
1 

Widespread flooding dynamics under climate change: characterising 

floods using grid-based hydrological modelling and regional climate 

projections 

Adam Griffin1, Alison L. Kay1, Paul Sayers2, Victoria Bell1, Elizabeth Stewart1, Sam Carr2 

1UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire, OX10 8BB, UK. 5 
2Sayers and Partners, Watlington, Oxfordshire, OX49 5PY, UK. 

Correspondence to: Adam Griffin (adagri@ceh.ac.uk) 

Abstract. An event-based approach has been used to explore the potential effects of climate change on the spatial and temporal 

coherence of widespread flood events in Great Britain. Time series of daily mean river flow were generated using a gridded 

national-scale hydrological model (Grid-to-Grid) driven by a 12-member ensemble of regional climate projections from UK 10 

Climate Projections 2018 (UKCP18), for 30-year baseline (1980-2010) and future (2050-2080) time-slices. From these, sets 

of widespread extreme events were extracted. The question of what defines a “widespread flood event” is discussed; here these 

were defined as exceeding an at-site 99.5th percentile (equivalent to two days per year) simultaneously over an area of at least 

20 km2, with a maximum duration of 14 days. This resulted in a set of 14,400 widespread events: approximately 20 events per 

year, per ensemble member, per time-slice. Overall, results have shown that events are more temporally concentrated in winter 15 

in the future time-slice compared to the baseline. Distributions of event area were similar in both time-slices, but the 

distribution of at-site return periods showed some heavier tails in the future time-slice. Such information could be useful for 

adaptation planning and risk management for floods under climate change, but the potential future changes have to be 

interpreted in the context of some differences in event characteristics between the baseline climate projection-driven model 

runs and an observation-driven model run. While the focus here is Great Britain, the methods and analyses described could be 20 

applied to other regions with hydrological models and climate projections of appropriate resolution. 

1 Introduction 

River floods are a major natural hazard globally, occurring at a range of spatial and temporal scales (Kundzewicz et al. 2019). 

Managing flood risk (the combination of hazard with exposure and vulnerability) is important, both from an economic and 

social perspective. Flood prediction, and more generally flood frequency estimation, is crucial to mitigating these hazards to 25 

reduce impact. Flood frequency estimation is often carried out on a single-site basis, computing the frequency of floods at 

specific locations in isolation. However, the management of flood risk on a regional or national basis requires an understanding 

of how likely it is that multiple locations will experience floods at the same time. Widespread flooding presents a huge 

challenge for communities and emergency response services and has long-lasting impacts, as demonstrated by the extensive 

flooding experienced in North-West England as a consequence of Storm Desmond and Storm Frank in winter 2015/2016 30 
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(Barker et al., 2016), Hurricane Katrina in 2005 in the USA (Irish et al., 2014), flooding in Kerala, India, in 2018 (Vishnu et 

al., 2019) and the flooding in central Europe in July 2021 (Mohr et al., 2021).  

One approach to risk quantification is catastrophe modelling (CAT modelling), which is used in the insurance industry to 

assess annual average losses. CAT modelling typically makes use of three components: property data, stochastic hazard event 

sets and a relationship between magnitude of hazard and the expected loss for each property (Grossi and Kunreuther, 2005). 35 

The present work focuses on the second component: developing a set of widespread flood events, here characterised by river 

flow and the probability of exceeding that flow. Simply making use of observed widespread events typically does not provide 

enough data to reliably determine hazard probability. Therefore, developing a larger set of events for analysis is desirable to 

improve the uncertainty of risk estimates, particularly for events which have a return period (or average recurrence interval) 

greater than the length of observed records. For example, return periods as long as 1 in 200 years are often used as the design 40 

standard for large-scale engineering projects. This can involve making use of hydrological models driven by large ensembles 

of data from climate models (ensembles of model runs using perturbed initial conditions and/or parameter sets) over a shorter 

time period (Kelder et al., 2020), or through predominantly stochastic event-based models (Filipova et al., 2019). 

Climate change affects flow regimes globally (Jiménez Cisneros, 2015), and studies suggest that flooding in some parts of 

Europe and the UK could become more frequent and severe in future (Thober et al. 2018, Collet et al., 2018). Spatial coherence 45 

of flooding events – whether flood timings at different locations have become more correlated – is of key interest to national-

scale actions to mitigate the associated loss. The dependence structure of river flow has been analysed on a Europe-wide scape 

(Berghuijs et al., 2019) and for the United States (Brunner et al., 2020), focusing on synchrony of events within a given range. 

The UK’s Third Climate Change Risk Assessment (CCRA3) included work which analysed the changes in risk caused by 

possible changes in flood dynamics (Sayers et al., 2020). CCRA3 adds to the breadth of guidance that has been developed for 50 

policymakers and water managers to try and account for such changes (Reynard et al., 2017).  

