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Abstract. An event-based approach has been used to explore the potential effects of climate change on the spatial and temporal 

coherence of widespread flood events in Great Britain. Time series of daily mean river flow were generated using a gridded 

national-scale hydrological model (Grid-to-Grid) driven by the 12-member ensemble of regional climate projections from UK 

Climate Projections 2018 (UKCP18). Gridded flow series were generated nationally for 30-year baseline (1980-2010) and 10 

future (2051-2080) time-slices from which sets of widespread extreme events were extracted. These events were defined as 

exceeding an at-site 99.5th percentile (equivalent to two days per year) simultaneously over an area of at least 20 km2, allowing 

events to last up towith a maximum duration of 14 days. This resulted in a set of 14,400 widespread events: approximately 20 

events per year, per ensemble member, per time-slice. Overall, results have shown that events are more temporally concentrated 

in winter in the future time-slice compared to the baseline. Distributions of event area were similar in both time-slices, but the 15 

distribution of at-site return periods showed some heavier tails in the future time-slice. Results were consistent across ensemble 

members, with none showing significant difference in distribution. 

1 Introduction 

According to the 2020 UK National Risk Register (HM Government, 2020), river flooding is one of the highest impact hazards 

affecting the UK. Flood prediction, and more generally flood frequency estimation, is crucial to mitigating these hazards to 20 

reduce impact. Flood frequency estimation is often carried out on a single-site basis, computing the frequency of floods at 

specific locations in isolation. However, the management of flood risk on a regional or national basis requires an understanding 

of how likely it is that multiple locations will experience floods at the same time. Widespread flooding presents a huge 

challenge for local communities and emergency response services and has long-lasting impacts, as demonstrated by the 

extensive flooding experienced in North-West England as a consequence of Storm Desmond and Storm Frank in winter 25 

2015/2016 (Barker et al., 2016).  

One approach to risk quantification is catastrophe modelling (CAT modelling), which is used in the insurance industry to 

assess annual average losses. CAT modelling typically makes use of three components: property data, stochastic hazard event 

sets and a relationship between magnitude of hazard and the expected loss for each property (Grossi and Kunreuther, 2005). 

The present work focuses on the second component: developing a set of widespread flood events, here characterised by river 30 

flow and the probability of exceeding that flow. Simply making use of observed widespread events typically does not provide 
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enough data to reliably determine hazard probability. Therefore, developing a larger set of events for analysis is desirable to 

improve the uncertainty of risk estimates, particularly for events which have a return period (or average recurrence interval) 

greater than the length of observed records. For example, return periods as long as 1 in 200 years are often used as the design 

standard for large-scale engineering projects. This can involve making use of hydrological models driven by large ensembles 35 

of driving data from climate models (ensembles of model runs using perturbed parameter sets) over a shorter time period 

(Kelder et al., 2020), or through predominantly stochastic event-based models (Filipova et al., 2019). 

Climate change affects flow regimes globally (Jiménez Cisneros, 2015), and studies suggest that flooding in the UK is likely 

to become (or has already become) more frequent and severe (Collet et al., 2018). Spatial coherence of flooding events – 

whether flood timings at different locations have become more correlated – is of key interest to national-scale actions to 40 

mitigate the associated loss. The dependence structure of river flow has been analysed on a Europe-wide scape (Berghuijs et 

al., 2019) and focusing onfor the United States (Brunner et al., 2020), focusing on synchrony of events within a given range. 

The UK'’s Third Climate Change Risk Assessment (CCRA3) included work which analysed the changes in risk caused by 

possible changes in flood dynamics (Sayers et al., 2020). CCRA3 adds to the breadth of guidance that has been developed for 

policymakers and water managers to try and account for such changes (Reynard et al., 2017).  45 

This paper makes use of the Grid-to-Grid hydrological model (Bell et al., 2009) and the UK Climate Projections 2018 

(UKCP18) Regional Projections (Met Office Hadley Centre, 2018b) to generate two sets of over 7000 hazard events for the 

recent past (1980-2010) and the future (2050-2080). The question of what defines a "“widespread flood event"” is discussed, 

and differences between events in terms of extent, likelihood and duration are analysed in the context of possible changes in 

the spatio-temporal structure of widespread events in the future. Often flooding is considered on a site-by-site or regionally 50 

summarised fashion, particularly when looking into projections of the future. This paper hopes to show the benefits of 

considering widespread flooding events over a large area using gridded, rather than catchment-based hydrological modelling 

to expand our knowledge of the extent of possible flooding events in the UK. Comparing UKCP18-driven model runs to those 

driven by observed rainfall and temperature will give confidence to the use of these event sets in future analysis. Note that, 

within the context of flood frequency, this paper refers to floods or flooding events, although in reality many of these will be 55 

merely high flows that do not exceed bankfull. 

2 Data 

2.1 Climate projections 

UK Climate Projections 2018 (UKCP18) provides information on potential changes in a range of climate variables over the 

21st century, via a number of different products (Murphy et al., 2018). This dataset has previously been used to analyse river 60 

flows in the UK and how they may differ in the future due to climate change (Kay 2021; Kay et al., 2021).  

The UKCP18 Regional Projections (Met Office Hadley Centre, 2018b) comprise a 12-member perturbed parameter ensemble 

(PPE) of the Hadley Centre RCMRegional Climate Model (RCM), nested in an equivalent PPE of their Global Climate Model 
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(GCM). The ensemble covers the period December 1980 to November 2080 under an RCP8.5 emissions scenario 

(Representative Concentration Pathway) (Riahi et al., 2011). The 12 ensemble members are numbered from 01 to 15, where 65 

01 uses the “standard” parameterization of the Hadley Centre RCM, and ensemble members 02, 03 and 14 are not available. 

The rainfall and temperature used in the present work is on a 12 km spatial resolution and a daily timestep covering England, 

Scotland and Wales for a synthetic 360-day year (30 days per month). The data are available re-projected from the native 

climate model grid to a 12 km grid aligned with the Great Britain (GB)GB national grid. The re-projected daily precipitation 

and daily minimum and maximum temperatures are used in the present work. 70 

In some applications, bias correction is applied to the UKCP18 precipitation grids (Murphy et al., 2018), however due to the 

focus on the present work on extremes rather than the whole regime in general, bias correction is not applied here. 

