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Abstract. Self-similar structures of river networks have been quantified as diverse scaling laws. Among them we 

investigated a power functional relationship between the pruning area Ap and the associated apparent drainage density a with 10 

an exponent  We analytically derived the relationship between  and other scaling exponents known for fractal river 

networks. The derivation is supported by analysis of four real river networks. The relationship between  and non-integer 

fractal dimensions found for natural river networks is suggested. Synthesis of our findings through the lens of fractal 

dimensions provides an insight that the exponent  has fundamental roots in fractal dimension for the whole river network 

organization. 15 

1 Introduction 

Since first proposed by Horton (1945), the drainage density  has long been recognized as an important metric to describe 

geomorphological and hydrological characteristics of a catchment. Defined as  = LT / A where A is the constant catchment 

area,  is a function of the total channel length LT in a catchment. Alternatively,  is a function of the channel forming area Ao 

(also called the source area or the critical contributing area) (Band, 1986; Montgomery and Dietrich, 1988; Tarboton et al., 20 

1988), which is directly related to LT. The variation of  among catchments is associated with the climatic condition, which 

can be represented by various measures such as the precipitation effectiveness index (Melton, 1957; Madduma Bandara, 1974). 

Ao reduces as the catchment becomes wetter, which leads to the expansion of the stream network (greater LT) and vice versa 

(Godsey and Kirchner, 2014). Therefore, LT and  are inversely related to Ao (Tarboton et al., 1991). 

On another note, the rate at which LT (and so ) varies with Ao is determined by the given topography. The close relationship 25 

between the main channel length L and the drainage area A is well known as a power function with a positive exponent h 

(Hack, 1957), i.e., 

𝐿 ∝ 𝐴ℎ.              (1) 
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Although Eq. (1) provides a clue about the relationship between LT and Ao, they differ in two senses: (1) LT is the total length 

counting all tributaries, while L is the length of the main channel only; and (2) L is the length within the drainage area A while 30 

LT is the length of channels excluded from the coverage Ao. Hence, LT reduces as Ao increases, while L grows with A (Eq. (1)).  

The usage of the digital elevation models (DEMs) in the river network analysis introduced a constant called the pruning area 

Ap. In extracting a stream network from a DEM, cells of the upslope area A less than Ap are considered as hillslope and excluded 

from the network. If Ap = 0, every DEM cell is considered as channel while Ap can be as large as A for an extremely dry 

landscape. As Ap increases, less channels are extracted. This results in a smaller ‘apparent’ drainage density a. We distinguish 35 

a from the real drainage density  as Ap is an arbitrary value, and can be different from Ao. It was found that a decreases as 

Ap grows following a power function (Moglen et al., 1998), i.e., 

𝜌𝑎 ∝ 𝐴𝑝
−𝜂.             (2) 

On the basis of the notion described above, we raise a fundamental question about the range of the scaling exponent η in Eq. 

(2). To satisfy dimensional consistency in Eq. (2), η = 0.5 is anticipated (Tarboton et al., 1991). This issue is analogous to the 40 

question about the exponent h in Eq. (1), which should also be 0.5 to meet the dimensional consistency (Hjelmfelt, 1988). In fact, 

h values reported for natural rivers are mostly greater than 0.5, i.e., between 0.5 and 0.7 (Hack, 1957; Gray, 1961; Robert and 

Roy, 1990; Crave and Davy, 1997). This has brought the introduction of the fractal dimension (Mandelbrot, 1977). 

In this study, we aimed to address the raised question in three approaches. First, we investigated analytically the linkage 

between Eq. (2) and other power-laws known in natural river networks. A river network is fractal, and many regular power-45 

laws have been reported as characteristic signatures of a naturally evolved river network (Dodds and Rothman, 2000). The 

power-law relationship between a and Ap can also serve as a signature reflecting the self-similarity of a river network. Then, 

it is plausible to claim the linkage between a–Ap relationship and other power-laws. Second, we investigated a–Ap 

relationship in real river networks, through DEM analysis. The relationship was analyzed for seven catchments in an earlier 

study (Moglen et al., 1998) but, Ao and Ap were undistinguished in their study. To properly estimate η, detailed analyses with a 50 

greater resolution DEM for catchments of known Ao or blue-lines are required. Lastly, we hypothesized that not only the power-

law itself but also the likely dimensional inconsistency in Eq. (2) implies the fractal nature of a river network. On this background, 

we searched for a linkage between η and fractal dimension. 

