

1 Advance prediction of coastal groundwater levels with temporal

2 convolutional network

- 3 Xiaoying Zhang^{a,b}, Fan Dong^{a,b}, Guangquan Chen^c, Zhenxue Dai^{a,b}*
- 4 ^a Institute of Intelligent Simulation and Early Warning for Subsurface Environment,
- 5 Jilin University, Changchun, China
- 6 ^bCollege of Construction Engineering, Jilin University, Changchun, China
- 7 °Key Laboratory of Marine Sedimentology and Environmental Geology, First
- 8 Institute of Oceanography, State Oceanic Administration, Qingdao, China
- 9 * Correspondence: Zhenxue Dai, <u>dzx@jlu.edu.cn</u>
- 10

11 Highlights

- A TCN-based model was proposed to predict groundwater levels in coastal
- 13 aquifers
- Tidal, precipitation and groundwater levels were utilized as input data in the
- 15 networks
- In advance 1- day, 3-, 7- and 15-days groundwater levels were predicted with the
- 17 highest accuracy of 1 day-lead prediction
- The TCN-based model outperforms the LSTM in accuracy and efficiency in a
- 19 coastal aquifer
- 20

21 Abstract

Prediction of groundwater level is of immense importance and challenges for the coastal aquifer management with rapidly increasing climatic change. With the development of artificial intelligence, the data driven models have been widely adopted in predicting hydrological processes. However, due to the limitation of network framework and construction, they are mostly adopted to produce only one-time step in advance. Here, a TCN-based model is developed to predict groundwater level variations with different leading periods in a coastal aquifer. The

29 historical precipitation and tidal level data are incorporated as input data. The first hourly-monitored ten-month data were used for model training and testing, and the 30 data of the following three months were predicted with 24, 72, 18 and 360 time steps 31 in advance. For one-step prediction of the two wells, the calculated R² are higher than 32 33 0.999 in the prediction stage. The performance is meanwhile compared with a powerful network in the field of time-series prediction, long short-term memory 34 35 (LSTM) recurrent network. The corresponding R^2 of the LSTM-based model are 0.996 and 0.998. While the RMSE values of TCN-based model are less than that of 36 37 LSTM-based model with shorter running times. For the advanced prediction, the 38 model accuracy greatly decreases with the increase of advancing period from 1-day to 3-, 7- and 15-days. Overall, the TCN- and LSTM-based models show great ability to 39 40 learn complex patterns in advance using historical data within the time series. Considering the simulation accuracy and efficiency, the TCN-based model 41 outperforms the LSTM-based model and has been proved to be a valid localized 42 groundwater prediction tool in the subsurface environment. 43

44

Keywords: prediction; Groundwater level; Coastal aquifer; Temporal convolutional
networks; Long Short-Term Memory

47

48

49

50 1 Introduction

51 As the economic development and population escalate in coastal area, the fresh groundwater needs continue to mount, seawater intrusion has post great threat to the 52 availability of portable water resources globally (Baena-Ruiz et al., 2018). In United 53 54 States, Mexico, Canada, Australia, India, South Korea, Italy and Greece with dense population, numerous coastal aquifers have experienced salinization caused by 55 56 seawater intrusion (Barlow and Reichard, 2009; Park et al., 2011; Pratheepa et al., 57 2015). Protection projects such as aquifer replenishment can be constructed to 58 alleviate seawater intrusion by artificially increasing groundwater recharge in 59 the aquifer than what occurs naturally (Abdalla and Al-Rawahi, 2012; Lu et al., 2019). The replenishment programs have been operated in developed area such as Perth, 60 61 Western Australia, and California, USA (Garza-Díaz et al., 2019). The infrastructure tends to be costly and out of reach for many developing countries. A reliable seawater 62 intrusion monitoring and predicting system with wells is essential and still the most 63 effective method of keeping water chemistry above the seawater interface (Xu and Hu, 64 65 2017).

In the past several decades, conventional numerical models have been widely utilized to simulate and predict the groundwater fluctuation dynamics and chemical variations (Batelaan et al., 2003; Dai et al., 2020; Huang et al., 2015; Li et al., 2002). However, the difficulty of acquiring extensive hydrological and geological data and setting reasonable boundaries limits its application on seawater intrusion management. Meanwhile, the method is not suitable to simultaneously adopt updated monitoring

72 data and produce real-time prediction. Under such circumstances, where data source is scarce, artificial intelligence technology has been proposed in groundwater dynamic 73 prediction. Artificial neutral network (ANN) has been greatly improved and became a 74 robust tool for dealing groundwater problems, where the flow is nonlinear and highly 75 76 dynamic in nature (Maier and Dandy, 2000). The conventional network model generally has defects such as high computational complexity, slow training speed, and 77 78 failure in retaining historical information, thus is hardly to be enrolled in the 79 long-term time-series prediction (Cannas et al., 2006; Mei et al., 2017). To solve this 80 problem, researchers upgraded the conventional networks by integrating them with 81 methods like genetic algorithm (Danandeh Mehr and Nourani, 2017; Ketabchi and Ataie-Ashtiani, 2015), singular spectrum (Sahoo et al., 2017), and wavelet transform 82 83 (Gorgij et al., 2017; Seo et al., 2015; Zhang et al., 2019). Singular spectrum analysis and wavelet transform can help to preprocess the time-series data before they are put 84 85 into the neural networks to improve prediction accuracy and efficiency.