3 Methods 

3.1 Hydrological model 

The Grid-to-Grid (G2G) hydrological model employs digital datasets to simulate the natural flow response to rainfall across 75 

the model domain. In this study, G2G was implemented as an area-wide runoff-production and flow routing model, producing 

outputs on a 1km grid aligned with the GB national grid (Bell et al., 2009). G2G makes use of the UK 50m Integrated 

Hydrological Digital Terrain Model (IHDTM; Morris and Flavin, 1990) to derive high resolution river networks and terrain 

information.  The network-derivation scheme of Paz et al. (2006) was used to identify 1km-resolution flow directions from 

hydrologically-corrected 50m river networks, following Davies and Bell (2008). The routing component of G2G applies 80 

schemes that invoke the kinematic wave approximation as their basis (Bell et al., 2007a, b). In urban and suburban areas, 

identified through the LCM2000 spatial dataset of land-cover (Fuller et al., 2002), responsiveness is increased through the use 

of an enhanced routing speed and reduced soil storage, leading to a faster response to rainfall. Grid-to-Grid has been widely 

tested and applied to explore climate change impacts on river flows across GB, for both floods (Bell et al., 2009, 2012; Kay et 

al., 2018) and droughts (Rudd et al., 2019; Kay, 2021; Lane and Kay, 2021). It has also been used by the English Environment 85 

Agency for flood forecasting (Price et al., 2012). 

This application of G2G used gridded precipitation, temperature and potential evaporation provided either by observations, or 

from the UKCP18 Regional Projections outlined above as inputs.  

An investigation was undertaken to identify whether bias correction should be used in this paper. G2G outputs based on the 

UKCP18 RCM ensemble members was compared to daily mean flow (data available from the NRFA). The 50-year event 90 

(annual exceedance probability of 2%) was calculated for the station and the relevant gridsquare it lies in. Figure 1 shows that 

across most of Great Britain where the mode was run, bias correction led to a fairly constant underestimation of the 50-year 

event compared to those from observations. Although the results without bias correction are more variable with some stations 

showing a large overestimate, they have a better mean bias when calculated nationally, which was felt to be important when 
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looking on a national scale. This was also computed for the 2-year flood with very similar results. Due to this, it was decided 95 

that bias correction would not be applied in this paper. 

 

Figure 1 Comparision of difference between (a) with and (b) without bias correction averaged over all 12 ensemble members. Colour 

indicated the change between the estimate for the 50-year return period peak flow (based on gauged daily flow). Positive values 

indicate that modelled data has a larger value of Q50. 100 

In isolation it is difficult to say whether these results are realistic compared to observations. However, gridded river flow 

observations are not available for Great Britain nationally. Therefore, in addition to the UKCP18-driven G2G output, this 

paper also presents data from a set of “observation-based simulations” as used in Kay (2022; Fig 1) as a step towards comparing 

modelled and observed extreme flow. This run still uses Grid-to-Grid but is driven using observed inputs: CEH-GEAR daily 

gridded precipitation (Tanguy et al., 2016), monthly short grass potential evapotranspiration (40km resolution) from MORECS 105 

(Hough and Jones, 1997), and daily 1km minimum and maximum daily temperatures (Met Office et al., 2019). Precipitation 

was subdivided uniformly through the day, and temperature varied sinusoidally between the extremes. In this paper, this will 

be referred to as the SIMOBS run. 

3.2 Event extraction 

For each RCM ensemble member, two time-slices were considered: 1980-2010 and 2050-2080, to serve as baseline and future 110 

viewpoints. Event time series were extracted using a peak-over-threshold (POT) approach as used by the NRFA (UK National 

River Flow Archive; Robson and Reed, 1999). In this approach, peaks are identified as exceedances above some predetermined 
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threshold. To improve the independence of events, they must be sufficiently far apart (based on the average time-to-peak of 

storm hydrographs). Additionally, consecutive events are checked to see if the minimum flow between the two peaks is less 

than two-thirds of both peaks, otherwise the lower peak is discarded (this process is iterated until no more events are removed). 115 

To determine the most appropriate exceedance threshold to use at each 1km grid-square, five different percentiles of flow were 

investigated, ranging from five events per year to one event every 10 years on average. As a result, for each grid-square the 

following numbers of days were selected for each time-slice: 

• 5 events per year (POT5)   – 148 days per grid-square 

• 2 events per year (POT2)   – 60 days per grid-square 120 

• 1 event per year (POT1)   – 30 days per grid-square 

• 1 event in 5 years (POT0.2Q5)  – 5 days per grid-square 

• 1 event per decade (POT0.1Q10)  – 3 days per grid-square 

 
Note this is independent of the distribution of the data due to the use of empirical percentiles rather than fixed, absolute values 125 

of flow.  

We define widespread events as timepoints for which a large number of locations experience very high flow (i.e. above the 

POT threshold) simultaneously. To determine when widespread events occurred, different levels of extent above threshold 

were investigated to ensure that a good range of widespread events were captured, whilst ensuring that only events that could 

be described as “extreme” in some way were retained. To this end, the extent of an event was measured by the percentage of 130 

grid-squares on the river network which were simultaneously above their respective threshold values (denoted “inundated”).; 

this was considered equivalent to a grid-square being “inundated”, although the river channel at this location might not be 

actually inundated in a physical sense. Five minimum extents were investigated: 5%, 2%, 1%, 0.5%, and 0.1%. Note that for 

the GB river network, 19,914 grid-squares were considered as being in the network, so an extent of 1% corresponds to ~200 

km2 of inundated grid-squares.  135 

To select the at-site threshold and minimum extent, all the combinations above were trialled on a single ensemble member 

(01) for the 1980-2010 time-slice, and the number of days fulfilling both inundation criteria (at-site threshold and minimum 

extent) over the 30-year time-slice are shown in Table 1. Very similar patterns of events extracted (not different at a statistically 

significant level) were observed for all of the ensemble members. 

 140 

Table 1 Number of days where national inundation according to a given threshold (rows) exceeds a certain percentage (columns). 

