
General Comments 

The overall concept of this paper is neatly done: a 12-member ensemble of baseline and future 
climate (12 km resolution) is input to a grid-based hydrological model (1 km resolution) to 
characterise the impact of climate change on flood events. The strength of the paper is in its focus 
on areal flood events, where the joint interaction between the factors that cause floods over a range 
of temporal and spatial scales is implicitly accommodated by the use of a gridded daily continuous 
simulation model. All inferences about changes to flood risk are made using 30-year sequences of 
daily floods, as derived from the 12-member ensemble of climate projections. Differentiating 
impacts by the areal extent and duration of floods of varying severity is novel, as is the exploration 
of possible changes in their spatial dependency. 

There are, however, some aspects to this work which are potentially problematic, and these need to 
be addressed by further explanation and/or revision. 

Specific Comments 

The key issues that I am struggling with are as follows: 

 It is difficult for a dynamically downscaled rainfall products to reproduce rainfall quantiles over 
the temporal and spatial (meso-) scales relevant to catchment flooding, and I was surprised to 
read (lines 62-63) that “due to the focus on … extremes rather than the whole regime in general” 
that no bias correction was applied. Bias-correcting projected extremes is as important, if not 
more important, than a central tendency measure. The rainfall-based simulation of floods is 
critically dependent on the correct representation of the frequency distribution of areal rainfalls, 
and I think it important to provide evidence that the frequency of areal rainfall extremes derived 
from the UKCP18 data compare reasonably well with observations. To this end, providing 
evidence that distributions fitted to n-day maxima extracted from UKCP18 (preferably for a range 
of areal extents relevant to the adopted spatial limits) are reasonably consistent with those based 
on observational data. I searched for any such evaluations in the Met Office documents (the 
citations provided for these need to be improved and corrected in the manuscript) but I could not 
find anything specifically relevant to the rainfall behaviour of most interest. 

o There are many issues and assumptions inherent in the bias-correction process, including the 
assumption that the same ‘biases’ seen in baseline climate model data are also present in data 
for future periods, concerns that correction can alter the spatio-temporal consistency of 
individual variables or break important physical relationships between variables, and the fact 
that typically-applied daily rainfall corrections can fail for multi-day rainfall totals (e.g. Ehret et 
al. 2012, Addor and Seibert 2014). The application of bias-correction can even introduce 
artefacts into the ‘corrected’ data (Maraun et al. 2017). Attempts to ‘correct’ rainfall extremes 
are especially difficult, as by their nature they have limited occurrence in observation-based 
datasets and are also strongly affected by natural climate variability (e.g. the well-known 
presence of prolonged flood-rich and flood-poor periods), whereas ensembles of climate 
model data will not necessarily present the same ‘states’ of natural variability through time. 
Thus application of bias-correction, rather than reducing uncertainty, represents a 
considerable source of uncertainty in itself (e.g. Lafon et al. 2013, Ehret et al. 2012). In this 
application we instead chose to use only the raw climate model data, to maintain the spatio-
temporal properties of precipitation, temperature and potential evaporation imposed by the 
dynamic downscaling of the RCM. We then determine what constitutes an “extreme” level of 
flow by selecting a threshold based completely off the climate model runs, not observations 
and hence any bias in threshold selection is matched by bias in the events. The upshot of this 
is that the key features and results are not impacted by the bias. 



 On the basis of the information provided it is difficult to be comfortable with the reported 
probabilities of exceedance (PoE). In concept the approach of adopting a merged CDF on the basis 
of empirical and fitted distributions is fine, my difficulty is with the inferred annual PoEs. I suspect 
that there is a problem with the way that the Poisson approximation is applied, and I suggest that 
the authors compare (or replace) their analysis with the more straightforward approach based on 
fitting the GPA distribution to the POT2 series, where the annual quantiles are obtained by the 
simple expedient of factoring the exceedance probabilities by N/M, where N is the number of 
years in the record and M is the number of maxima extracted. The key reason for my discomfort 
with the PoEs reported is the severity of the identified events. For example, in Figure 2 it appears 
that 3 (possibly 4?) events with return periods of 1000 years have been observed in a single 30 
year sequence. I appreciate the need to consider the influence of spatial dependency and the 
trading space for time issues here, but still, this number of extreme events is higher than 
expected (and higher than I suspect would be extrapolated by Tawn et al, 2019). A crude estimate 
of the likelihood of this could be obtained by estimating the notional number of largely 
independent catchments across the UK. If we adopt a spatial dependence limit of 120km (from 
line 220 in the paper) then the notional upper limit of the spatial extent of an event might be 
around 45000 km2, which yields around 5 or so independent catchments (or “trials”) in each year. 
Given that the likelihood of a 1 in 1000 event occurring in a 30-year period is 0.029 (from the 
Binomial distribution), then there is about a 13% chance you would see a single 1000-year event 
in one of the five independent catchments somewhere across the UK in a 30-year period. 
However, we would actually need to have around 50 independent catchments in the UK to see 
three 1000-year events occurring in a 30-year period with any likelihood, and this corresponds to 
an asymptotic dependence limit of only around 40km, which is very low given the information 
presented in Figure 7. The number of exceedances shown in Figure 5 is larger again, but this may 
be due to how the ensemble members are combined (discussed in the next point). 