With the computing capacity development, deep learning (DL) has emerged as a 86 87 very powerful time-series prediction method. DL models are particularly suitable for big data time-series, because they can automatically extract complex patterns without 88 feature extraction preprocessing steps (Torres et al., 2019). However, the general fully 89 connected networks are not effective to capture the temporal dependence of 90 91 time-series (Senthil Kumar et al., 2005). Therefore, more specialized DL models, such as recurrent neural networks (RNN) (Rumelhart et al., 1986) and convolutional neural 92 networks (CNN) (Lecun et al., 1998) have been adopted in the field of time-series 93

94 prediction (Feng et al., 2020). Different from the back-propagation (BP) neural network, the RNN preserves the information from the previous step as input to the 95 current step with loops (Coulibaly et al., 2001). This allows the RNN to handle 96 time-series and other sequential data but generally is not straightforward for a 97 98 long-term calculation in practice (Bengio et al., 1994). Therefore, the enhanced RNN model, long short-term memory (LSTM) is proposed and capable to process high 99 100 variable-length sequences even with millions of data points (Fischer and Krauss, 2018; 101 Kratzert et al., 2019). As one of the best deep neural network model in time-series 102 predicting, the LSTM has been widely used in the prediction of temporal variations 103 such as stock market predictions (Fischer and Krauss, 2018), rainfall-runoff (Kumar 104 Dubey et al., 2021) and groundwater level (Solgi et al., 2021). Despite of substantial 105 progresses in hydrology predicting, these networks still have issues of low training efficiency and low accuracy (Zhan et al., 2022). 106

107 More recently, a variant of the CNN architecture known as temporal convolutional networks (TCN) has acquired popularity (Bai et al., 2018). The 108 prominent characteristic of TCN is its ability to capture long-term dependencies 109 without information loss (Cao et al., 2021). Meanwhile, it joints a residual block 110 structure to fix the disappearance of gradient in the deep network structure (Chen et 111 112 al., 2020). With proper modifications, the TCN is quite genetic and easily to be used 113 to build a very deep and extensive network in sequence modeling. In earth science, the TCN has been successfully applied to time-series prediction tasks including 114 multivariate time-series predicting for meteorological data (Wan et al., 2019), 115

probabilistic predicting (Chen et al., 2020) and wind speed predicting (Gan et al., 2021). Researches suggest that the TCN convincingly has advantage in several popular deep learning models across a broad range of sequence modeling tasks (Borovykh et al., 2019; Chen et al., 2020; Wan et al., 2019). However, the potential of TCN has not been investigated in the sequencing model of hydrogeology field.

Another import subject is that these networks are mostly used to predict 121 122 variables in only one step, which is not enough for the prediction of hydrology information in management. Therefore, it is worthy to explore their prediction 123 124 abilities in longer periods. The objective of this study is to build a climate-dydro 125 hybrid data-driven model with TCN to develop a real-time advance prediction model of groundwater level in the coastal aquifers. The hourly processed tidal, precipitation 126 127 with groundwater level data in monitoring wells of Laizhou Bay are utilized to train model and prediction the groundwater level in a period of 1-day, 3-,7- and 15-days. 128 To further validate the accuracy and efficiency of the proposed model, its 129 performance is further compared with the LSTM-based model. The rest of the paper is 130 131 organized as follows. Sect. 2 introduces the study area and observational data. Sect. 3 illustrates the detailed concept of TCN and LSTM, the experimental model settings 132 and model evaluation criteria. Sect. 4 presents the predicting results and discussions. 133 Finally, the paper is concluded in Sect. 5. 134

135 **2 Study area and data processing**

136 **2.1 Site description**

137 The study area is located in the south coast of Laizhou Bay, along the Yangzi to

138 Weifang section in Shandong province of China (Fig. 1). The Laizhou Bay is one of the earliest and most seriously affected area by seawater intrusion since 1970s in 139 China (Han et al., 2014; Zeng et al., 2016). The area is basically a coastal plain, which 140 contains a series of Cretaceous to modern sediments that covering the Paleozoic 141 142 basement. The sedimentary facies of coastal aquifer are alluvium, proluvial and marine sediments from south to north (Han et al., 2011). According to the research of 143 144 (Xue et al., 2000), there have been three seawater intrusion and regression events in the sea area of Laizhou Bay since the upper Pleistocene. The transgression in the early 145 146 upper Pleistocene formed the third marine aquifer containing sedimentary water. These brine were formed by evaporation and concentration of ancient seawater and 147 re-dissolution and mixing of salt (Dai and Samper, 2006; Zhang et al., 2017). The 148 149 monitoring wells BH01-BH05 are distributed in the study area along a cross section perpendicular to the coastline. Among the wells, the data of well BH01 and BH05 are 150 relatively integrate and distributed in the two sides of the cross profile with 151 distinguished annual variation pattern, which are selected as examples for the 152 153 developed models.