PoE = Daily Probability of exceedance 

  Extent lower threshold 

# exceedences Daily PoE 5% 2% 1% 0.5% 0.1% 

POT55/yr 5/360 839 1510 1981 2418 3427 

POT22/yr 2/360 353 727 1027 1340 2031 
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POT11/yr 1/360 160 401 589 826 1345 

POT0.2/yr 1/720 25 77 144 239 444 

POT0.1/yr 1/3600 14 35 74 117 262 

 

The POT2 threshold and the 0.1% minimum extent were selected for the following reasons. POT2 provided a good balance 

between having enough exceedances to derive widespread events and keeping the threshold high enough to reasonably model 145 

the peaks-over-threshold using an extreme-value distribution. The 0.1% inundation coverage was selected to ensure that small, 

very extreme events were not excluded.The 0.1% inundation coverage was selected to ensure that events of lesser extent that 

included more extreme single-point flow values were retained in the dataset. For applications in risk estimation, these events 

of smaller extent may occur in areas with high potential economic losses, and so are important for accurately estimating 

national annual damages. 150 

With this set of parameters for inundation, the specific at-site thresholds were calculated for each grid-square under each RCM 

ensemble member, using the thresholds from the 1980-2010 time-slice for both baselinepresent and future events. This was to 

allow the future events to be described in terms of presentbaseline-day return periods. 

At this point, the event set consisted only of single-day events, which may not truly represent widespread events in the temporal 

sense, owing to the way in which storms move across a region over time and the typical time taken for water to travel 155 

downstream. To correct this, multi-day events were also defined. For the selected inundation threshold (POT2), event lengths 

were defined as the number of consecutive days for which the extent exceeded the selected spatial limit (0.1%). For the RCM 

01 ensemble member in the 1980-2010 time-slice, the distribution of event lengths is shown in Fig 21. 

 

Figure 21 Number of events with different durations, based on 0.5% coverage and at-site exceedance of two days per year. 160 
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Here it can be seen that beyond seven days, there are very few events which fall under the definition above. There are some 

arguments that one should consider events up to 21 days (De Luca, 2017) but this may lead to a greater likelihood of two 

independent events of small geographical spread being recorded as a single, larger event. Such pairs (or larger groupings) of 

events may arise from different weather systems in, for example, the North-West and South-East of England. As a compromise 

therefore, events were limited to 14 days. If an event exceeded this time limit, the 14 days surrounding the day at which spatial 165 

spread was highest were retained as “the event” (six before, seven after). 

To keep the events simple to interpret, multi-day events were summarised. For each grid-square, each event was summarised 

by the highest single-day value at that grid-square during that event. Taken nationally, this retains the maximum flow at each 

point over the whole region, which should capture the most extreme flows within an event, and will also be helpful for 

estimating upper bounds of risk associated with such events. A more in-depth investigation into multi-day events could be the 170 

focus of future work. 

To assess the change in spatial extremal datasets, one can investigate whether the spatial dependence changes between time-

slices; 𝜒 and �̅�, two measure of extremal dependance (Coles, 2001), are calculated between pairs of points. �̅� describes the 

level of asymptotic independance between two random variables if both are above given thresholds. 𝜒 complements this: if 

two random variables are asymptotically dependent, this describes the strength of that asymptotic dependence. For two points 175 

i and j,  

𝜒𝑖,𝑗 = lim
𝑥→∞

𝑃[𝑄𝑖 > 𝑥|𝑄𝑗 > 𝑥] 

If 𝐶∗(𝑢, 𝑣) = 1 − 𝑢 − 𝑣 + 𝐶(𝑢, 𝑣), for a copula C, then  

�̅� = lim
𝑢→1

2 log (1 − 𝑢)

log 𝐶∗(𝑢, 𝑢)
 

χ describes the level of asymptotic dependence; if 𝜒 >= 0 then the variables are  asymptotically independent, and �̅� = 1 180 

automatically. But if  𝜒 = 0,otherwise  they are asymptotically independent. In the asymptotically independentthis case,  �̅� 

describes the dependence for large but not asymptotic values of flow. �̅� close to 1 indicates the variables are highly dependent 

except at the asymptotic limit. In the asymptotically dependent case,  �̅� = 1. 

3.3 Return Periods 

To ensure a good fit of return periods for the most extreme events, the top 60 independent peaks in each ensemble member 185 

and timeslice were found using the peak-extraction algorithm as described in Section 3.2. For values over the threshold, a 

Generalised Pareto distribution (GPa) was used with distribution function 

𝐹𝐺𝑃𝐴(𝑥) = 1 − (1 +
𝜅(𝑥 − 𝑢)

𝛼
)

1
𝜅

= 𝑃[𝐹𝑙𝑜𝑤 > 𝑥|𝐹𝑙𝑜𝑤 > 𝑢] 

with threshold 𝑢, scale parameter 𝛼 > 0 and shape parameter −1 ≤ 𝜅 ≤ 1. This was fitted to the series of independent peaks 

over the threshold to give a modelled daily probability of exceedance. To smoothly transition between the empirical 190 
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distribution for the lower flows and the GPa distribution the following expression was used, as described in Towe et al., (2016) 

to more appropriately describe probability of non-exceedance for all values of flow: 

𝐹(𝑥) = {
𝐹𝐺𝑃𝐴(𝑥)𝑃[𝑥 > 𝑢] 𝑖𝑓 𝑥 > 𝑢

FEMP(𝑥) 𝑖𝑓𝑥 ≤ 𝑢
 

where FEMP is the empirical cumulative distribution function, u is the flow threshold at a specific location, and 𝑃[𝑥 >  𝑢]  =

 2/360 , since this investigation uses the POT2 threshold defined in Section 3.2. 195 

Probabilities of exceedance (PoE) were determined using daily data, and so tTo convert from a per-exceedancedaily PoE to a 

more widely-used annual PoE, a Poisson approximation was used based on a 360-day year simple scaling factor was applied 

based on there being 60 events per location over 30 years: 

𝑝𝐴𝑁𝑁𝑈𝐴𝐿 = 𝑝𝐸𝑉𝐸𝑁𝑇 × (
60

30
) 1 − exp (−360 𝑝𝐷𝐴𝐼𝐿𝑌) 

In the rest of this work, plots are presented using annual probabilities of exceedance. For reference, if 𝑝𝐷𝐴𝐼𝐿𝑌 =  2/360, then 200 

𝑝𝐴𝑁𝑁𝑈𝐴𝐿 ≈ 0.865. Due to the limits of using 30-year time-slices of data, return periods are capped at 1000 years since the 

uncertainty on exceedance probabilities is very high for the most infrequent events. 