This paper makes use of a grid-based hydrological model for Great Britain (GB) and the most recent set of regional climate 

projections for the UK to generate two sets of over 7000 hazard events for the recent past (1980-2010) and the future (2050-

2080). The question of what defines a “widespread flood event” is discussed, and differences between events in terms of extent, 

likelihood and duration are analysed in the context of possible changes in the spatio-temporal structure of widespread events 55 

in the future. Often flooding is considered on a site-by-site or regionally summarised fashion, particularly when looking into 

projections of the future. This paper hopes to show the benefits of considering widespread flooding events over a large area 

using grid-based, rather than catchment-based, hydrological modelling to expand our knowledge of the extent of possible 

flooding events. While the focus here is GB, the methods and analyses could be applied to other areas where appropriate 

hydrological models and high resolution climate projections are available. Note that, within the context of flood frequency, 60 

this paper refers to floods or flooding events, although in reality many of these will be merely high flows that do not exceed 

bankfull. 
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2 Data 

Hydrological model runs are performed using both observation-based data and baseline and future climate projection data. The 

model (Section 3.1) requires gridded time-series of precipitation and potential evaporation (PE), plus temperature for the 65 

optional snow module.  

2.1 Observation-based driving data 

The observation-based run uses daily 1km precipitation from CEH-GEAR (Tanguy et al., 2019), monthly 40km short grass 

PE from MORECS (Hough and Jones, 1997) copied down to 1km, and daily 1km minimum and maximum temperatures (Met 

Office et al., 2019). Precipitation was subdivided uniformly through the day, PE was subdivided uniformly through the month, 70 

and temperature varied sinusoidally between the daily extremes (as Kay et al. 2023). Data are applied for 1980-2010 (the same 

period as the climate model baseline, Section 2.2). 

2.2 Climate projections 

UK Climate Projections 2018 (UKCP18) provides information on potential changes in a range of climate variables over the 

21st century, via a number of different products (Murphy et al., 2018). The projections have previously been used to assess 75 

how river flows in the UK may differ in the future due to climate change (Kay 2021; Kay et al., 2021; Lane and Kay 2021).  

The UKCP18 Regional Projections (Met Office Hadley Centre, 2018b) comprise a 12-member perturbed parameter ensemble 

(PPE) of the Hadley Centre ~12km Regional Climate Model (RCM), nested in an equivalent PPE of their ~60km Global 

Climate Model (GCM). The ensemble covers the period December 1980 to November 2080 under an RCP8.5 emissions 

scenario (Representative Concentration Pathway) (Riahi et al., 2011). The 12 ensemble members are numbered from 01 to 15, 80 

where 01 uses the “standard” parameterization of the Hadley Centre RCM, and ensemble members 02, 03 and 14 are not 

available. The data are available re-projected from the native climate model grid to a 12 km grid aligned with the GB national 

grid, for a synthetic 360-day year (30 days per month). The re-projected daily precipitation and daily minimum and maximum 

temperatures are used here, along with daily 12km PE calculated from other meteorological variables available from the RCM 

ensemble (Robinson et al. 2021, 2023). The precipitation data are downscaled to 1km using patterns of standard average annual 85 

precipitation (Kay et al. 2023), the PE data are copied down to 1km, and the temperature data are downscaled to 1km using 

elevation data and a lapse rate (as Kay 2021). The data are then temporally-distributed through the day as for the observed data 

(Section 2.1). Data are applied for 30-year baseline (1980-2010) and future (2050-2080) time-slices. 

In common with all climate model data, there are biases in the UKCP18 Regional data (Murphy et al. 2018 Section 4.4), 

including a tendency to overestimate winter precipitation rates and fraction of wet days. Often, statistical methods are applied 90 

to adjust distributions of climate model data to match those from observed data. However, there are many issues and 

assumptions inherent in such methods (not least the assumption that the same ‘bias’ seen in the baseline period will apply in 

any future period) and they can potentially introduce artefacts into the data (e.g. Ehret et al. 2012, Maraun et al. 2017). A 
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previous study showed that applying a simple monthly mean correction to precipitation led to flood peaks that had a greater 

tendency to underestimation, compared to the use of raw precipitation data (Kay 2022, Supplementary Figure 1), thus it was 95 

decided to use the raw precipitation data here. Future work could investigate the sensitivity of the results to alternative options, 

including the use of process-informed (rather than purely statistical) methods currently in development. 