154

156 **2.2 Data collection and preprocessing**

157 The precipitation and tidal level are selected as the primary factors to affect the groundwater dynamics in the coastal area. The data in the period of 2011 to 2012 with 158 groundwater level observations of three wells are combined as the input of the deep 159 learning models. A total of 37,920 data items are collected for monitoring wells and 160 the variations of groundwater level, and tidal level with precipitation are shown in 161 Figure 2. The rainfall is concentrated from June to September and in shortage from 162 163 December to April. The tide in the study area is irregular mixed with a semi-diurnal variation. In the experiments, ten months of data from October to July 2011 is first 164 extracted for model training and testing. The rest of the data from August 2012 to 165 October 2012 is used to test model prediction accuracy. 166

167 In addition, the magnitudes of meteorological and hydrological variables have

obvious temporal variations. To reduce the negative impact on the model learning ability, especially on the speed of gradient descent, all variables are normalized to ensure that they remain at the same scale (Kratzert et al., 2019). This preprocessing method ensures the stable convergence of parameters in the developed TCN- and LSTM-based models and improve the simulation accuracy of the model. The normalization formula is as follows:

174
$$y_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$
(1)

where x_i represents the data in time *i*; x_{max} and x_{min} are the maximum and minimum variable values. The output of the network is retransformed to obtain the final groundwater level prediction, which is an inverse data scaling process.

178

- 179 Figure 2. Time-series of the variables in the study, including (a) precipitation, (b) tide,
- 180 (c) groundwater level (GWL).
- 181 **3 Methodology**
- 182 **3.1 Temporal Convolutional Network (TCN)**

183 The TCN is first proposed by (Lea et al., 2016) for video action segmentation and detection by hierarchically capturing intermediate feature presentations. Then the term 184 185 is extended for sequential data for a wide family of architectures with generic convolution (Bai et al., 2018; Lea et al., 2017). Suppose that we have an input 186 187 hydro-climate sequence at different times $x_0, ..., x_T$, the goal of the modeling is to 188 predict the corresponding groundwater level as outputs $y_0, ..., y_T$ at each time. The problem could transfer to build a network f that minimizes the function loss between 189 190 observations and actual network outputs $L[(y_0, ..., y_T), (\hat{y}_0, ..., \hat{y}_T)]$, where $\hat{y}_0, ..., \hat{y}_T =$ $f(x_0, ..., x_T)$. Currently, a typical TCN consists of dilated, causal 1D full-convolutional 191 layers with the same input and output lengths. With TCN, the prediction y_t depends 192 193 only on the data from x_0 and x_t and not include the future data from x_t and x_T (Yan et 194 al., 2020). With the three key components of TCN, it has two distinguishing characteristics: 1) the TCN is able to map the same length of output as the input 195 sequence as in RNN; 2) the convolution involved in TCN is causal, eliminating the 196 197 influence of future information on the output.

198 3.1.1 Causal Dilated Convolutions

In the TCN, the first advantage is accomplished by a 1D full-convolutionalnetwork (FCN) architecture. Different from the traditional CNN, the FCN transforms

the fully connected layers into the convolutional layers for the last layers, preserving the same length of output as that of the input (Long et al., 2015). As shown in Fig. 3a, the lengths of the input, the hidden and the output layers are the same in the FCN. Some zero padding is needed in this step by adding additional zero-valued entries with a length of kernel size-1 in each layer. The kernel size is the number of successive elements that are used to produce one element in the next layer.

207 To avoid the information leakage from the future (after time t), the TCN uses causal convolution instead of standard convolution, where only the elements at or 208 209 before time t in the previous layer are adopted into the mapping of the output at time t. 210 Further, the dilated convolution is employed to capture long-term historical information by skipping a given step size (dilation factor d) in each layer. For 211 212 example, the dilation factor d increases from 1 to 4 with the evolution of the network depth (n) in an exponential increasing pattern. In this way, a very large receiving 213 domain is created and all the historical records in the input can be involved in the 214 prediction model with a deep network. 215

dilated convolution; (b) the TCN residual block. An 1x1 convolution is added when
residual input and output have different dimensions; (c) framework of residual
connection in the TCN.

221 3.2.2 Residual Connections

222 In a high dimensional and long-term sequence, the network structure could be very deep with increasing complicity and cause a vanishing gradient. To solve this 223 224 issue, a residual block structure is introduced to replace the simple 1D causal 225 convolution layer, so that the designed TCN structure is more generic (He et al., 226 2016). The residual block in a TCN is represented in Fig. 3b. It has two convolutional 227 layers with the same kernel size and dilation factor and non-linearity. To solve non-linear models, the rectified linear unit (ReLU) is added to the top of the 228 229 convolutional layer (Nair and Hinton, 2010). The weight normalization is applied between the input of hidden layers (Salimans and Kingma, 2016). Meanwhile, a 230 dropout is added after each dilated convolution for regularization (Srivastava et al., 231 2014). For all connected inner residual blocks, the channel widths of input and output 232 are consistent. But the width may be different between the input of the first 233 convolutional layer of the first residual block and the output of the second 234 convolutional layer of the last residual block. Therefore, a 1×1 convolution is added 235 in the first and last residual block to adjust the dimensions of the residual tensor into 236 the same. The output of the residual block is represented by $\hat{Z}^{(i)}$ for the *i*th block. 237