In the next Sect. 2, we reviewed the scaling relationships known in a river network. Then, we presented analytical derivation 

of Eq. (2), and demonstrated how this is related with other power-laws known for a river network. We implemented terrain 55 

analyses in a thorough manner as described in Sect. 3. With these results, we explored physical meanings embedded in the 

power-law relationship between a and Ap with the notion of fractal dimension in Sect. 4. Summary and conclusions are given 

in Sect. 5. 
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2 Cross-Relationships among Scaling Laws  

2.1 Review on scaling laws of a river network 60 

The river network has been perceived as an archetypal fractal network in nature (Mandelbrot, 1977; Rodríguez-Iturbe and 

Rinaldo, 2001), exhibiting scale-invariant organization. Systematic measures for characterizing structural hierarchy help 

manifest the self-similarity. Horton-Strahler ordering scheme (Horton, 1945; Strahler, 1957) has been popularly employed to 

investigate their structural characters. In this framework, the number, the mean length, and the mean drainage area of -order 

streams in a catchment, stated as 𝑁𝜔 , 𝐿̅𝜔, and 𝐴̅𝜔, respectively, are defined for an order  ranging from 1 to , where  is the 65 

highest order in the network. There is only one Ω–order stream in a river network (i.e., N=1) of which length and the drainage 

area are L and A, respectively. Then, the total channel length LT used for the definition of the drainage density , is given as 

𝐿𝑇 = ∑ 𝑁𝜔𝐿̅𝜔
Ω
𝜔=1 .            (3) 

Following its definition, 𝐴̅𝜔 includes the drainage area of all upstream branches (of  – 1 and lower orders). By contrast, the 

length of any lower order stream is excluded in 𝐿̅𝜔. Therefore, L is neither the upslope length L of a main channel, nor LT, 70 

while A is identical to the total drainage area of the catchment. To resolve inconsistent definitions of 𝐴̅𝜔 and 𝐿̅𝜔, two metrics 

have been proposed. First, the cumulative mean length was proposed to match the definition of area (Broscoe, 1959) as 

𝛯𝜔 = ∑ 𝐿̅𝑘
𝜔
𝑘=1 .             (4) 

 is essentially an order-discretized version of L. Alternatively, to match the definition of length, the eigenarea, also called 

the interbasin area (Strahler, 1964) or the contiguous area (Marani et al., 1991), was proposed. It indicates the area directly 75 

draining to the –order stream (Beer and Borgas, 1993). The mean eigenarea 𝐸̅𝜔 of –order streams is 

𝐸̅𝜔 = 𝐴̅𝜔 − 𝐴̅𝜔−1(𝑁𝜔−1/ 𝑁𝜔).           (5) 

The self-similar structure of a river network has been captured through the linear scaling of above quantities as (𝑁𝜔 , 𝐿̅𝜔 , 𝐴̅𝜔, 

and 𝐸̅𝜔) with  on a semi-log paper (Horton, 1945; Schumm, 1956; Yang and Paik, 2017) as 

𝑁𝜔 = 𝑅𝐵
Ω−𝜔;  𝐿̅𝜔 = 𝐿Ω𝑅𝐿

𝜔−Ω;  𝐴̅𝜔 = 𝐴Ω𝑅𝐴
𝜔−Ω;  𝐸̅𝜔 = 𝐸Ω𝑅𝐸

𝜔−Ω       (6) 80 

where RB, RL, RA, and RE are the bifurcation, the length, the area, and the eigenarea ratios, respectively. As a group, they are 

often called the Horton ratios and dependent on each other (Morisawa, 1962). They are dimensionless ratios of quantities 

between nearby orders, i.e., 𝑅𝐵 = 𝑁𝜔/𝑁𝜔+1, 𝑅𝐿 = 𝐿̅𝜔+1/𝐿̅𝜔, 𝑅𝐴 = 𝐴̅𝜔+1/𝐴̅𝜔, and 𝑅𝐸 = 𝐸̅𝜔+1/𝐸̅𝜔. In natural river networks, 

they typically range as 3 < RB < 5, 1.5 < RL < 3, and 3 < RA < 6 (Smart, 1972). Yang and Paik (2017) suggested RE ≈ RL. 