3 Methods 

3.1 Hydrological model 

The Grid-to-Grid (G2G) is an area-wide runoff-production and routing model which typically uses a 1km grid and 15-minute 100 

timestep, and employs digital datasets to simulate the natural flow response to rainfall across the model domain, producing 

river flow outputs on a 1km grid aligned with the GB national grid (Bell et al., 2009). G2G uses 1km flow networks (Davies 

and Bell 2008), derived from the UK 50m Integrated Hydrological Digital Terrain Model (Morris and Flavin, 1990) using the 

network-derivation scheme of Paz et al. (2006). The routing component of G2G applied here uses kinematic wave 

approximations for sub-surface land and river flow paths and for surface land flow paths, but the Horton–Izzard nonlinear 105 

storage approach for surface river flow paths (Bell et al., 2009). In urban and suburban areas, identified through the LCM2000 

spatial dataset of land-cover (Fuller et al., 2002), responsiveness is increased through the use of an enhanced routing speed 

and reduced soil storage, leading to a faster response to rainfall. While flows are simulated for every 1km cell, they are only 

output here for cells with a catchment drainage area of at least 50km2, due to the use of daily driving precipitation data. 

G2G has been widely tested and applied to explore climate change impacts on river flows across GB, for both floods (Bell et 110 

al., 2009, 2012; Lane and Kay 2021; Kay 2022; Kay et al. 2023) and droughts (Kay et al. 2018; Rudd et al., 2017, 2019; Lane 

and Kay, 2021). G2G is used for operational flood forecasting by the Flood Forecasting Centre for England and Wales (Price 

et al., 2012) and by the Scottish Flood Forecasting Service for Scotland (Cranston et al. 2012), and a substantial amount of 

model evaluation has been performed to support operational use (e.g. Moore et al. 2006, 2012, Cole et al. 2013, Wells et al. 

2016). 115 

Previous work assessing the performance of G2G driven by daily observed rainfall data across GB has shown generally good 

performance for median flows (Q50) and high flow volumes (Q5-Q30), but a tendency to underestimate flood peaks to the 

north/west with a more mixed picture, including overestimates, in the south/east (Kay 2022). Similar patterns were shown for 

simulation of the index flood (Formetta et al. 2018), where it was noted that “overestimation in southern and eastern Britain 

can, for many groundwater-dominated catchments, be attributed to the effects of artificial abstractions which are not currently 120 

included in the G2G” and that a “significant factor contributing to the underestimation is the contribution of short-duration 

intense rainfall events to peak river flows”. Use of hourly, rather than equally-disaggregated daily, precipitation data was 

recently shown to improve performance for flood peaks, but to make little difference to simulated future changes in peak flows 

(Kay and Brown 2023). Beylich et al. (2021) also showed that hydrological modelling at an hourly time-step (with stochastic 

disaggregation of daily data) gave future flood changes of similar magnitude to modelling at a daily time-step, despite 125 
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underestimation of absolute values of flood peaks by daily modelling, for six catchments in central Germany (areas 39.1–

823.5km2). Only daily RCM precipitation data are available, so are used here, thus some underestimation of absolute values 

of peak flows is expected, but future changes in peak flows are assumed to be representative. The effect of any bias in RCM 

precipitation will also be moderated (to some extent) by the derivation of peak flow thresholds for each ensemble member 

separately (Section 3.2). 130 

This application of G2G used gridded driving data provided by i) observations, and ii) the UKCP18 Regional Projections 

(Section 2), and provides gridded outputs of daily mean river flows. The results from the observation-based model run 

(SIMOBS) are used to enable an evaluation of the performance of the baseline climate model data for simulating the 

characteristics of widespread flood events. The G2G outputs of the SIMOBS run shows good agreement with those based on 

observed rainfallflows (from NRFA) for extreme events in XXX1043 catchments across GB (Figure 1 shows the 20-year 135 

event) based on the 1980-2010 time-slice). Bias varies spatially across Great Britain (Supplementary Figure 1) but mostly with 

positive bias in central areas. 
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Figure 1 Scatterplot of estimate of 20-year flood (stationary estimate based on 1980-2010) for GB gauging stations based on 

observations and observation-driven G2G simulation. 140 

3.2 Event extraction 

For each RCM ensemble member, two time-slices were considered: 1980-2010 and 2050-2080, to serve as baseline and future 

viewpoints. Event time series were extracted using a peak-over-threshold (POT) approach as used by the NRFA (UK National 

River Flow Archive; Robson and Reed, 1999). In this approach, peaks are identified as exceedances above some predetermined 

threshold. To improve the independence of events, they must be sufficiently far apart (based on the average time-to-peak of 145 

storm hydrographs). Additionally, consecutive events are checked to see if the minimum flow between the two peaks is less 

than two-thirds of both peaks, otherwise the lower peak is discarded (this process is iterated until no more events are removed). 
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To determine the most appropriate exceedance threshold to use at each 1km grid-square, five different percentiles of flow were 

investigated, ranging from five events per year to one event every 10 years on average. As a result, for each grid-square the 

following numbers of days were selected for each 30-year time-slice: 150 

• 5 events per year (POT5)   – 150 days per grid-square 

• 2 events per year (POT2)   – 60 days per grid-square 

• 1 event per year (POT1)   – 30 days per grid-square 

• 1 event in 5 years (POT0.2)  – 6 days per grid-square 

• 1 event per decade (POT0.1)  – 3 days per grid-square 155 

 
Note this is independent of the distribution of the data due to the use of empirical percentiles rather than fixed, absolute values 

of flow.  