An alternative approach is to simply use FGPA(x) directly, and scale probabilities by N/M, where N is the number of years in 

the record, and M is the number of exceedances extracted. Due to the small probabilities involved, these don’t line up for the 

largest values of flow. This approach leads to smaller estimates of return period, which might potentially align with discussion 205 

of the “frequency of 100-year events in the UK” (Tawn et al., 2019). 

4 Results & Discussion 

Fig 32 shows four example events extracted from the 1980-2010 time-slice from RCM ensemble member 01, with return 

periods described in years. The coloured extent of an event was restricted to those points with a daily probability of exceedance 

of less than 2/360. The percentages shown refer to the percentage of the number of river grid cells, not a fraction of UK land 210 

area.  

On the whole, the events are spatially contiguous, although the event in Fig 2a does suggest that some number of potentially 

simultaneous but independent events are captured; this may be due to two separate events happening on consecutive days due 

to the method of event length determination. This suggests that a more sophisticated form of event delineation could improve 

the process. Alsoand, the example events suggest that return period is highly peaked around one location and quickly tapers 215 

off away from the “epicentre”.  These are four of the largest events in the 1980-2010 time-slice and show a broad range of 

different events covering Scotland, southern England and central England, with key patches of very extreme flow in Fig 32b, 

Fig 32c and Fig 32d, whereas Fig 32a shows a widespread but less severe event (in terms of return period of flow). In the rest 

of this section, return periods reported in the text and figures are the maximum return period observed (across space and time) 

within a single event. 220 
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In this paper, analysis focuses on the differences between past and future and across space, though differences between the 

RCM ensemble members should be mentioned. Fig 43(a, c) shows that the event areas are fairly consistent between ensemble 

members for both time-slicesthe RCM-driven runs and the SIMOBS run, with a slight bias in the RCM-driven runs to larger 

events with lower return periods , although All the RCM-driven runs show a slightly flatter distribution of return periods in 

the 2050-2080 time-slice. Supplementary Material Fig 1 shows how the results vary between ensemble members. Eensemble 225 

members 07 and 08 shows a slightly more uniform distribution of events across log(Area), and ensemble member 11 shows a 

slightly higher number of small events, around 200 events with a footprint of less than 100km2. Ensemble member 01 shows 

the greatest difference between the 1980-2010 and 2050-2080 time-slices (more than 50 fewer events with return period less 

than 8 years)For return periods (Fig 3b, Fig 3d), the overall distribution is fairly consistent across ensemble members and time-

slices. Ensemble member 01 shows the greatest difference between the 1980-2010 and 2050-2080 time-slices (more than 50 230 

fewer events with return period less than 8 years), although all the ensemble members show a slightly flatter distribution of 

return periods in the 2050-2080 time-slice. In the rest of this section, the event sets from all ensemble members are combined 

and given equal weighting. In the supplementary material, ensemble members are treated as separate sources of equal 

weighting. Ensemble members are shown in different colours and have the convex hull of the points from each ensemble 

member highlighted to show in particular variation in the extremes. 235 
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Figure 32 Example events from 1981-2010 time-slice from a single RCM ensemble member, showing return period in years. 
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Figure 43 Histograms showing distribution of event area and return period, split across time-slicess and ensemble members. 240 

Taking the union of events extracted from all the ensemble members, changes in extent and duration can be examined. Figure 

5Figure 4 highlights the changes in the number of widespread events between the two time-slices, subdivided by boreal season. 

The figure shows overall more widespread events in the future (7553) than in the 1980-2010 time-slice (7225 events).  

However, in the months of March to August, and particularly in June to August (boreal summer), one sees fewer widespread 

events in the future time-slice. This may suggest a shift to more widespread flooding in winter, and drier summers overall, 245 

which lines up with the literature (Murphy et al., 2019). Alternatively, this may instead be linked to a change in the size of 

flooding events in the future in summer events which, in the UK, are typically linked to short-duration, intense summer storms. 

Between ensemble members, variability is higher in Summer, even more so in the future time-slice, and one member actually 

saw an increase in summer events in the future time-slice (Figure 4, right). It may be the case that these intense storms may 

become smaller in extent, below this paper’s definition of “widespread”. It may be the case that these intense storms may 250 

become smaller in extent, below this paper’s definition of “widespread”. However, Chen et al. (2021) suggests, using the 
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UKCP18 Local projections (which uses convection-permitting models rather than RCMs), that convective storms in future 

may cover a greater area. Thus future work could look more specifically at differences in the methods which could cause these 

differences. 

 255 

Figure 54 Number of widespread events, summed across ensemble members, split by season and time-slice. Left: total events, 

Right: mean number of events per ensemble member with error bars showing minimum and maximum across ensemble members. 

In terms of event duration, Fig 65 shows how this varies by season and time-slice, and how that is linked to return period. The 

SIMOBS run appears to generate shorter events on average compared to the RCM-driven runs, suggesting a slightly stronger 

temporal autocorrelation in the effects of the use of UKCP18 input data. The return periods (as seen in Figure 3) are broadly 260 

similar in distribution. The figure suggests that duration and return period are somewhat correlated, in that the longest duration 

events are very unlikely to have a low return period (i.e. to occur frequently). However, there are a number of events which 

are of short duration but high return period. As one might expect, events are shorter in boreal summer (JJA), with very few 

summer events extending longer than 5 days.  In the future time-slice, event duration seems to be slightly shorter on average, 

and this is more pronounced in spring (MAM) and summer (JJA) , reducing from 3.54 to 2.99 days in spring, 2.20 to 2.04 in 265 

summer. The events with the highest return periods are in boreal autumn (SON) and winter (DJF), in both time-slices, though 

the distribution of return periods in the future has heavier tails (note the return period axis is on a logarithmic scale). 