238 3.2.3 Structure of TCN

239 A complete structure of TCN is illustrated in Fig.3c. It contains a series of

240 proceeding residual blocks. The structural characteristics make TCN a deep learning 241 network model very suitable for complex time-series prediction problems (Lara-Benítez et al., 2020). The main advantage of TCN is that, similar to RNN, they 242 have flexible receptive fields and can deal with various length input by sliding 243 244 one-dimensional causal convolution kernel. Furthermore, because TCN shares a convolution kernel and has parallelism, it can process long sequences in parallel 245 246 instead of sequential processing like RNN, so it has lower memory usage and shorter 247 computing time than a cyclic network. Moreover, RNN often has the problems of 248 gradient disappearance and gradient explosion, which are mainly caused by sharing 249 parameters in different periods, while TCN uses a standard backpropagation-throughtime algorithm (BPTT) for training, so there is little gradient disappearance and 250 251 explosion problem (Pascanu et al., 2012). The detailed mathematical calculation and associated information of the TCN architecture are referred to (Bai et al., 2018). 252

253 **3.2 Long Short-Term Memory network (LSTM)**

LSTM is a special RNN model explicitly designed for long-term dependence 254 problems. As shown in Fig. 4a, the RNN has a series of repeating modules that 255 recursively connected in the evolution direction of the sequence. The chain-like 256 structure permits the RNN to retain important information in a "tanh" layer and 257 produce the same length of output y_t as input x_t . However, the short-length 258 259 "remember time" is not enough for the groundwater prediction. Especially for our hourly recorded data, a maximum step about ten reported by (Bengio et al., 1994) is 260 unable to count the effect of annually, seasonally, and even daily groundwater 261

variation. Different from the simple layer in the RNN, the LSTM has a morecomplicated repeating module with four interacting layers.

The core idea of LSTM is the special structure to control the cell state in the 264 module as shown in Fig.4b. It includes a cell and an input gate i_t , a forget gate f_t , and 265 266 an output gate o_t . The information can directly flow down along cells C without critical changes, therefore, preserving long-term history messages (Zhang et al., 267 268 2018b). The three gates control which data in a sequence is important to keep or 269 throw away, and protect the relevant information passed down in the cell to make 270 predictions. The forget gate f_t has a sigmoid layer to determine which information is discarded with a value between 0 and 1. The lower the value, the less the information 271 added to the cell state (Ergen and Kozat, 2018). Opposite the forget gate, the input 272 273 gate i_i decides what information to retain in the cell state. It is composed of two parts: a sigmoid layer and a tanh layer. The two layers are combined to govern which values 274 will be updated by generating a new candidate value C_{t} . The old cell state C_{t-1} then 275 can be updated into the new cell state C_t with a weighted function. Finally, the output 276 277 gate o_t determines what parts of the cell state should be passed on to the next hidden state. The detailed calculation of the LTSM can be referenced to (Lea et al., 2016). 278

Figure 4. Graphical representation for a) chain like structure of the RNN by assigning x_t and $\hat{y_t}$ as input and output. The self-connected hidden units allow information to be passed from one step to the next; b) LSTM's memory block based on RNN. The hidden block includes three gates (input i_t , forget f_t , output o_t) and a cell state to select and pass the historical information.

286 **3.3 Experimental study**

Due to the high complexity of the DL models, setting appropriate 287 hyper-parameters for the developed networks is very important. Here, the impact of 288 the size of the input window, the epoch number and the batch size were tested with 289 290 different convolutional architectures over the monitoring data (Lara-Benítez et al., 291 2020). The learning dataset is first divided into two parts: 80% of the time-series data is used as training set, and 20% of the data is utilized as testing set. The effect of 292 293 different splitting strategies is further tested in section 4. With the increase of the epoch numbers, the curve gradually approaches to the optimal fitting state from the 294 initial non-fitting state, but too many epochs frequently lead to over-fitting of the 295 neural network. Meanwhile, the number of iterations generally increases for updating 296 297 weights in the neural network. Therefore, the number of epoch from 0 to 300 is evaluated. Batch size represents the number of samples between model weight 298

updates (Kreyenberg et al., 2019). The value of the batch size often is set between 1 and hundreds. Larger batch size often leads to faster convergence of the model, but may lead to less ideal of the final weight set. To find the best balance between memory efficiency and capacity, the batch size should be carefully set to optimize the performance of the network model. Besides these parameters, the number of filters in the TCN-based and the hidden nodes in the LSTM-based model were as well tested within reasonable ranges.