We define widespread events as timepoints for which a large number of locations experience very high flow (i.e. above the 

POT threshold) simultaneously. To determine when widespread events occurred, different levels of extent above threshold 160 

were investigated to ensure that a good range of widespread events were captured, whilst ensuring that only events that could 

be described as “extreme” in some way were retained. To this end, the extent of an event was measured by the percentage of 

grid-squares on the river network which were simultaneously above their respective threshold values (denoted “inundated”).. 

Five minimum extents were investigated: 5%, 2%, 1%, 0.5%, and 0.1%. Note that for the GB river network, 19,914 1km*1km 

grid-squares were considered as being in the network, so an extent of 1% corresponds to ~200 km2 of inundated grid-squares.  165 

To select the at-site threshold and minimum extent, all the combinations above were trialled on a single ensemble member 

(01) for the 1980-2010 time-slice, and the number of days fulfilling both inundation criteria (at-site threshold and minimum 

extent) over the 30-year time-slice are shown in Table 1. Very similar patterns of events extracted (not different at a statistically 

significant level) were observed for all of the ensemble members. 

 170 

Table 1 Number of days where national inundation according to a given threshold (rows) exceeds a certain percentage (columns). 

PoE = Daily Probability of exceedance 

  Extent lower threshold 

# exceedences Daily PoE 5% 2% 1% 0.5% 0.1% 

POT5 5/360 839 1510 1981 2418 3427 

POT2 2/360 353 727 1027 1340 2031 

POT1 1/360 160 401 589 826 1345 

POT0.2 1/1800 25 77 144 239 444 

POT0.1 1/3600 14 35 74 117 262 

 

The POT2 threshold and the 0.1% minimum extent were selected for the following reasons. POT2 provided a good balance 

between having enough exceedances to derive widespread events and keeping the threshold high enough to reasonably model 175 
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the peaks-over-threshold using an extreme-value distribution. The 0.1% inundation coverage was selected to ensure that small, 

very extreme events were not excluded. For applications in risk estimation, these events of smaller extent may occur in areas 

with high potential economic losses, and so are important for accurately estimating national annual damages. 

With this set of parameters for inundation, the specific at-site thresholds were calculated for each grid-square under each RCM 

ensemble member, using the thresholds from the 1980-2010 time-slice for both baseline and future events. This was to allow 180 

the future events to be described in terms of baseline return periods. For the SIMOBS run, there is only a 1980-2010 time-

slice, but the same approach was used to determine at-site thresholds. 

At this point, the event set consisted only of single-day events, which may not truly represent widespread events in the temporal 

sense, owing to the way in which storms move across a region over time and the typical time taken for water to travel 

downstream. To correct this, multi-day events were also defined. For the selected inundation threshold (POT2), event lengths 185 

were defined as the number of consecutive days for which the extent exceeded the selected spatial limit (0.1%).  

 

Figure 2 Number of events with different durations, based on 0.1% extent lower threshold and at-site exceedance of two days per 

year (POT2). 

For the RCM 01 ensemble member in the 1980-2010 time-slice, the distribution of event lengths is shown in Figure 2. Here it 190 

can be seen that beyond seven days, there are very few events which fall under the definition above. There are some arguments 

that one should consider events up to 21 days (De Luca et al., 2017) but this may lead to a greater likelihood of two independent 

events of small geographical spread being recorded as a single, larger event. Such pairs (or larger groupings) of events may 

arise from different weather systems in, for example, the North-West and South-East of England. As a compromise therefore, 

events were limited to 14 days. If an event exceeded this time limit, the 14 days surrounding the day at which spatial spread 195 

was highest were retained as “the event” (six before, seven after). 
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To keep the events simple to interpret, multi-day events were summarised. For each grid-square, each event was summarised 

by the highest single-day value at that grid-square during that event. Taken nationally, this retains the maximum flow at each 

point over the whole region, which should capture the most extreme flows within an event, and will also be helpful for 

estimating upper bounds of risk associated with such events. A more in-depth investigation into multi-day events could be the 200 

focus of future work. 

To assess the change in spatial extremal datasets, one can investigate whether the spatial dependence changes between time-

slices; 𝜒 and �̅�, two measure of extremal dependance (Coles, 2001), are calculated between pairs of points. �̅� describes the 

level of asymptotic independance between two random variables if both are above given thresholds. 𝜒 complements this: if 

two random variables are asymptotically dependent, this describes the strength of that asymptotic dependence. For two points 205 

i and j,  

𝜒𝑖,𝑗 = lim
𝑥→∞

𝑃[𝑄𝑖 > 𝑥|𝑄𝑗 > 𝑥] 

If 𝐶∗(𝑢, 𝑣) = 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣), for a copula C, then  

�̅� = lim
𝑢→1

2 log (1 − 𝑢)

log 𝐶∗(𝑢, 𝑢)
 

χ describes the level of asymptotic dependence; if 𝜒 > 0  then the variables are asymptotically dependent, and �̅� = 1 210 

automatically. But if  𝜒 = 0, they are asymptotically independent. In this case,  �̅� describes the dependence for large but not 

asymptotic values of flow. �̅� close to 1 indicates the variables are highly dependent except at the asymptotic limit.  