In addition to Eq. (6), power functional relationships between geomorphologic variates have also been found and served as 85 

evidences of the scale-invariant river network structures. The Hack’s law (Eq. (1)) is a classical principle in this line. Another 

power-law relationship of our interest lies in the exceedance probability distributions of upstream area. Using a theoretical 

aggregation model, Takayasu et al. (1988) showed that the exceedance probability distribution of injected mass in a tree 
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network always follows a power-law. In fact, their model is equivalent to the random-walk model of Scheidegger (1967) 

devised to mimic a river network (Takayasu and Nishikawa, 1986). Replacing the mass (flow) in the aforementioned study 90 

with the drainage area (which is reasonable if rainfall is spatially uniform), it leads to the power-law exceedance probability 

distribution of ‘drainage area.’ In a detail, the probability for a randomly designated point within a catchment to have A 

exceeding a reference value δ (0 ≤ δ ≤ A) decreases with δ (Rodríguez-Iturbe et al., 1992), following a power-law as 

𝑃(𝐴 ≥ 𝛿) ∝ 𝛿−𝜀             (7) 

where the exponent ε is reported as between 0.40 and 0.46 for most river networks (Rodríguez-Iturbe et al., 1992; Crave and 95 

Davy, 1997). Aforementioned two power-laws (Eqs. (1) and (7)) are related to each other as h +  =1 (Maritan et al., 1996), 

which suggests a trade-off between the two exponents to form the catchment boundary within a confined 2-d space. 

Two classes of scaling relationships reviewed above, i.e., Horton’s laws (Eq. (6)) and power-law relationships are linked as 

shown by La Barbera and Roth (1994), i.e., 

𝜀 = 1 − ℎ =
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
 .           (8) 100 

Two other expressions, comparable to Eq. (8), appear in literature. de Vries et al. (1994) derived  = 1 – ln RL/ln RB. For a 

‘topological’ Hortonian tree where no constraint on stream length in a finite area is given, Veitzer et al. (2003) and Paik and 

Kumar (2007) showed that  = ln RB/ln RA – 1. These expressions are special cases of Eq. (8) where RB = RA and RL = RA, 

respectively. Many empirical studies support that RB is indeed close to RA (e.g., Smart, 1972). The assumption of RL = RA was 

used in the analysis of ‘topological’ self-similar trees where only connections among nodes matter with no spatial constraint (Paik 105 

and Kumar, 2007). 

2.2 Linkage to Ap-a relationship 

Below, we analytically derive the relationship between the pruning area Ap and the resulting apparent drainage density a (Eq. 

(2)), using the aforementioned scaling relationships. Through this investigation, we importantly conclude that  = , i.e., the 

scaling exponents in Eqs. (2) and (7) are identical. We arrive at the same conclusion from two different approaches, described 110 

below. 

2.2.1 Derivation 1 

For the Hortonian tree, we vary Ap in a discrete manner (order-by-order), i.e., we set 𝐴𝑝 = 𝐴̅𝜔. Given that up to -order streams 

are pruned in a river network, the total length after pruning is expressed as ∑ 𝑁𝑘𝐿̅𝑘
Ω
𝑘=𝜔+1 , by revising Eq. (3). Replacing 𝑁𝑘  and 

𝐿̅𝑘 in this equation with Eq. (6) leads to the expression of a as 115 

𝜌𝑎 =
𝐿Ω

𝐴Ω
∑ 𝑅𝐵

Ω−𝑘𝑅𝐿
𝑘−ΩΩ

𝑘=𝜔+1 .           (9) 

Above sum of the given geometric series is 
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𝜌𝑎 =
𝐿Ω

𝐴Ω(𝑅𝐵/𝑅𝐿−1)
[(

𝑅𝐵

𝑅𝐿
)

Ω−𝜔

− 1].           (10) 

The term (RB/RL)– in Eq. (10) is rewritten as follows. From Eq. (6), we can state Ω − ω = ln (𝐴Ω/𝐴̅𝜔)/ ln 𝑅𝐴. The logarithm 

is taken for the term (RB/RL)– as 120 

ln (
𝑅𝐵

𝑅𝐿
)

Ω−𝜔

= (Ω − 𝜔) ln
𝑅𝐵

𝑅𝐿
=

ln (𝐴Ω/𝐴̅𝜔)

ln 𝑅𝐴
ln

𝑅𝐵

𝑅𝐿
=  

ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
ln

𝐴Ω

𝐴̅𝜔
 .      (11) 