The 1-day, 3-, 7-, and 15-days lead prediction experiments were further 306 307 conducted to test the capacity of DL methods in predicting long-term groundwater level in the coastal aquifer. To eliminate the randomness of model training, all 308 experiments were repeated 5 times and the average values of each index were 309 310 compared. In all experiments, the average absolute error (MAE) has been used as the loss function of networks (Lara-Benítez et al., 2020). The Adam optimizer has an 311 adaptive learning rate, which can improve the convergence speed of deep networks, 312 which has been used to train the models (Kingma and Ba, 2015). 313

314 **3.4 Evaluation of model performance**

Two evaluation metrics, coefficient of determination (R²) and root mean square error (RMSE) are selected to quantify the goodness-of-fit between model outputs and observations ((Zhang et al., 2020)). The two criteria are calculated using the following equations:

319
$$RMSE = \sqrt{\frac{7}{N} \sum_{i=1}^{N} (h_i - y_i)^2}$$
(1)

320
$$R^{2} = \frac{\sum_{i=1}^{N} (h_{i} - \bar{h})^{2} - \sum_{i=1}^{N} (h_{i} - y_{i})^{2}}{\sum_{i=1}^{N} (h_{i} - \bar{h})^{2}}$$
(2)

321	where h_i is the observed groundwater level at time <i>i</i> , y_i is the network prediction
322	values at time <i>i</i> , \bar{h} is mean of the observed groundwater levels, and <i>n</i> is the number
323	of observations. RMSE measures the prediction precision which creates a positive
324	value by squaring the errors. The RMSE score is between [0, ∞]. If the RMSE
325	approaches to 0, the model prediction is ideal. R^2 measures the degree of model
326	replication results, ranging between $[-\infty, 1]$. For the optimal model prediction, the
327	score of \mathbb{R}^2 is close to 1.

328 **4 Results and discussions**

329 4.1 Hyper-parameter trial experiments

330 4.2.1 Experiments of the TCN-based model

331 The TCN-based model is built on Keras platform, using TensorFlow of python 332 as the backend. Take the groundwater level dataset in well BH1 as an example, the trials are set up with a variety combination of different hyper-parameters that are set 333 in the TCN-based model as illustrated in Table 1. With the fixed number of epoch, the 334 result of 32 filters is better than that of 16 and 64 filters. Meanwhile, under the 335 336 condition of 32 filters, the results of the model decrease with the increase of batch size. Therefore, when three different batches of 16, 32, and 64 are set for testing, the results 337 of the 16 batch size of the model are better. Based on the above experimental results, 338 the influence of different numbers of epoch on the simulation is further explored with 339 the filters equals to 32 and the batch size equals to 16 as shown in Fig.5. The overall 340 results of the model are improved when the number of epoch increases from 100 to 341 190 though the variation is not strictly linear, and the results turn stable with minor 342

fluctuations when the number of epoch exceeds 200.
Table 1. The RMSE and R² values between the observed and predicated groundwater
levels in well BH1 with different numbers of epochs, different numbers of filters, and
different batch sizes. The bold values represent the optimal hyper-parameters with the
smallest RMSE and the highest R² scores in the TCN-based model.

Epoch	filters	Batch size	RMSE(m)	R ²	Time(min)
		16	0.0182	0.9904	1.29
100	32	32	0.0117	0.9876	1.05
		64	0.0117	0.9875	0.78
		16	0.0078	0.9946	2.41
200	16	32	0.0068	0.9959	1.75
		64	0.009	0.9942	1.19
		16	0.0059	0.997	2.58
200	32	32	0.0075	0.9948	2.01
		64	0.0082	0.9938	1.51
		16	0.0125	0.9906	3.68
200	64	32	0.0101	0.9907	3.21
		64	0.0157	0.9775	2.76
		16	0.0065	0.9955	3.8
300	32	32	0.0076	0.9946	3.01
		64	0.0099	0.9904	2.22

348

- 350 Figure 5. The variation of RMSE and R^2 values between the observed and simulated
- 351 groundwater levels of well BH1 with the increasing number of epoch when the
- number of filters is 32 and the batch size is 16.

353 4.2.2 Experiments of the LSTM-based model

354 The maximum epoch and the number of hidden nodes are two key parameters affecting the simulation accuracy of LSTMs (Zhang et al., 2018a). Different 355 356 hyper-parameter combinations are tested as well as in the proposed TCN-based model with groundwater levels in well BH1. The RMSE, R² and running time are shown in 357 358 Table 2. With fixed number of hidden nodes, the results of 100 and 200 epochs are better than that in the 300 epochs experiment. A detailed variation of RMSE and R^2 359 values with increasing hidden nodes and epoch are further illustrated in Fig. 6. The 360 361 figure shows that the RMSE and R² have a decreasing and increasing trend separately when number of epochs is greater than 150 but they turn to the opposite way when it 362 is larger than 240. The variations of RMSE and R^2 with increasing hidden nodes have 363 similar changes as well. The results indicate that though an insufficient number of 364 neurons may decrease the learning ability of the network, an increasing training 365 hyper-parameters may not ensugare better rFesults. 366

Table 2. The RMSE and R² values between the observed and simulated groundwater levels in well BH1 with different numbers of epochs and hidden nodes. The bold values represent the optimal hyper-parameters used in the proposed LSTM-based model.

Epoch	Hidden nodes	RMSE	R ²	Time(min)
100	50	0.0104	0.9902	1.01

	60	0.0098	0.9916	1.38
	70	0.0095	0.9922	1.53
	80	0.01	0.9913	1.75
	50	0.0094	0.9922	1.91
200	60	0.0089	0.9931	2.59
200	70	0.0088	0.9932	2.96
	80	0.0092	0.9925	3.28
	50	0.0101	0.9903	2.86
300	60	0.0105	0.9901	3.85
500	70	0.0103	0.9907	4.29
	80	0.0120	0.9872	4.92

371

372
373 Figure 6. The variation of RMSE and R² values between the observed and simulated
374 groundwater levels of well BH1 with the increasing of the number of epochs when the

hidden node is 50.