3.3 Return Periods 

To ensure a good fit of return periods for the most extreme events, the top 60 independent peaks in each ensemble member 

and timeslice were found using the peak-extraction algorithm as described in Section 3.2. For values over the threshold, a 215 

Generalised Pareto distribution (GPa) was used with distribution function 

𝐹𝐺𝑃𝐴(𝑥) = 1 − (1 +
𝜅(𝑥 − 𝑢)

𝛼
)

1
𝜅

= 𝑃[𝐹𝑙𝑜𝑤 > 𝑥|𝐹𝑙𝑜𝑤 > 𝑢] 

with threshold 𝑢, scale parameter 𝛼 > 0 and shape parameter −1 ≤ 𝜅 ≤ 1. This was fitted to the series of independent peaks 

over the threshold to give a modelled daily probability of exceedance. u is the flow threshold at a specific location, and 𝑃[𝑥 >

 𝑢]  =  2/360 , since this investigation uses the POT2 threshold defined in Section 3.2. 220 

To convert from a per-exceedance PoE to a more widely-used annual PoE, a  simple scaling factor was applied based on there 

being 60 events per location over 30 years: 

𝑝𝐴𝑁𝑁𝑈𝐴𝐿 = 𝑝𝐸𝑉𝐸𝑁𝑇 × (
60

30
) 

In the rest of this work, plots are presented using annual probabilities of exceedance. Due to the limits of using 30-year time-

slices of data, return periods are capped at 1000 years since the uncertainty on exceedance probabilities is very high for the 225 

most infrequent events. 
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4 Results  

Figure 3 Figure 2 shows four example events extracted from the 1980-2010 time-slice from RCM ensemble member 01, with 

return periods described in years. The coloured extent of an event was restricted to those points with a daily probability of 

exceedance of less than 2/360. On the whole, the events are spatially contiguous, and the example events suggest that return 230 

period is highly peaked around one location and quickly tapers off away from the “epicentre”. These are four of the largest 

events in the 1980-2010 time-slice and show a broad range of different events covering Scotland, southern England and central 

England, with key patches of very extreme flow in Figure 3Figure 2b-d, whereas Error! Reference source not found.Figure 

2a shows a widespread but less severe event (in terms of return period of flow). In the rest of this section, return periods 

reported in the text and figures are the maximum return period observed (across space and time) within a single event. The 235 

analysis focuses on the differences between past and future and across space, though differences between the RCM ensemble 

members should be mentioned.  



11 

 

Figure 3 Example events from 1980-2010 time-slice from a single RCM ensemble member, showing return period in years. The 

percentages shown refer to the number of river grid cells ‘inundated’ (i.e. the percentage of river grid cells where flow exceeds the 240 
POT2 threshold), not the percentage of GB land area flooded. 
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Figure 4 shows that the event areas are fairly consistent between the RCM-driven runs and the SIMOBS run, although with a 

bias in the baseline RCM-driven runs to larger events with lower return periods. The RCM-driven runs show a slightly flatter 

distribution of return periods in the 2050-2080 time-slice, with little change in the distribution of areas. Supplementary 245 

Figure 21 shows how the results vary between ensemble members. Ensemble members 07 and 08 show a slightly more uniform 

distribution of events across log(Area), and ensemble member 11 shows a slightly higher number of small events, around 200 

events with a footprint of less than 100km2. Ensemble member 01 shows the greatest difference between the 1980-2010 and 

2050-2080 time-slices (more than 50 fewer events with return period less than 8 years).  

In the rest of this section, the event sets from all ensemble members are combined and given equal weighting. In the 250 

supplementary material, ensemble members are treated as separate sources of equal weighting. Ensemble members are shown 

in different colours and have the convex hull of the points from each ensemble member highlighted to show in particular 

variation in the extremes. 