Given that 𝐴̅𝜔 = 𝐴𝑝, from Eq. (11) we can state 

(𝑅𝐵 𝑅𝐿⁄ )Ω−𝜔 = (𝐴Ω 𝐴𝑝⁄ )
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴  .          (12) 

Substituting this into Eq. (10) yields an approximate power-law, i.e., 

𝜌𝑎 =
𝐿Ω

𝐴Ω(𝑅𝐵/𝑅𝐿−1)
[(

𝐴𝑝

𝐴Ω
)

− 
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴 − 1] ∝ 𝐴𝑝
− 

ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴  .       (13) 125 

Given that RB ≈ RA > RL (Smart, 1972) for a typical river network, the exponent of Eq. (13) ranges as −1 <

− ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄ < 0. With this range and for 𝐴𝑝  ≪ 𝐴Ω , (𝐴𝑝 𝐴Ω⁄ )
− ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

=  (𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

≫ 1. This 

allows the approximation [(𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

− 1] ≈ (𝐴Ω 𝐴𝑝⁄ )
 ln (𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄

. Comparing Eqs. (2) and (13), we can 

explicitly express 

𝜂 =
ln (𝑅𝐵/𝑅𝐿)

ln 𝑅𝐴
 .            (14) 130 

This expression is identical to Eq. (8), which implies  = 

2.2.2 Derivation 2 

Our conclusion of  = can also be derived by employing the eigenarea (Yang, 2016). For ω-order streams, it was claimed that 

𝐸̅𝜔 = 𝑊𝐿̅𝜔 where the overland flow length W is regarded almost constant (Hack, 1957; Yang and Paik, 2017). Therefore, the 

apparent drainage density for the pruning area 𝐴𝑝 = 𝐴̅𝜔 becomes 135 

𝜌𝑎 =
1

𝐴Ω
∑ 𝑁𝑘𝐿̅𝑘

Ω
𝑘=𝜔+1 =

1

𝐴Ω𝑊
∑ 𝑁𝑘𝐸̅𝑘

Ω
𝑘=𝜔+1  .         (15) 

On the other hand, 𝑃(𝐴 ≥ 𝐴𝑝) is defined from geometry as 

𝑃(𝐴 ≥ 𝐴𝑝) =
1

𝐴Ω
∑ 𝑁𝑘𝐸̅𝑘

Ω
𝑘=𝜔+1           (16) 

which equals to Wa from Eq. (15). As 𝑃(𝐴 ≥ 𝐴𝑝) ∝ 𝐴𝑝
−𝜀 (Eq. (7)), we realize that a∝Ap

− and thereby  =  

Earlier, we discussed the reciprocal nature of two relationships of LT – Ao and L – A. Combining above conclusion of  =  and 140 

h +  =1, we realize that  =1 – h, indeed implying the compensating function between the two relationships. 
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3 Analyses of Real River Networks 

3.1 Data and methods 

To evaluate the proposed power-law Eq. (2) and the derivation of  = , we analyzed four river networks in the contiguous 

United States under distinct hydro-climatic conditions: the Molalla River, the Racoon Creek, the St. Regis River, and the White 145 

River (Fig. 1, Table 1). The Molalla and the White Rivers were studied in the hydrological context by Botter et al. (2007), and 

the other two were examined in the geomorphological context by Tarboton et al. (1991). 

We used 1 arc-second raster DEM, generated by Shuttle Radar Topography Mission and provided by United States Geological 

Survey (USGS), that has 1 m vertical resolution. Every depression or sink cell in the raw DEM was filled by raising its elevation 

to the lowest elevation among its neighboring eight cells, employing the algorithm of Planchon and Darboux (2002). 150 

Depression filling might yield flat surfaces over which flow directions are difficult to be specified. The imposed gradients 

method (Garbrecht and Martz, 1997) was applied to form the micro-differences of elevation especially around flat areas. Then, 

flow direction for each cell was assigned through the improved Global Deterministic 8 method (Shin and Paik, 2017). 

Accordingly, upslope area was calculated for each cell. To extract river networks resembling individual blue-lines most, we 

referred to the National Hydrography Dataset Plus Version 2 (NHDPlusV2) that includes river blue-lines and the corresponding 155 

source areas for the contiguous U.S. (McKay et al., 2012). In each study catchment, a channel forming area is given for every 

channel head in NHDPlusV2. They exhibit a range of distribution in each catchment (Fig. S1 in the Supporting Information, 

SI) and a single value Ao was determined for each catchment as the median (Table 1). Horton-Strahler ordering was assigned 

on the pruned river networks. 