Supplementary material figure 1 shows that there is some variability between ensemble members, particularly in the extremes, 

but the overall pattern is preserved throughout, as expected from Figure 43. 

Figure 6 shows how area and peak return period vary by season in the two time-slices, and in comparison to the SIMOBS run. 270 

As one might expect, there is a correlation between area and peak pointwise return period across both RCM-driven time-slices. 

The changes between the two time-slices are subtle, but there is an overall trend towards an increase in the range of peak return 

period: the 95th percentile of return periods increases in all seasons, from an increase of 10 years in spring to 205 in summer, 

with the 5th percentile being ~1.2 in all seasons and timeslices. The extent of widespread events appears to stay consistent 

between the 1980-2010 and 2050-2080 time-slices, with a possible slight reduction in extent of the largest events in the future 275 
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summer. We see that in all seasons are a small number of events with return periods exceeding 1000 years, particularly in 

winter and autumn. Supplementary material figure 32 shows that this pattern is matcheds between ensemble members, but 

there is some variability in the relative patternsdynamics of duration and rarity in the extremes. The SIMOBS run shows a 

broadly similar distribution to the baseline (1980-2010) timeslice, although the variability and reduced smoothness appears to 

be increased, due to the much smaller number of events from that single run (~500 compared to ~7000 from all 12 RCM 280 

ensemble members). 

 

Figure 65 Heatmaps showing joint distribution of return period and event duration, summed across ensemble members, split by 

season and time-slice. Count is scaled so that the total of events in each timeslice adds up to 1. 
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 285 

Figure 76 Heatmaps showing distribution of events with different areas and return periods, split by time-slice and season, summed 

across all ensemble members. Count is scaled so that the total of events in each timeslice adds up to 1. 

Although extreme, Tawn et al. (2019) point out that, within the observed AMAX series, the chance of a 100-year return period 

event occuring somewhere within a set of 916 gauging stations in England and Wales is approximately 78%, and so over a 

gridded dataset of more points, and with more events, the observation of these extremely rare events is not so surprising. Also, 290 

due to the probability distributions used, a small change in flow in the upper tail of the distribution can lead to a large change 

in return period (when the shape parameter κ is positive, which is the case for most of the UK (Griffin et al., 2019)). 

Figure 8Figure 7 shows how dependence varies between pairs of points across the river network. Here asymptotic dependence 

appears to have a limit at most location pairs of around 120km (𝜒 is only shown for pairs of locations for which the upper 

bound of a bootstrapped uncertainty bound of �̅� exceeds 0.99). The figure suggests that asymptotic dependence decreases as 295 

distance increases. In the asymptotically independent case (Figure 87b), we see a similar pattern in dependence for large values 

of flow, with high dependence at short distances, even if they are independent in the limit.. There seems to be little change in 
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dependence between the two time-slices, although the asymptotic dependence appears to extend slightly further in the present 

baseline time-slice (a maximum distance for which �̅� = 0 of 300km in the present baseline versus 260km in the future). If the 

events are subdivided by season, subtle differences can be observed (Fig 98). Overall, spring and summer shows less 300 

asymptotic dependence (lower values of 𝜒 and �̅�) than autumn and winter. In spring and summer (Mar-Aug), mean χ is 0.641 

and mean �̅� is 0.222, compared to mean χ is 0.673 and mean �̅� is 0.363 for autumn and winter (Sep-Feb). Also, the 50% 

contour for �̅� is longer in spring (MAM) (max distance of 495km in presentbaseline, 545km in future) than boreal summer 

(JJA) (max distance of 431km in presentbaseline, 462km in future) in both time-slices, suggesting that the variance in �̅� 

exhibits seasonal variation. Between present baseline and future, as for Fig 7, the differences are marginal, but both 𝜒 and �̅� 305 

show smaller 50% contours in autumn compared to the other seasons, suggesting reducing variation in asymptotic dependence 

in this season. For other percentile contours, patterns are very similar and follow the shapes of Fig 87. This is also mirrored in 

Supplementary material figure 43, which shows this split by ensemble member, where spatial variation in coherence is strongly 

preserved between ensemble members. 

 310 

Figure 87 Heatmaps showing asymptotic dependence for 100 000 random pairs of points on the river network. 𝝌 is only shown for 

pairs of locations which are asymptotically dependent based on �̅� > 𝟎. 𝟗𝟗.  
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Figure 98 Contour showing asymptotic dependence for 100 000 random pairs of points on the river network. Contours show 

smallest area that contains 50% of point-pairs, split by season and time-slice. 𝝌 and �̅� as in Figure 7 315 

5 ConclusionsDiscussion 

The event extraction method did not explicitly require events to be spatially contiguous, but this does generally appear to be 

the case in the largest events. The event in Fig 3a does suggest that some number of potentially simultaneous but independent 

events are captured; this may be due to two separate events happening on consecutive days due to the method of event length 

determination. This suggests that a more sophisticated form of event delineation could improve the process. 320 

This paper has used UKCP18 Regional Projections and the Grid-to-Grid (G2G) hydrological model to generate a set of 

widespread flood events to investigate changes in spatial structure of river flooding in mainland Great Britain between the 

1990s and 2060s. In summary, the number of widespread events (based on a POT2 threshold derived from 1980-2010 data) 

was found to increase in total in the future time-slice, but was slightly lower in the future for spring and summer (March-

August) events. This matches with some work done by Lavers and Villarini (2013) which shows the possible increase in 325 

atmospheric rivers, especially in Western Europe, which drive extreme precipitation events. The typical spatial extent of events 

was found to be fairly consistent between time-slices, but summer (June-August) events appeared smaller in the future across 

all return periods. Event duration decreased on average in all seasons between the two time-slices. This pattern was the same 

across all RCM ensemble members. Kay et al (2022) show that projections of soil moisture changes point towards wetter 

winters and drier summers. In conjunction with Blöschl et al (2017) suggesting that UK floods are closely linked to soil 330 

moisture timing, this gives confidence in the results in the present work.  



