model to simulate natural streamflow. However, the approach also has some limitations. First, it is only applicable in catchments
where streamflow observations are available for a natural period before and a regulated period after reservoir construction. This
means that the approach is not applicable in ungauged catchments and in catchments where streamflow is only available for
a post-reservoir construction period. Turner et al. (2021) proposed a regionalization approach for reservoir operation signals.
Our signals may also be regionalized by establishing a relationship between group membership and catchment characteristics,
e.g. elevation, which seems to be strongly related to the type of reservoir regulation signal observed (Figure 8). Second,
while the predictive performance of the GAM is satisfactory, there is room for improvement with respect to the simulation
of extreme events, which are as in other approaches not perfectly represented. The residuals not only represent the reservoir
operation signal, but also include residual model error. Nonetheless, by smoothing the residuals, we are able to reconstruct
a regular pattern representing reservoir regulation. As an alternative to GAMs, we tested the use of Generalized Additive
Models for Location, Scale and Shape (GAMIlss) said to be more appropriate for modelling time series following extreme value
distributions. However, such model adaptation did not improve model performance and new statistical modelling frameworks
are needed to better represent extreme events. Third, separating flow changes induced by reservoir operation and other types

of changes induced by climate change, such as glacier melt contributions, is challenging. While the GAM representing natural
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conditions can theoretically consider changes in glacier melt contributions by including glacier mass balance changes, these
effects are in practice not perfectly represented because glacier mass balance changes are observed and simulated at a coarse
resolution (annual). This means that the signal reconstructed by comparing the simulated natural signal with the observed
regulated signal may not solely represent reservoir operation, but to some degree also changes in glacier melt contributions not
accounted for by the model. A better separation of the confounding changes — glacier melt and reservoir operation — may be
achieved if more detailed information about glacier mass balance were available or in cases where the seasonality of reservoir
regulation is clearly different from the seasonality of glacier melt.

The GAM-approach proposed here can be used to reconstruct reservoir operation signals in other parts of the world, given
that streamflow and climate data are available for a period before and after a known date of reservoir construction. Depending
on the hydro-climate, the type of predictors used in the GAM might need to be adjusted. For example, the glacier melt part can
be removed in non-alpine regions where streamflow is uninfluenced by glacier melt. The GAM modelling approach introduced
here can also be used to assess changes in reservoir operation over time. Such adaptation in reservoir operation might be
necessary to account for changing environmental conditions (Feng et al., 2017).

By applying our GAM model to 74 regulated catchments in the Central Alps, we are able to show how reservoir regulation
seasonality varies in space. We identify two main groups of regulated catchments (Figure 9): those in the Central Alps with
storage in summer and release in winter and those in the pre-Alps and lowland regions with a less pronounced operation
seasonality and generally weaker storage and release cycles (Figure 8). The catchments with pronounced regulation cycles in
group 1 are mainly operated for hydropower production (Figure 10), while those with less pronounced regulation seasonality
in group 2 are operated for a variety of purposes such as flood control or recreation (Figure 10). This finding that lowland
catchments have weak reservoir regulation seasonality is in line with findings by Eisele et al. (2004) who have shown that
reservoir regulations in Baden-Wiirttemberg have a very small impact on the timing of hydrological extremes. Applied at a

larger or even global scale, the GAM approach could help us to even better understand spatial variations in reservoir operation.

5 Conclusions

We develop a generalized additive modelling approach using climate variables as predictors to extract reservoir operation sig-
nals from observed streamflow time series available for a period before and after reservoir construction. We apply this approach
to a set of 74 regulated catchments in the Alps to extract reservoir regulation signals at daily resolution by comparing simu-
lated natural flow with observed regulated flow. The mean reservoir operation seasonalities derived from these daily signals are
grouped using functional data clustering to identify groups of catchments with similar reservoir operation strategies. We find
that in the Central Alps there are two groups of catchments with distinct reservoir operation strategies: high-elevation catch-
ments with pronounced seasonal water redistribution from summer to winter for hydropower production and low-elevation
catchments with weak seasonal water redistribution for different reservoir purposes. The reservoir signals reconstructed using

the GAM modelling approach may be used to inform hydrological model development and calibration. Furthermore, the recon-
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structed signals could inform the representation of reservoir operation in hydrological models. Improving such representation
is crucial to advance the field of change attribution as it will allow for a better separation of climate and regulation signals,

which both influence streamflow characteristics.

285 Data availability. data used for our analysis will be published on HydroShare upon acceptance of this manuscript.
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Appendix A: Catchments

Table Al. Catchment characteristics of the 74 Alpine catchments used in the analysis: country, name of river, location of gauging station,

record length (years), catchment area (km?), elevation (m.a.s.1.), and start year of reservoir operation.