Regarding the exceedance probability distribution of upstream area (Eq. (7)), three segments are often characterized: curved-160 

head, straight-trunk, and truncated-tail. The head reflects hillslope (Moglen and Bras, 1995; Maritan et al., 1996) while the 

trunk part indicates channels. As the upslope area becomes close to A, the distribution rapidly falls because of the finite size 

of a network (Rodríguez-Iturbe et al., 1992; Moglen et al., 1998; Perera and Willgoose, 1998). To accommodate such an effect 

in the distribution function, the exponentially tempered power function was adopted (Aban et al., 2006; Rinaldo et al., 2014; 

Yang et al., 2017) as 165 

𝑃(𝐴 ≥ 𝛿) = 𝐾𝛿−𝜀 exp(−𝑀𝛿) , for 𝛿 > 𝐴𝑜         (17) 

where K and M are constants. As M approaches zero, the function represents abrupt truncation like as the finite size effect of 

a network (Rodríguez-Iturbe et al., 1992; Moglen et al., 1998; Perera and Willgoose, 1998). Similarly, we proposed an 

exponentially truncated power function for a, as a general form of Eq. (2), as 

𝜌𝑎 = 𝑍𝐴𝑝
−𝜂 exp(−𝑁𝐴𝑝) , for 𝐴𝑝 > 𝐴𝑜         (18) 170 
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where Z and N are constants. To estimate the best fitted parameters, we employed Matlab’s nlinfit function of which the 

objective function is to minimize the sum of the squares of the residuals for the fitted model. The estimated range for a 

parameter was calculated with 95% confidence intervals. 

Figure 1. Locations and structures of four river networks investigated in this study. A circle mark in each nested figure represents the river 

basin outlet. River network layouts (light blue color lines) are originated from NHDPlusV2. Satellite images on the background of the study 175 
areas are obtained from © Google Earth.  
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Table 1. Topographic characteristics of study river networks 

 

 

River name in USA (state) 

Molalla 

(OR) 

Racoon 

(PA) 

St. Regis 

(MT) 

White  

(AR) 

Final stream-order  5 5 5 5 

Total area A (km2) 536 448 739 477 

Source area A (km2) 0.47 0.20 0.34 0.24 

Horton ratios RB 4.1 4.9 4.5 5.0 

RL 2.5 2.8 2.5 2.7 

RA 4.5 5.4 5.1 5.1 

RE 2.3 2.6 2.4 2.4 

Hack’s exponent h 0.55 0.55 0.52 0.56 

 

Area-exceedance 

probability 

distribution 

ε 0.41 0.46 0.42 0.47 

M (10-4) 9.7 8.5 40 2.8 

 

Apparent drainage 

density-pruning area 

relationship 

η 0.42 0.46 0.43 0.47 

N (10-4) 7.2 6.3 50 3.1 

Fractal dimension Ds 1.1 1.1 1.0 1.1 

Db 1.5 1.5 1.7 1.6 

 

3.2 Results and discussion 

All studied river networks follow the laws of stream number, length, drainage area, and eigenarea (Eq. (6)) with R2 > 0.9 (Fig. 180 

S2 in SI). They show narrow ranges of Horton ratios (RB = 4.7 ± 0.4, RL = 2.6 ± 0.2, RA = 5.0 ± 0.4, RE = 2.4 ± 0.1; mean ± 

standard deviation) (Table 1), which are within the typical ranges reported in earlier studies. Further, all study networks well 

satisfy the power-law Eq. (1) (Fig. S3 in SI). The range of Hack’s exponent h value is estimated as 0.55±0.02 with R2 > 0.95 

(Table 1), which is within the typical range known in earlier studies (Hack, 1957). These features imply that our study networks 

are self-similar and of typical natural river networks. 185 

In the exceedance probability distributions of upstream area, three segments of curved-head, straight-trunk, and truncated-tail 

are clearly characterized (Fig. 2a). The visual interpretation is well demonstrated by the results of parameters fitted through 

Eq. (17) for all studied catchments (mean squared error values < 6×10-8). The power-law exponent  of the area-exceedance 

probability distribution ranges as 0.44±0.03 for the study areas (Table 1), which is close to the range reported in earlier studies 
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(Rodríguez-Iturbe et al., 1992). The tempering parameter M values are very small for all river networks, indicating an abrupt 190 

truncation in the tail part (Table 1; inset figure in Fig. 2a). 