17 

 

A non-trivial number of very extreme events were observed in the RCM-driven runs. Although extreme, Tawn et al. (2018) 

point out that, within the observed annual maxima series, the chance of a 100-year return period event occuring somewhere 

within a set of 916 gauging stations in England and Wales is approximately 78%, and so over a gridded dataset of more points, 

and with more events, the observation of these extremely rare events is statistically plausible. Also, due to the probability 335 

distributions used, a small change in event peak flow magnitude in the upper tail of the distribution can lead to a large change 

in return period (when the shape parameter κ is positive, which is the case for most of the UK (Griffin et al., 2019)). 

The number of widespread events (based on a POT2 threshold derived from 1980-2010 data) was found to increase in total in 

the future time-slice (Fig 5) but was slightly lower in the future for spring and summer (March-August) events. This matches 

with some work done by Lavers and Villarini (2013) which shows the possible increase in atmospheric rivers, especially in 340 

Western Europe, which drive extreme precipitation events. The typical spatial extent of events was found to be fairly consistent 

between time-slices, but summer (June-August) events appeared smaller in the future across all return periods. Event duration 

decreased on average in all seasons between the two time-slices. This pattern was the same across all RCM ensemble members. 

Kay et al (2022) show that projections of soil moisture changes point towards wetter winters and drier summers. In conjunction 

with Blöschl et al (2017) suggesting that UK floods are closely linked to soil moisture timing, this gives confidence in the 345 

results in the present work. This may suggest a shift to more widespread flooding in boreal winter (DJF), and drier summers 

(JJA) overall, which lines up with the literature (Murphy et al., 2019). Alternatively, this may instead be linked to a change in 

the size of flooding events in the future in summer events which, in the UK, are typically linked to short-duration, intense 

summer storms. Between ensemble members (Supplementary Material Figure 1), variability is higher in boreal summer (JJA), 

even more so in the future time-slice, and one member actually saw an increase in summer (JJA) events in the future time-350 

slice (Figure 5). It may be the case that these intense storms may become smaller in extent, below this paper’s definition of 

“widespread”. In comparison, the SIMOBS run shows a more equal distribution of events across the seasons, though it still 

remains within the variability of the seasonal totals for the RCM-based baseline outputs except in autumn (SON). However, 

Chen et al. (2021) suggests, using the UKCP18 Local projections (which uses convection-permitting models rather than 

RCMs), that convective storms in future may cover a greater area. Thus future work could look more specifically at differences 355 

in the methods which coud cause these differences. 

A pairwise analysis suggested that inundated locations were asymptotically independent beyond a radius of around 120 km, 

but the distribution of dependence was slightly less concentrated in the future. 

On the whole, the results suggest an increase in seasonality in widespread flood events, with more widespread flooding in 

winter, and possibly a shift towards smaller intense flooding in spring and summer. However, this approach cannot 360 

distinguish between flooding drivers such as convective storms, and so it is difficult to say what could cause such a change 

in the model. As mentioned above, the use of convection-permitting models (Chen et al., 2020) may prove useful in drawing 

out such differences and highlighting likely changes in flooding drivers. 

This paper and the data generated therein forms the basis for a wider scheme of work generating extreme flooding events for 

risk analysis, which is the subject of a number of subsequent papers: Griffin et al., (2022b) discussing statistical methods to 365 
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generate large numbers of plausible widespread events with long return periods and Sayers et al., (2023) on applying the event 

sets to risk analysis through catastrophe modelling methods. 

Several potentially simultaneous but disjoint events were captured in the event sets, which may be due to capturing two 

consecutive or overlapping events due to the method of event length determination. Brunner et al. (2020) make use of a spatial 

dependence function (F-madogram) and hierarchical clustering to determine events for which points are mutually dependent 370 

to a sufficient degree. This would be an interesting direction to go in to improve event identification. To highlight spatial 

dependence in a simpler way than χ, Berghuijs et al. (2019) use a metric of flood “synchrony”, measuring how often extreme 

floods occur at the same time within a given radius of a target point. The gridded data set we have available here could be 

evaluated using this metric, or one like it. Further work could look at more sophisticated methods of event identification, and 

look at describing or separating simultaneous or temporally-overlapping events. This work focuses on fluvial flooding but 375 

surface water flooding is also a large factor in estimating economic losses due to flooding. It would be of interest to use the 

Grid-to-Grid model including surface water (Rudd et al., 2020) applied to the framework of this paper to see if the different 

types of flooding will change in different ways over time. 

 

6 Conclusions  380 

This paper has used UKCP18 Regional Projections and the Grid-to-Grid (G2G) hydrological model to generate a set of 

widespread flood events to investigate changes in spatial structure of river flooding in mainland Great Britain between the 

1990s and 2060s. In summary, the number of widespread events (based on a POT2 threshold derived from 1980-2010 data) 

was found to increase in total in the future time-slice, but was slightly lower in the future for spring and summer (March-

August) events. On the whole, the results suggest an increase in seasonality in widespread flood events, with more widespread 385 

flooding in winter, and possibly a shift towards smaller intense flooding in spring and summer. 

This paper and the data generated therein forms the basis for a wider scheme of work generating extreme flooding events for 

risk analysis, which is the subject of a number of subsequent papers: Griffin et al., (2022b) discussing statistical methods to 

generate large numbers of plausible widespread events with long return periods and Sayers et al., (2023) on applying the event 

sets to risk analysis through catastrophe modelling methods. Further work could look at more sophisticated methods of event 390 

identification, and look at describing or separating simultaneous or temporally-overlapping events. This work focuses on 

fluvial flooding but surface water flooding (not from inundation of rivers and water bodies) is also a large factor in estimating 

economic losses due to flooding. It would be of interest to use the Grid-to-Grid model including surface water (Rudd et al., 

2020) applied to the framework of this paper to see if the different types of flooding will change in different ways over time. 
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al., 2022a). 

Author Contributions 

ES and PS managed the project, AK and VB ran the hydrological modelling, AG ran the event extraction and summary, and 400 

performed the statistical analysis. All authors assisted in writing and editing the manuscript. 