The trial experimental results present similar fitting pattern shared by the two kind of networks. Inadequate hyper-parameters often leads to deficient learning ability of the network. In the contrary, excessive parameter setting may cause neural network overfitting issues. In addition, the growing parameters dramatically increase the computational cost in the network. For example, the time cost from 50 to 80 hidden nodes increased about 1.7 times in each iteration trial in the LSTM-based

- 382 model. Therefore, during implementation, 200 epochs, 32 filters, and the 16 batch size
- 383 were chosen as the optimal parameters in the TCN network. For the LSTM network,
- the number of epoch and hidden nodes were chosen as 200 and 70.

385 **4.3 Model performance and evaluation**

The optimal hyper-parameters of the proposed TCN-based model for groundwater level predicting are shown in Table 1 (epoch = 200, filters = 32 and batch size = 16). Besides that, the kernel size in each convolutional layer is set as 6, the dilations are [1,2,4,8]. For the LSTM-based model, the batch size is set to 148 with epoch=200 and nodes=70. The same hyper-parameters are then utilized to construct TCN and LSTM

391 architectures for prediction of groundwater level in different monitoring wells.

The simulated groundwater level in the training and testing stages by the two 392 393 models are shown in Fig. 7. For both models, the simulated values completely capture the variation of groundwater levels in monitoring wells with overlapped plot. The R^2 394 and RMSE values of simulation results are listed in Table 3. For the TCN-based 395 model, the values of RMSE are 0.0019 and 0.0166 for BH1, and the values of R² are 396 397 larger than 0.999 in the prediction. For the LSTM-based model, the RMSE values are 0.0074 and 0.0588, and the R² values are 0.9957 and 0.9980. These metrics indicate 398 that both of the models can "remember" the historical records and produce true 399 observations. The simulation accuracy of TCN-based models is slightly higher than 400 401 the LSTM-based models. In addition, the running time of the TCN-based model is 2.6 minutes, which is faster than that of the TCN-based model by eliminating the gate 402 403 selection.

404

Figure 7. The simulation results of groundwater level of different monitoring wells by
TCN-based model. The black dash line divides the data into two groups: the training
and testing set.

408

409 Table 3. The model results for groundwater level in the training and testing and

Wall	Madal	Training and Testing			Prediction		
wen	Widdel -	MAE	RMSE	R ²	MAE	RMSE	R ²
DU01	TCN	0.0017	0.0068	0.9992	0.0009	0.0019	0.9997
BH01	LSTM	0.0053	0.0077	0.9990	0.0050	0.0074	0.9957
DU05	TCN	0.0070	0.0279	0.9981	0.0061	0.0166	0.9990
BH02	LSTM	0.0082	0.0116	0.9997	0.0168	0.0558	0.9980

410 prediction stage

412 **4.4 Long term leading time prediction**

The TCN- and LSTM-based models were further adjusted to predict the groundwater level of the coastal aquifer over three months ahead with different leading period. Prediction results of groundwater level with 1-day, 3-, 7-, and 15-days leading time of TCN- and LSTM-based models are illustrated in Fig. 8 and Fig. 9 for wells BH1 and BH5 respectively. The results show that the predicted groundwater values in monitoring wells have the same change trend as the actual groundwater level. Both of the models are able to capture the variation trend of groundwater levels

Figure 8. The observed and prediction values of the groundwater level with TCN- and
LSTM-based models for 1-day, 3-, 7- and 15-days lead period in monitoring well
BH01.

426

Figure 9. The observed and prediction values of the groundwater level with TCN- and
LSTM-based models for 1-day, 3-, 7- and 15-days lead period in monitoring well
BH05.

430 To quantitatively compare the prediction accuracy of the proposed TCN- and LSTM-based models, the results of two evaluation metrics with the model running 431 time in different monitoring wells are summarized in Table 4. It can be learned that 432 the R² value of TCN-based models decreased from 0.9386 to 0.1406 for well BH01 433 and from 0.9670 to 0.7271 for well BH05. Correspondingly, an increase of RMSE 434 435 values from 0.028 to 0.1209 and 0.0934 to 0.206 are observed for BH01 and BH05, separately. A similar variation pattern is recognized for LSTM-based model with 436 smaller R² and higher RMSE than that of the TCN-based model. While, the average 437 running time of TCN-based is about 3.4 seconds, which is about 6 seconds for 438 439 LSTM-based models.