The a–Ap relationship is plotted over all possible value of Ap from the area of a single DEM cell (~900 m2) to the drainage 

area at the direct upstream of the basin outlet. The plot greatly resembles the 𝑃(𝐴 ≥ 𝛿) distribution, exhibiting three parts of 

head, trunk, and tail (Fig. 2b). We found that Eq. (18) satisfies quantitative description of the a–Ap relationship for all study 

rivers (mean squared error values < 10-4). The power-law exponent  is estimated as 0.45 ± 0.02 (Table 1), which is close to 195 

the  range of 0.48 ± 0.04 reported in Moglen et al. (1998). For every river network, an  value is very close to its  value 

(difference in % = 1.2 ± 1.4), which supports our theoretical argument of  =  derived in Sect. 2.2. Fitted tempering parameter 

N is also very small, corroborating the extremely sharp cut-off in the tail part (Table 1; inset figure in Fig. 2b). The (= ) + h 

values for the four rivers are close to unity (0.99 ± 0.04; Table 1), which empirically verifies the interdependent relationship 

between the two scaling indicators.  200 

Figure 2. Power-law analyses for four studied river networks. (a) Exceedance probability distribution of upstream area , 

where the averaged  is estimated at 0.44. (b) Relationship between the pruning area Ap and the apparent drainage density a, 

where the averaged  is calculated at 0.45. Inset figures in (a) and (b) represent individual normalized distributions with each 

power-law fit. 

4 Fractal Dimension 205 

It is worthwhile to investigate the physical implication of Eq. (2) from dimensional perspective. For dimensional consistency, 

η = 0.5 is anticipated (Tarboton et al., 1991). But observed values are slightly smaller than this (see Table 1). As stated earlier, 

this issue is similar to the dimensional inconsistency in Eq. (1): h is expected to be 0.5 but observed values are mostly greater. 
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This inconsistency was relaxed by introducing the fractal dimension of a stream as Ds=2h (Mandelbrot, 1977), which was based 

on the assumption that the shapes of river basins are self-similar in a downstream direction (Feder, 1988). For a stream reach, 210 

the fractal nature stems from stream sinuosity. Considering the typical range of h, Ds is greater than unity, i.e., exceeding the 

dimension of a line, and mostly between 1 and 1.4 (Rosso et al., 1991). Motivated by this, we hypothesized that the deviation 

of the observed η values from 0.5 implies the fractal dimension of the topography. We sought for a simple expression of η as a 

function of fractal dimension, similarly to h = Ds/2. Three expressions can be claimed for η below. 

First, as we learned η =  = 1 – h, from h = Ds/2 we can conclude that 215 

𝜂 = 1 − 𝐷𝑠 2⁄ .            (19) 

We found that η values estimated from Eq. (19) well agrees with observed values. However, this is deceptive as Eq. (19) is 

identical to  + h = 1 given Ds=2h. Accordingly, in this section, we employ another expression of Ds estimated from Horton 

ratios (Rosso et al., 1991) as 

𝐷𝑠 = max(1, 2 ln𝑅𝐿 ln𝑅𝐴⁄ ).           (20) 220 

Two extreme values of Ds, i.e., 1 (a line with no sinuosity) and 2 (full sinuosity of streams filling a plane), correspond to cases 

of RA = RL
2 and RA = RL, respectively. Substituting Eq. (20) into Eq. (19) gives 

𝜂 = 1 − ln 𝑅𝐿 ln 𝑅𝐴⁄ ,           (21) 

which is the first expression for η. 

The fractal characteristic of a river network is originated from two features: (1) the aforementioned fractal stream (single 225 

corridor) and (2) the fractal network organization of such streams. While Ds is the fractal dimension to represent the former, 

the fractal dimension stemming from the latter feature is denoted as Db. La Barbera and Roth (1994) derived an expression of 

 as a function of two fractal dimensions Ds and Db. As η =, we can use their derivation as 

𝜂 = 𝐷𝑠(𝐷𝑏 − 1) 2⁄ .           (22) 

For Db, we refer to the equation of La Barbera and Rosso (1989) as  230 

𝐷𝑏 = min(2,  ln𝑅𝐵 ln𝑅𝐿⁄ ).           (23) 

According to Eq. (23), the lower and upper limits in Db (1 and 2) correspond to the cases of RB = RL and RB = RL
2, respectively. 