Country River Station Record Catchment Elevation Start year of reservoir oper-
length area ation
CH Rhone Porte du Scex 115 5224 2124 1957
CH Rhone Sion 104 3363 2287 1957
CH Rhone Branson 79 3718 2231 1957
CH Inn Martina 116 1936 2342 1968
CH Muota Ingenbohl 103 316 1363 1966
CH Brenno Loderio 116 399 1812 1963
CH Drance de Bagnes Le Chable, Villette 109 253 2601 1956
CH Doubs Ocourt 99 1272 960 1953
CH Spol Punt dal Gall 69 294 2390 1968
CH Inn Tarasp 63 1577 2383 1968
CH Doubs Combe des Sarrasins 67 996 985 1953
CH Vispa Visp 117 784 2642 1965
CH Moesa Lumino, Sassello 108 471 1667 1958
AT Rhein Lustenau (Hochster Briicke) 66 6289 1770 1976
AT Bregenzerach Kennelbach 66 826 1120 1979
AT Vils Vils (Lénde) 56 198 1274 1965
AT Inn Prutz 66 2454 2284 1966
AT Inn Magerbach 66 5091 2212 1966
AT Inn Innsbruck (oberh. Sill) 66 5750 2139 1981
AT Ziller Zell am Ziller-Zellbergeben 66 695 2056 1969
AT Inn Kirchbichl - Bichlwang 66 9279 1941 1986
AT Salzach Gollin 66 3547 1577 1958
AT Salzach Oberndorf 56 6099 1340 1974
AT Mur Muhr 56 76 2043 1991
AT Moll Kolbnitz a. d. Tauernbahn VHP 46 1045 1935 1981
FR La Moselle Libell¢ station 50 27 724 1983
FR La Moselle Libellé station 50 1214 653 1983
FR La Plaine Libellé station 50 117 514 1986
FR La Durance La Durance a Briangon [aval] 62 202 2150 2000
FR La Durance La Durance a I’ Argentiere-la-Bessée 111 961 2177 1966
FR La Durance La Durance a Espinasses [Serre-Poncon] 69 3567 2028 1966
FR La Tinée La Tinée a la Tour [Pont de La Lune 44 703 1746 2006
FR Le Var Le Var a Malausséne [La Mescla] 51 1824 1482 2006
DE Baierzer Rot Achstetten 96 264 631 1971
DE Jagst Schwabsberg 79 178 514 1968
DE Wiirm Schafhausen 68 237 492 1976
DE Rot Binnrot 60 130 679 1971
DE Nagold Nagold 52 376 625 1965
DE Kinzig Schwaibach 106 952 604 1978
DE Erms Riederich 98 159 637 1962
DE Rems Schorndorf 89 417 432 2006
DE Zaber Hausen 89 108 257 1968
DE Schwarzbach Eschelbronn 64 191 248 2000
DE Lauter Siifien 79 68 562 1976
DE Lein Abtsgmiind 99 246 492 1957
DE Jagst Dorzbach 97 1027 458 1958
DE Nagold Calw 79 586 603 1965
DE Rottach Greifenmiihle 63 31 914 1984
DE Wertach Biessenhofen 100 444 884 1959
DE Altmiihl Treuchtlingen 91 990 469 1974
DE Altmiihl Eichstiitt 91 1391 482 1974
DE Naab Unterkoblitz 80 2002 514 1965
DE Schwarzach Warnbach 80 819 551 1960
DE Schwarzer Regen Teisnach Schwarzer Regen 90 624 782 1976
DE Kleiner Regen Lohmannmiihle 59 116 859 1976
DE Chamb Furth im Wald 70 279 540 1989
DE Chamb Kothmaiflling 60 408 522 1989
DE Amper Fiirstenfeldbruck 100 1248 744 1961
DE Amper Inkofen 95 3135 622 1961
DE Maisach Bergkirchen 85 1581 705 1961
DE Vils Rottersdorf 81 722 475 1972
DE Vils Grafenmiihle 81 1433 443 1972
DE Rott Birnbach 90 854 460 1960
DE Main Schwiirbitz 80 2414 488 1968
DE Main Kemmern 90 4235 434 1968
DE Rodach Unterlangenstadt 90 712 530 1968
DE Itz Cobur; 95 363 458 1982
DE Itz Schenkenau 53 505 423 1982
DE Regnitz Pettstadt 98 6951 404 1956
DE Rednitz Neumiihle Rednitz 110 1816 424 1975
DE Roth Roth Bleiche 52 179 414 1985
DE Pegnitz Niirnberg Ledererste; 110 1180 457 1956
DE Frankische Saale Bad Kissingen Golfplatz 91 1572 382 1965
DE Frénkische Saale Wolfsmiinster 90 2116 374 1965
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Appendix B: Further model evaluation
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Figure B1. Relationship between model performance and catchment characteristics: (a) record length used to fit the GAM, (b) catchment
area, and (c) elevation.
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