o This is a really interesting point, and quite an insightful way of estimating the number of very 
extreme events within a given period. The merged CDF is required for the copula method to 
be applicable, however, the empirical component of the distribution is not actually used in 
the figures since the threshold for using the GPa exactly corresponds to our threshold for 
delineating the event extents. A preliminary investigation suggests that your alternative 
greatly reduces the return periods of the most extreme events, reducing most of the >1000 
year return periods to under 1000 years. However, we have a second paper in publication 
building on this work, and the authors feel that a consistent presentation of return periods 
across the two papers would minimize confusion. As we feel this is an important point to 
make, we will include a paragraph at line 156 outlining the alternative approach, with an 
example flood frequency curve to highlight the differences. 

 If my understanding is correct (lines 175-177), the 12-member ensemble from UKCP18 has been 
lumped together and used in the preparation of the results as summarised in Figures 3 to 7. I 
think this approach confounds the absolute interpretation of the reported frequencies and return 
periods, and I suggest that it would be more useful to treat each ensemble member as a source of 
aleatory uncertainty over a 30-year period. Thus, rather than reporting, say, that there are 17 
events larger than 1000-year event in DJF (Fig 5) under baseline conditions, it would be more 
useful to report on the average (or median) frequency/quantile across the 12-member ensemble, 
where the highest and lowest ensemble member provides an indication of the upper and lower 
bounds of the sampling uncertainty in each 30-year period. 

o This is a good point. Aside from Figure 3 which is already split by ensemble member, we can 
easily include uncertainty bounds on Figure 4, and include some measure of variance in 
Figures 5, 6 and 7 through adjusting transparency (alpha), where low variance is shown by a 
stronger colour, and high variance by fainter colours. Including upper and lower bounds in 
addition would result in a lot of extra figures, or much more complex ones, at a cost to 



readability. At line 177 we replace the sentence “In the rest of this section, the event sets …” 
is replaced by “In the rest of this section, ensemble members are treated as separate sources 
of equal weighting. Variance between ensemble members is indicated in figures by 
brightness, and the colour indicated the median value of the respective statistic amongst the 
ensemble members. 

 Lastly, no discussion is provided on how the asymptotic independence metric varies with distance 
(lower panel, Figure 7). I think the metrics used by Coles to explore asymptotic behaviour would 
benefit from additional explanation here as they are not intuitively obvious; specifically, the way 
in which the independence metric is defined is easily misinterpreted and without explanation it 
appears odd that the degree of independence is decreasing with increasing distance, which is 
exactly the opposite of what one would expect (and as shown in the dependency metric in the 
upper two panels of Figure 7, which is consistent with intuition). 

o This is a reasonable point to make. On the one hand, we do not wish to just repeat Coles, 
however we agree that intuition may be misleading. We edit the text at line 136 to the 
following: “…are calculated between pairs of points. For two points i and j,  

𝜒𝑖,𝑗 = lim
x→∞

𝑃[𝑄𝑖 > 𝑥 |𝑄𝑗 > 𝑥] 

If C*(u,v) = 1 – u – v + C(u,v) for a copula C between two points i and j, then  

�̅� = lim
𝑢→1

2 log(1 − 𝑢)

log (𝐶∗(𝑢, 𝑢))
 

χ describes the level of asymptotic dependence, if χ = 0 then the variables are asymptotically 
independent, otherwise they are asymptotically dependent. In the asymptotically 
independent case, �̅� describes the dependence for large but not asymptotic values of flow. In 
the asymptotically dependent case, �̅� = 1.” 

o To comment on both panels of Figure 7, we change the sentence on line 220 to: “The figure 
suggests that asymptotic dependence decreases as distance increases. In the asymptotically 
independent case (Figure 7b), we see a similar pattern in dependence for large values of 
flow, with high dependence at short distances, even if they are independent in the limit.” 

Additional References 
Addor N and Seibert J (2014). Bias correction for hydrological impact studies – beyond the daily 

perspective. Hydrol. Process. 28, 4823–4828. 

Ehret U, Zehe E et al. (2012). HESS Opinions "Should we apply bias correction to global and regional 

climate model data?" Hydrol Earth Syst Sci, 16, 3391–3404. 

Lafon T, Dadson S et al. (2013). Bias correction of daily precipitation simulated by a regional climate 

model: a comparison of methods. Int. J. Climatol. 33: 1367–1381 

Maraun D, Shephard TG et al. (2017). Towards process-informed bias correction of climate change 

simulations. Nat Clim Change, 7, 764–773. 

 