Considering the typical ranges of RB and RL found in river networks, Db is mostly between 1.5 and 2 (La Barbera and Rosso, 

1989; Rosso et al., 1991). We can substitute Eqs. (20) and (23) into (22) as 

𝜂 = ln(𝑅𝐵/𝑅𝐿) ln 𝑅𝐴⁄ .           (24) 235 

In addition to above two expressions (Eqs. (21) and (24)), we suggest a simple relationship, on the basis of examining our 

analysis of real river networks, as 

𝜂 = 𝐷𝑏 4⁄ = (ln𝑅𝐵/ln𝑅𝐿) 4⁄ .          (25) 

https://doi.org/10.5194/hess-2022-237
Preprint. Discussion started: 13 July 2022
c© Author(s) 2022. CC BY 4.0 License.



11 

 

This functional form is similar to the quarter-power scaling laws widely found in biological systems. The metabolic rates of 

mammals scale with their respective mass spanning more than eight orders of magnitude with approximately 3/4 power-law 240 

exponent, known as Kleiber’s law (Kleiber, 1932; Ballesteros et al., 2018). Almost all quantities characterizing physiological 

phenomena and biological networks in organisms systematically follow power-law over diverse spectrum of size (or mass), 

with scaling exponents very much approximating to quarter-multiples, such as -1/4 for heart rates (Dawson, 2001), and 3/4 for 

number of capillaries (Savage et al., 2004). For the emergence of the quarter-power scaling laws, West et al. (1997) suggested 

a coarse-grained zeroth order ‘theory’ based on three essential and generic properties of networks in organisms: (1) space 245 

filling to serve sufficient resources to everywhere in a system, (2) invariant size and characteristics of terminal units, and (3) 

optimized designs to minimize energy loss. According to their theory (West et al., 1999; West, 2017), the ubiquitous number 

‘four’ in the scaling law exponents indicates the total number of domains that all metabolic mechanisms are operated through 

optimized space-filling branching networks, thereby as a sum of the normal three domains representing three-dimensional 

appearance, and the additional one domain revealing fractal dimension feature. Broadly recognized that river network is an 250 

excellent analogue of biological networks in living organisms (Banavar et al., 1999), the interpretation for the number ‘four’ 

in the quarter-power scaling laws in biology can be fully transferrable to obtain a mechanism-based insight on the role of 

denominator ‘four’ in Eq. (25). In case of the river network organization formed in three dimensions, the total number of 

domains characterizing the object and its fractality becomes 4 (as 3+1). Hence, Db/4 (= =) indicates the ‘standardization’ of 

fractal dimension Db defined for the entire river network. 255 

 values estimated from three Eqs. (21), (24), and (25) show notable differences among them and from the observed  values in 

the a–Ap relationship (Fig. 3). This result manifests that each expression holds an uncertainty forbidding exact correspondence 

with the observed. We suppose that the uncertainty may be mostly attributable to non-perfect straight fits when estimating 

Horton’s ratios (as shown in Fig. S2 in SI). Despite the accumulated uncertainties, a remarkable finding is that the new Eq. 

(25) proposed from an off-the-wall perspective yields satisfactory result for  estimate.   260 
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Figure 3. Comparison of  value observed from the a–Ap relationship (Eq. (18)), with  values estimated as the functions of 

the fractal dimensions expressed as the Horton ratios. Results of Eqs. (21), (24), and (25) are presented as circle, asterisk, and 

filled-square markers, respectively. Color-codes for our studied four river networks are the same as indicated in Fig. 2. 

5 Summary and Conclusions 

In this study, we thoroughly investigated the power-law relationship between the apparent drainage density a and the pruning 265 

area Ap, and revealed its meaning for characterizing river network organization. We analytically found that  is equivalent to 

the fractal scaling exponent  in the area-exceedance probability distribution. Analyses for four river networks in the USA 

support our conclusion, suggesting the convergence of diverse descriptors for fractal river network at the most fundamental 

level. We further presented how   is associated with fractal dimensions, based on inspiration from fractality embedded in the 

dimensional inconsistency between the ideal and observed  values. We expect that the novel interpretation sheds a new light 270 

on the subject of the standardized fractal dimension. 
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