Taking the union of events extracted from all the ensemble members, changes in extent and duration can be examined. Figure 

5 shows the the number of widespread events by boreal season. There is relatively similar seasonal pattern between SIMOBS 255 

and the RCM baseline (with the RCM ensemble range encompassing the SIMOBS numbers, except in Autumn), although the 

RCM tends to accentuate the seasonal pattern of more flood events in winter and fewer in summer. Overall there are a greater 

number of widespread events in the future (7553) than in the baseline time-slice (7225 events). However, in the months of 

March to August, and particularly in June to August (boreal summer), there are fewer widespread events in the future time-

slice.  260 
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Figure 4 Barplots comparing the distributions of a) event return period and b) event area for the SIMOBS run and the baseline 

time-slice of the RCM-driven runs (averaged across ensemble members), then c) event return period and d) event area for the 

baseline and future time-slices of the RCM-driven runs (averaged across ensemble members) . The error bars show minima and 

maxima across RCM ensemble members for baseline and future time-slices. Note SIMOBS has only one run. 265 
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Figure 5 Barplots comparing the number of widespread events, split by season, for the SIMOBS run and the baseline and future 

time-slices of the RCM-driven runs (averaged across ensemble members). The error bars show minima and maxima across RCM 

ensemble members for baseline and future time-slices. 

In terms of event duration, Figure 6 shows how this varies by season and time-slice, and how that is linked to return period. 270 

The SIMOBS run appears to generate shorter events on average compared to the RCM-driven runs, suggesting a slightly 

stronger temporal autocorrelation in the effects of the use of UKCP18 input data. The return periods (as seen in Figure 4Figure 

3) are broadly similar in distribution. The figure suggests that duration and return period are somewhat correlated, in that the 

longest duration events are very unlikely to have a low return period (i.e. to occur frequently). However, there are a number 

of events which are of short duration but high return period. As one might expect, events are shorter in summer (JJA), with 275 

very few summer events extending longer than 5 days. In the future time-slice, event duration seems to be slightly shorter on 

average, and this is more pronounced in spring (MAM) and summer (JJA) , reducing from 3.54 to 2.99 days in spring, 2.20 to 

2.04 in summer. The events with the highest return periods are in autumn (SON) and winter (DJF), in both time-slices, though 

the distribution of return periods in the future has heavier tails (note the return period axis is on a logarithmic scale). 

Supplementary Figure 32 shows that there is some variability between ensemble members, particularly in the extremes, but 280 

the overall pattern is preserved throughout, as expected from Figure 4Figure 3. 
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Figure 6 Heatmaps showing joint distribution of return period and event duration, split by season, for the SIMOBS run and the 

baseline and future time-slices of the RCM-driven runs (summed across ensemble members). Count is scaled so that the total of 

events in each time-slice adds up to 1. 285 

Figure 7 shows how area and peak return period vary by season in the two time-slices, and in comparison to the SIMOBS run. 

As one might expect, there is a correlation between area and peak pointwise return period across both RCM-driven time-slices. 

The changes between the two time-slices are subtle, but there is an overall trend towards an increase in the range of peak return 

period: the 95th percentile of return periods increases in all seasons, from an increase of 10 years in spring to 205 in summer, 

with the 5th percentile being ~1.2 in all seasons and timeslices. The extent of widespread events appears to stay consistent 290 

between the 1980-2010 and 2050-2080 time-slices, with a possible slight reduction in extent of the largest events in the future 

summer. In all seasons there are a small number of events with return periods exceeding 1000 years, particularly in winter and 

autumn. Supplementary Figure 3 shows that this pattern is matched between ensemble members, but there is some variability 

in the relative patterns of duration and rarity in the extremes.The SIMOBS run shows a broadly similar distribution to the 

baseline (1980-2010) timeslice, although the variability and reduced smoothness appears to be increased, due to the much 295 

smaller number of events from that single run (~500 compared to ~7000 from all 12 RCM ensemble members). 
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Figure 7 Heatmaps showing distribution of events with different areas and return periods, , split by season, for the SIMOBS run 

and the baseline and future time-slices of the RCM-driven runs (summed across all ensemble members). Count is scaled so that the 300 
total of events in each time-slice adds up to 1. 

Figure 8 shows how dependence varies between pairs of points across the river network. Here asymptotic dependence appears 

to have a limit at most location pairs of around 120km (𝜒 is only shown for pairs of locations for which the upper bound of a 

bootstrapped uncertainty bound of �̅� exceeds 0.99). The figure suggests that asymptotic dependence decreases as distance 

increases. In the asymptotically independent case (Figure 8 right), we see a similar pattern in dependence for large values of 305 

flow, with high dependence at short distances, even if they are independent in the limit. There seems to be little change in 

dependence between the two time-slices, although the asymptotic dependence appears to extend slightly further in the baseline 

time-slice. When compared with the SIMOBS run, a shorter radius of asymptotic dependence is exhibited, and at a distance of 

around 200km, values of �̅� are more concentrated around 0.5 compared to the baseline and future time-slices. 
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 310 

Figure 8 Heatmaps showing asymptotic dependence for 100 000 random pairs of points on the river network. 𝝌 is only shown for 

pairs of locations which are asymptotically dependent based on �̅� > 𝟎. 𝟗𝟗.  