Acknowledgements 

Funding for the project was provided through the UK Climate Resilience Programme supported by UK Research and 

Innovation and the UK Met Office.  

References 405 

Barker, L., Hannaford, J., Muchan, K., Turner, S. and Parry, S. (2016). The winter 2015/2016 floods in the UK: a hydrological 

appraisal. Weather, 71: 324-333. doi:10.1002/wea.2822 

Bell, V.A., Kay, A.L., Jones, R.G., Moore, R.J. (2007a). Development of a high-resolution grid-based river flow model for 

use with regional climate model output. Hydrol. Earth Syst. Sci. 11 (1), 532–549. doi:10.5194/hess-11-532-2007 

Bell, V.A., Kay, A.L., Jones, R.G., Moore, R.J. (2007b). Use of a grid-based hydrological model and regional climate model 410 

outputs to assess changing flood risk. Int. J. Climatol. 27, 1657–1671. doi:10.1002/joc.1539 

Bell V.A., Kay A.L., Jones R.G. et al. (2009). Use of soil data in a grid-based hydrological model to estimate spatial variation 

in changing flood risk across the UK. J. Hydrol. 377(3–4): 335–350. doi:10.1016/j.jhydrol.2009.08.031 

Bell, V. A., Kay, A. L., Cole, S. J., Jones, R. G., Moore, R. J., & Reynard, N. S. (2012). How might climate change affect river 

flows across the Thames Basin? An area-wide analysis using the UKCP09 Regional Climate Model ensemble. Journal of 415 

Hydrology, 442, 89-104. 

Blöschl, G., Hall, J., Parajka, J., Perdigão, R. A. P., Merz, B., Arheimer, B., Aronica, G. T., Bilibashi, A., Bonacci, O., Borga, 

M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., … 

Živković, N. (2017). Changing climate shifts timing of European floods. Science, 357(6351), 588–590. 

doi:10.1126/science.aan2506 420 



20 

 

Chen Y, Paschalis A, Kendon E, Kim D, Onof C (2020). Changing spatial structure of summer heavy rainfall, using 

convection-permitting ensemble. Geophysical Research Letters, 48, e2020GL090903. 

doi: 10.1029/2020GL090903. 

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer London. doi:10.1007/978-1-4471-3675-

0 425 

Collet, L., Harrigan, S., Prudhomme, C., Formetta, G., & Beevers, L. (2018). Future hot-spots for hydro-hazards in Great 

Britain: A probabilistic assessment. Hydrology and Earth System Sciences Discussions, 1–22. doi:10.5194/hess-2018-274 

Davies, H., Bell, V. (2008). Assessment of methods for extracting low resolution river networks from high resolution digital 

data. Hydrol. Sci. J. 54 (1), 17–28. doi:10.1623/hysj.54.1.17 

De Luca, P., Hillier, J. K., Wilby, R. L., Quinn, N. W., Harrigan, S. (2017). Extreme multi-basin flooding linked with extra-430 

tropical cyclones. Environmental Research Letters, 12(11), 114009. doi:10.1088/1748-9326/aa868e  

Environment Agency (2011). The risk of widespread flooding – Capturing spatial patterns in flood risk from rivers and coasts. 

Science Report SC060088/R3. Bristol. 

Filipova, V., Lawrence, D., Skaugen, T. (2019) A stochastic event-based approach for flood estimation in catchments with 

mixed rainfall and snowmelt flood regimes. Natural Hazards and Earth System Sciences, 19(1), 1-18. doi:10.5194/nhess-19-435 

1-2019 

Fuller, R.M., Smith, G.M., Sanderson, J.M., Hill, R.A., Thomson, A.G. (2002). The UK Land Cover Map 2000: Construction 

of a Parcel-Based Vector Map from Satellite Images, The Cartographic Journal, 39:1, 15-25, doi:10.1179/caj.2002.39.1.15  

Griffin, A.; Kay, A.; Bell, V.; Stewart, E.J.; Sayer, P.; Carr, S. (2022a). Peak flow and probability of exceedance data for Grid-

to-Grid modelled widespread flooding events across mainland GB from 1980-2010 and 2050-2080. NERC EDS 440 

Environmental Information Data Centre. doi:10.5285/26ce15dd-f994-40e0-8a09-5f257cc1f2ab 

Griffin, A., Kay A., Stewart, E., Sayers, P., Carr, S. (2022b). Spatially coherent statistical simulation of widespread flooding 

events under climate change. Hydrology Research. 1 November 2022; 53 (11): 1428–1440. doi: doi:10.2166/nh.2022.069  

Grossi, P., & Kunreuther, H. (2005) Catastrophe Modeling: A New Approach to Managing Risk (Vol. 25). Springer Science 

& Business Media. 445 

Guillod, B. P., Jones, R. G., Dadson, S. J., Coxon, G., Bussi, G., Freer, J., Kay, A. L., Massey, N. R., Sparrow, S. N., Wallom, 

D. C. H., Allen, M. R., Hall, J. W. (2018). A large set of potential past, present and future hydro-meteorological time series 

for the UK. Hydrology and Earth System Sciences, 22, pp.611–634. doi:10.5194/hess-22-611-2018 

Hosking, J., Wallis, J. (1997). Regional Frequency Analysis: An Approach Based on L-Moments. Cambridge: Cambridge 

University Press. doi:10.1017/CBO9780511529443 450 

Hough, M. N., Jones, R. J. A. (1997). The United Kingdom Meteorological Office rainfall and evaporation calculation system: 

MORECS version 2.0-an overview. Hydrology and Earth System Sciences, 1(2), pp.227-239. doi:10.5194/hess-1-227-1997 

HM Government, 2020. National Risk Register: 2020 edition. Cabinet Office: London. 



21 

 

Jimenez-Cisneros, B. (2015). Responding to the challenges of water security: The Eighth Phase of the International 

Hydrological Programme, 2014–2021. Proceedings of the International Association of Hydrological Sciences, 366, 10–19. 455 

doi:10.5194/piahs-366-10-2015 

Jones, M. R., Blenkinsop, S., Fowler, H. J., Kilsby, C. G. (2014). Objective classification of extreme rainfall regions for the 

UK and updated estimates of trends in regional extreme rainfall. International Journal of Climatology, 34(3), pp.751-765. 

doi:10.1002/joc.3720 

Lane, R. A., & Kay, A. L. (2021). Climate Change Impact on the Magnitude and Timing of Hydrological Extremes Across 460 

Great Britain. Frontiers in Water, 3, 684982. doi:10.3389/frwa.2021.684982 

Kay A.L. (2021) Simulation of river flow in Britain under climate change: Baseline performance and future seasonal changes. 