440

Wall	Model	Prediction		Madal	Prediction	
wen	Widdei	RMSE	\mathbb{R}^2	Widdel	RMSE	R ²
	TCN-1	0.0280	0.9386	LSTM-1	0.0349	0.9047
DU01	TCN-3	0.0550	0.7638	LSTM-3	0.0640	0.6802
DHUI	TCN-7	0.0741	0.5713	LSTM-7	0.0956	0.2874
	TCN-15	0.1209	-0.1407	LSTM-15	0.1486	-0.7227
	TCN-1	0.0934	0.9670	LSTM-1	0.1012	0.9613
DU05	TCN-3	0.1375	0.9285	LSTM-3	0.1086	0.9554
впоз	TCN-7	0.1084	0.9296	LSTM-7	0.2050	0.8406
	TCN-15	0.2060	0.7271	LSTM-15	0.3515	0.5330

441

Table 4. The model results for groundwater level in the long term prediction

442

The results showed that the TCN- and LSTM-based models are able to predict the 443 444 variation of groundwater levels with longer leading period more than one time step. The performance of the two networks were further evaluated with Taylor diagrams by 445 taking different criteria aspects into account (Taylor, 2001). The comparisons of 446 447 TCN- and LSTM-based model are shown in Fig. 10. As the metrics distributed away 448 from the reference point (Ref), the deviation of prediction from observation is gradually increased with extending of leading period. Taken well BH01 for example, 449 450 the prediction with 1-day (24 hours prediction window) in advance are the highest in 451 agreement with the actual situation in the two models. The two simulation results have the lowest RMSE values and highest R² values for both models. The prediction 452 453 precision gradually decreases with the extending of leading time. For the leading time 454 smaller than 7-days, 168 time steps prediction in advance, the evaluation metrics have 455 acceptable values of less than 0.1 for RMSE but the R² values have been greatly dropped. For the 15-days (360 time steps) leading period, the RMSE of the TCN- and 456 LSTM-based models have increased to 0.1209 and 0.1486 with negative R² values, 457

458 which suggest a kind of overestimation in well BH01.

Figure 10. Taylor diagrams with statistical (RMSE, correlation coefficient, and
standard deviation) comparison results of the TCN-based and LSTM-based models
for well (a) BH01 (b) BH05.

Overall, TCN- and LSTM-based models both have strong prediction ability. The 463 464 performance of the TCN-based model is better than that of the LSTM-based model in the three months prediction concerning both model precision and running time. 465 However, the model precision decreases when the leading period is increasing. The 466 causal dilated convolutions used by TCNs are better at capturing long-term 467 468 dependencies of time series data than recurrent units, improving the efficiency of neural networks and shortening the network running time. The TCN-based models are 469 able to provide accurate predictions once they are trained. As expected, the processing 470 speed of parallel convolution TCN-based models for long input sequences is faster 471 than that of recurrent networks. This seems to be a basic advantage of real-time 472 monitoring and early warning. In real-time monitoring and early warning, it is 473 necessary to obtain predictions quickly to make wise decisions. 474

475 **4.5 Influence of training set percentage**

In the following section, we discuss the similarities and differences between 476 TCN- and LSTM-based in terms of training set percentage. As we all know, 477 data-driven methods are supported by data; however, how much data is needed to 478 479 build an effective model is still a problem. This is because specific problems depend on application cases, data features, and model features (Wunsch et al., 2021). In our 480 481 study, the data is the hourly-monitored data from 2011 to 2012. From 2011, we set 482 20%, 30% to 90% training sets in turn, so as to gradually expand the length of training 483 set.

484 Fig. 11 shows the effect of increasing the percentage of training set on the performance of the model. All experiments were repeated five times, and the average 485 486 values of each index were compared to make them comparable. We observed that the overall performance of the TCN-based model improved with the increase of the 487 percentage of training set. When the training set reached 80%, the performance was 488 relatively optimal, and then the performance began to deteriorate with the increase of 489 490 the percentage of training set; at the same time, it can be seen that the performance of the LSTM-based model tends to be stable when the training set reaches 70%, and then 491 decreases slightly with the increase of training set. Therefore, it is not that the more 492 training sets, the better the performance of the model. We should carefully evaluate 493 494 and shorten the training data set as much as possible when necessary. Finally, we set 495 80% of the training set length to simulate the coastal aquifer time-series data.

496

497 Figure 11. Influence of the percentage of training set on the performance of the model498 5 Conclusions

A TCN-based deep learning model is proposed in this paper to predict 499 groundwater levels in coastal aquifers. Hyper-parameter searches was first conducted 500 and several different TCN-based models were tested to obtain a good architecture 501 502 configuration. The results indicate that a deeper, broader model does not necessarily guarantee better predictions. The optimal configuration then were adopted for the 503 networks of all monitoring data. This means that different data could share the same 504 network architecture without adjusting in each case and broaden its application in 505 different areas. With comparison to observations, the TCN-based model has achieved 506 507 satisfactory performance on the prediction of groundwater levels, which can well

508 capture the fluctuation of water level and provide possible saltwater intrusion 509 information in the coastal area. Thus, it can be used as a new promising method for 510 time-series prediction of hydrogeological data especially when the regional data is 511 difficult to collect in a complex system.

512 To validate the newly developed TCN-based model, its performance is compared with the LSTM-based recurrent networks. The TCN-based model outperforms the 513 514 LSTM-based model in view of both accuracy and efficiency. Meanwhile, three 515 months ahead predictions were conducted with different leading periods. A 516 decreasing precision is revealed when the leading time increases. In particular, once 517 TCN was trained, due to the use of parallel convolution to process the input sequence, its prediction speed is significantly faster than recurrent networks. In summary, our 518 519 research shows that TCN is a very powerful alternative to the LSTM network. It can provide accurate predictions and is suitable for more complex real-time applications 520 because of its high efficiency. 521

522 Acknowledgements

523 This work was jointly supported by National Natural Science Foundation of 524 China (No: 41702244), the Program for Jilin University (JLU) Science and 525 Technology Innovative Research Team (No. 2019TD-35).