If the events are subdivided by season, subtle differences can be observed (Figure 9). Overall, spring and summer show less 

asymptotic dependence (lower values of 𝜒 and �̅�) than autumn and winter: mean χ is 0.641 and mean �̅� is 0.222 for spring and 

summer (Mar-Aug),, compared to mean χ 0.673 and mean �̅� 0.363 for autumn and winter (Sep-Feb). Also, the 50% contour 315 

for �̅� is longer in spring (MAM) (max distance of 495km in baseline, 545km in future) than summer (JJA) (max distance of 

431km in baseline, 462km in future) in both time-slices, suggesting that the variance in �̅� exhibits seasonal variation. Between 

baseline and future, as for Figure 8, the differences are marginal, but both 𝜒 and �̅� show smaller 50% contours in autumn 

compared to the other seasons, suggesting reducing variation in asymptotic dependence in this season. For other percentile 
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contours, patterns are very similar and follow the shapes of Figure 9. For the SIMOBS run, the smaller sample size (one run 320 

compared to multiple ensemble members) leads to a less regular contour. Overall, within- and between-seasonal variability is 

higher in the SIMOBS runThis is also mirrored in Supplementary Figure 54, which shows this split by ensemble member, 

where spatial variation in coherence is strongly preserved between ensemble members. 

 

Figure 9 Contour showing asymptotic dependence for 100 000 random pairs of points on the river network. Contours show 325 
smallest area that contains 50% of point-pairs, split by season and time-slice. 𝝌 and �̅� as in Figure 8 
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5 Discussion 

5.1 GB results 

A non-trivial number of very extreme events were observed in the RCM-driven runs for both baseline and future time-slices. 

Tawn et al. (2018) point out that, within the observed annual maxima series, the chance of a 100-year return period flood event 330 

occuring somewhere within a set of 916 gauging stations in England and Wales is approximately 78% in any one year, and so 

over a gridded dataset of more points, and with more years, the occurrence of these rare events is statistically plausible. Also, 

due to the probability distributions used, a small change in event peak flow magnitude in the upper tail of the distribution can 

lead to a large change in return period (when the shape parameter κ is positive, which is the case for most of the UK (Griffin 

et al., 2019)). Variability in extent, duration and return period in the modelled baseline and future time-slices seems to be much 335 

increased compared to the SIMOBS runs, but this may be in part due to the greatly reduced sample size in the SIMOBS run (1 

run vs 12 ensemble members). The present and future time-slices do seem to overestimate duration and rarity compared to the 

SIMOBS run, which may be due to a difficulty in capturing smaller, less extreme events in the UKCP18 data and the 

subsequent model outputs. 

The number of widespread events (based on a POT2 threshold derived from 1980-2010 data) was found to increase in total in 340 

the future time-slice (Figure 5Fig 5) but was slightly lower in the future for spring and summer (March-August) events. The 

typical spatial extent of events was found to be fairly consistent between time-slices, but summer (June-August) events 

appeared smaller in the future across all return periods. A pairwise analysis suggested that inundated locations were 

asymptotically independent beyond a radius of around 120 km, but the distribution of dependence was slightly less 

concentrated in the future. Event duration decreased on average in all seasons between the two time-slices. Patterns were 345 

similar across all RCM ensemble members. This suggests an increase in seasonality in widespread flood events, with more 

widespread flooding in winter, and possibly a shift towards smaller intense flooding in spring and summer. 

The increased number of widespread flood events is consistent with work by Lavers and Villarini (2013) which shows the 

possible increase in atmospheric rivers, especially in Western Europe, which drive extreme precipitation events. The limited 

change in extent of widespread events in future is consistent with Bevaqua et al. (2021), who analyse multi-thousand-year 350 

climate model simulations and show non-significant changes in the spatial footprint of winter extreme precipitation over most 

of Britain, although there are significant changes across most of the rest of the Northern Hemisphere extratropics. The 

seasonality changes are consistent with Kay et al. (2022), who show that projections of soil moisture change point towards 

drier summers and autumns, and Blöschl et al (2017), who suggest that UK floods are closely linked to soil moisture timing. 

But seasonality changes may also be linked to a change in the size of flooding events in the future in summer which, in the 355 

UK, are typically linked to short-duration, intense summer storms. It may be that these intense storms become smaller in extent, 

below this paper’s definition of “widespread”, but Chen et al. (2021) suggests that convective storms may cover a greater area 

in the future. Between ensemble members (Supplementary Figure 4), variability of flood extent is higher in summer (JJA), 
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even more so in the future time-slice, and one member actually shows an increase in summer (JJA) events in the future time-

slice (Figure 5Figure 4). 360 

The simulated future changes in the characteristics of widespread flood events have to be interpreted in the context of some 

differences in event characteristics for the baseline climate projection-driven model runs compared to the observation-driven 

model run. The baseline RCM-driven runs tend to give larger events with lower return periods, and accentuate the seasonal 

pattern of more events in winter and fewer in summer. Differences could be due to RCM biases, but are also probably related 

to the 12km resolution of the RCM data, which likely means that rainfall inputs occur more homogeneously and simultaneously 365 

over larger areas than for 1km observed data, leading to flood events of typically larger extent but lower return period. Future 

work could investigate the sensitivity of the results to bias correction options, including use of process-informed (rather than 

purely statistical) methods currently being developed. The UKCP18 Local data (Kendon et al. 2021) could also be applied; 

this provides an ensemble from a higher resolution (2.2km) convection-permitting model (CPM), nested in the RCM ensemble, 

and has been shown to give some differences in at-site changes in flood peaks (Kay 2022). It would be interesting to assess 370 

whether there are also differences in seasonal widespread flooding characteristics, both for the baseline time-slice and in terms 

of possible future changes. 