Hydrological Processes. 35, e14137. doi:10.1002/hyp.14137 

Kay, A.L. (2022) Differences in hydrological impacts using regional climate model and nested convection-permitting model 

data. Climatic Change, 173(1-2), 11, doi:10.1007/s10584-022-03405-z. 465 

Kay, A. L., Lane, R. A., & Bell, V. A. (2022). Grid-based simulation of soil moisture in the UK: Future changes in extremes 

and wetting and drying dates. Environmental Research Letters, 17(7), 074029. https://doi.org/10.1088/1748-9326/ac7a4e 

Kay, A. L., Griffin, A., Rudd, A. C., Chapman, R. M., Bell, V. A., Arnell, N. W. (2021). Climate change effects on indicators 

of high and low river flow across Great Britain. Advances in Water Resources, 151, 103909. 

doi:10.1016/j.advwatres.2021.103909 470 

Kelder, T., Müller, M., Slater, L. J., Marjoribanks, T. I., Wilby, R. L., Prudhomme, C., Bohlinger, P., Ferranti, L., Nipen, T. 

(2020). Using UNSEEN trends to detect decadal changes in 100-year precipitation extremes. npj Climate and Atmospheric 

Science, 3(1), 47. doi:10.1038/s41612-020-00149-4 

Met Office, Hollis, D (2019). Had UK-Grid Gridded Climate Observations on a 1km grid over the UK, v1.0.0.0 (1862–2017). 

Centre for Environmental Data Analysis, November 2019. doi:10.5285/2a62652a4fe6412693123dd6328f6dc8. 475 

Morris, D.G. and Flavin, R.W. (1990). A digital terrain model for hydrology. Proc 4th International Symposium on Spatial 

Data Handling. Vol 1 Jul 23-27, Zürich, pp 250-262. 

Murphy J, Harris G, Sexton D, Kendon E, Bett P, Clark R and Yamazaki K (2019). UKCP18 land projections: science report. 

Met Office: Exeter. www.metoffice.gov.uk/pub/data/weather/uk/UKCP18/science-reports/UKCP18-land-report.pdf [accessed 

Nov 2021] 480 

Murphy, J. M., Harris, G. R. (2018). UKCP18 Land Projections: Science Report. Met Office Hadley Centre, Exeter. 

National River Flow Archive (NRFA), 2020. https://nrfa.ceh.ac.uk [accessed Sep 2021] 

Osborn, T.J. and Hulme M. (2002). Evidence for trends in heavy rainfall events over the UK. Phil. Trans. R. Soc. A. 360, 

pp.1313–1325. doi:10.1098/rsta.2002.1002 

Paz, A. R., Collischonn, W., & Lopes da Silveira, A. L. (2006). Improvements in large-scale drainage networks derived from 485 

digital elevation models: TECHNICAL NOTE. Water Resources Research, 42(8). doi:10.1029/2005WR004544 



22 

 

Price, D., Pilling, C., Robbins, G., Lane, A., Boyce, G., Fenwick, K., Moore, R.J., Coles, J., Harrison, T., and Van Dijk, M. 

2012. Representing the spatial variability of rainfall for input to the G2G distributed flood forecasting model: operational 

experience from the Flood Forecasting Centre. In: Moore, R.J.; Cole, S.J.; Illingworth, A.J., (eds.) Weather Radar and 

Hydrology, Proc. Exeter Symp., April 2011. International Association of Hydrological Sciences, 532-537. (IAHS Publ., 351). 490 

Rudd, A.C., Kay, A.L., Wells, S.C., Aldridge, T., Cole, S.J., Kendon, E.J. and Stewart, E.J. (2020). Investigating potential 

future changes in surface water flooding hazard and impact. Hydrological Processes, 34, 139-149, doi:10.1002/hyp.13572. 

Robson, A. J., & Reed, D. W. (1999). Statistical procedures for flood frequency estimation. In Flood Estimation Handbook 

(Vol. 3, p. 338). Institute of Hydrology.  

Sayers, P.B., Horritt, M., Carr, S., Kay, A., Mauz, J., Lamb R., and Penning-Rowsell E. (2020). Third UK Climate Change 495 

Risk Assessment (CCRA3): Future flood risk. Published by Committee on Climate Change, London. 

Sayers, P.B.; Griffin, A., Lowe, J., Bernie, D., Carr, S., Kay, A. and Stewart, E.J. (2023, in submission) Beyond the climate 

uplift – The importance of accounting for changes in the spatial structure of future fluvial flood events on flood risk in Great 

Britain. Submitted to Nature Climate Change. 

 500 

Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D.G.; Keller, V.D.J. (2019). Gridded estimates of daily and monthly areal 

rainfall for the United Kingdom (1890-2017) [CEH-GEAR]. NERC Environmental Information Data Centre. 

doi:10.5285/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556 

Tawn, J.A., Towe, R.P., Eastoe, E., Lamb, R. (2018). Modelling the clustering of extreme events for short-term risk assessment.  

Journal of Agricultural, Biological, and Environmental Statistics, 25(1), pp.32–53 doi:10.1007/s13253-019-00376-0Spatial 505 

Statistics, 28, pp.39–58. doi:10.1016/j.spasta.2018.04.007 

Tawn, J.A., Shooter, R., Towe, R.P., Lamb, R. (2018) Modelling spatial extreme events with environmental applications.  

Spatial Statistics, 28, pp.39–58. doi:10.1016/j.spasta.2018.04.007 

Towe, R.P., Tawn, J.A., Lamb, R., Sherlock, C. (2019). Model-based inference of conditional extreme value distributions with 

hydrological applications. Environmetrics. 2019; 30:e2575. doi:10.1002/env.2575 510 