5.2 Methodology 

While the focus here was GB, the methods and analyses described could be applied to other regions with hydrological models 

and climate projections of appropriate resolution. The most suitable definition for a “widespread flood event” may vary for 375 

other countries/regions. For example, other applications may only be interested in events with more extreme flows, so the POT 

threshold could be increased, or only interested in events with much greater extents, so the extent threshold could be increased. 

The event duration would also need to be considered in the context of basin size, typical event flashiness (related to, for 

example, geology and steepness) and typical storm duration for the region. 

The event extraction method developed here did not explicitly require events to be spatially contiguous. While this does 380 

generally appear to be the case for the largest events, the event shown in Figure 3Figure 2a suggests that some potentially 

simultaneous but independent events are captured. This may be due to capturing two consecutive or overlapping events, due 

to the method of event length determination, thus a more sophisticated form of event delineation could improve the process. 

Brunner et al. (2020) make use of a spatial dependence function (F-madogram) and hierarchical clustering to determine events 

for which points are mutually dependent to a sufficient degree, which could improve event identification.  385 

In addition, future work could expand on the methods developed here by investigating ways of expanding the set of widespread 

flood events using computationally-cheaper methods such as emulation or statistical Monte Carlo methods….   

To highlight spatial dependence in a simpler way than χ, Berghuijs et al. (2019) use a metric of flood “synchrony”, measuring 

how often extreme floods occur at the same time within a given radius of a target point. Gridded datasets like those used here 

could be evaluated using this metric, or one like it.  390 
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6 Conclusions  

This paper has used the latest regional climate projections for the UK (UKCP18 Regional) and a national-scale grid-based 

hydrological model (Grid-to-Grid, G2G) to generate grids of daily mean flows across GB, from which a set of widespread 

flood events was extracted. The question of what defines a “widespread flood event” was investigated; here these were defined 

as exceeding an at-site 99.5th percentile (equivalent to two days per year, POT2) simultaneously over an area of at least 20 395 

km2, with a maximum duration of 14 days. The event set was used to investigate potential changes in spatial structure of river 

flooding across mainland GB between the 1990s and 2060s. In summary, the number of widespread events was found to 

increase in total in the future time-slice, but was slightly lower in the future for spring and summer (March-August) events. 

The typical spatial extent of events was found to be fairly consistent between time-slices, but summer (June-August) events 

appeared smaller in the future across all return periods. 400 

While the focus here was GB, the methods and analyses described could be applied to other regions with hydrological models 

and climate projections of appropriate resolution. The most suitable definition for a “widespread flood event” may vary for 

other countries/regions. The analysis of Bevaqua et al. (2021) suggests larger spatial footprints of winter precipitation extremes 

in future across much of the Northern Hemisphere (apart from Britain and parts of western Europe and Africa), which could 

lead to larger widespread flood extents in such regions. Future changes in widespread flooding could have important 405 

implications for flood incidence response and flood risk management, for example insurers want to be able to understand and 

mitigate their risk of receiving concurrent claims from large numbers of homes and businesses. However, the potential future 

changes have to be interpreted in the context of any differences in event characteristics between the baseline climate projection-

driven model runs and an observation-driven model run. 

This paper and the data generated therein forms the basis for a wider scheme of work generating extreme flooding events for 410 

risk analysis, which is the subject of a number of subsequent papers: Griffin et al. (2022b) discussing statistical methods to 

generate large numbers of plausible widespread events with long return periods and Sayers et al. (2023) on applying the 

statistical event sets to risk analysis through catastrophe modelling methods. Further work could look at more sophisticated 

methods of event identification, and look at describing or separating simultaneous or temporally-overlapping events. This work 

focuses on fluvial flooding but surface water flooding (not from inundation of rivers and water bodies) is also a large factor in 415 

estimating economic losses due to flooding. It would be of interest to use the Grid-to-Grid model including surface water 

(Rudd et al., 2020) applied to the framework of this paper to see if the different types of flooding will change in different ways 

over time. 

Data availability 

Peak flow data freely available from UK National River Flow Archive (nrfa.ceh.ac.uk). UKCP18 data available from Met 420 

Office under and Open Government Licence. Event set can be found at the Environmental Information Data Centre (Griffin et 

al., 2022a). 
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