526 Code availability

527 The pieces of code that were used for all analyses are available from the authors

528 upon request.

529 Data availability

- 530 The data sets that have been analyzed in this paper are available from the
- 531 authors upon request.

532 Author contribution

- 533 XZ drafted the manuscript and revised the manuscript. GC designed the
- 534 experiments and collected all the data. DF developed the model code and performed
- 535 the simulations. ZD was responsible for the project design, oversaw the analysis, and
- 536 conducted manuscript revision as the project leader and the senior scientist.

537 Competing interests

538 The authors declare that they have no conflict of interest.

539 Reference

- 540 Abdalla, O. A. E., and Al-Rawahi, A. S.: Groundwater recharge dams in arid areas as
- tools for aquifer replenishment and mitigating seawater intrusion: example of
 AlKhod, Oman, Environ. Earth Sci., 69(6), 1951-1962,
 https://doi.org/10.1007/s12665-012-2028-x, 2012.
- Baena-Ruiz, L., Pulido-Velazquez, D., Collados-Lara, A. J., Renau-Pruñonosa, A.,
 and Morell, I.: Global Assessment of Seawater Intrusion Problems (Status and
 Vulnerability), Water Resour. Manag., 32(8), 2681-2700,
 https://doi.org/10.1007/s11269-018-1952-2, 2018.
- 548 Bai, S., Kolter, J. Z., and Koltun, V.: An Empirical Evaluation of Generic
 549 Convolutional and Recurrent Networks for Sequence Modeling,
 550 arXiv:1803.01271, https://doi.org/10.48550/arXiv.1803.01271, 2018.
- 551 Barlow, P. M., and Reichard, E. G.: Saltwater intrusion in coastal regions of North
- 552
 America,
 Hydrogeol.
 J.,
 18(1),
 247-260,

 553
 https://doi.org/10.1007/s10040-009-0514-3, 2009.

 247-260,

 <td
- 554 Batelaan, O., De Smedt, F., and Triest, L.: Regional groundwater discharge: 555 phreatophyte mapping, groundwater modelling and impact analysis of

556	land-use change, J. Hydrol., 275(1), 86-108,
557	https://doi.org/10.1016/S0022-1694(03)00018-0, 2003.
558	Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies with
559	gradient descent is difficult, IEEE Trans. Neural Netw., 5(2), 157-166,
560	https://doi.org/10.1109/72.279181, 1994.
561	Borovykh, A., Bohte, S., and Oosterlee, C. W.: Dilated convolutional neural networks
562	for time series forecasting, J. Comput. Financ., 22(4), 73-101,
563	https://doi.org/10.21314/JCF.2018.358, 2019.
564	Cannas, B., Fanni, A., See, L., and Sias, G.: Data preprocessing for river flow
565	forecasting using neural networks: Wavelet transforms and data partitioning,
566	Phys. Chem. Earth, Parts A/B/C, 31(18), 1164-1171,
567	https://doi.org/10.1016/j.pce.2006.03.020, 2006.
568	Cao, Y., Ding, Y., Jia, M., and Tian, R.: A novel temporal convolutional network with
569	residual self-attention mechanism for remaining useful life prediction of
570	rolling bearings, Reliab. Eng. Syst. Saf., 215,
571	https://doi.org/10.1016/j.ress.2021.107813, 2021.
572	Chen, Y., Kang, Y., Chen, Y., and Wang, Z.: Probabilistic forecasting with temporal
573	convolutional neural network, Neurocomputing, 399, 491-501,
574	https://doi.org/10.1016/j.neucom.2020.03.011, 2020.
575	Coulibaly, P., Anctil, F., Aravena, R., and Bobée, B.: Artificial neural network
576	modeling of water table depth fluctuations, Water Resour. Res., 37(4),
577	885-896, https://doi.org/10.1029/2000WR900368, 2001.
578	Dai, Z., and Samper, J.: Inverse modeling of water flow and multicomponent reactive
579	transport in coastal aquifer systems, J. Hydrol., 327(3-4), 447-461,
580	https://doi.org/10.1016/j.jhydrol.2005.11.052, 2006.
581	Dai, Z., Xu, L, Xiao, T., McPherson, B., Zhang, X., Zheng, L., Dong, S., Yang, Z.,
582	Soltanian, M., Yang, C., Ampomah, W., Jia, W., Yin, S., Xu, T., Bacon, D.,
583	and Viswanathan, H.: Reactive chemical transport simulations of geologic
584	carbon sequestration: Methods and applications, Earth-Sci. Rev., 208, 103265,
585	https://doi.org/10.1016/j.earscirev.2020.103265, 2020.

31

586	Danandeh Mehr, A., and Nourani, V.: A Pareto-optimal moving average-multigene
587	genetic programming model for rainfall-runoff modelling, Environ. Modell.
588	Softw., 92, 239-251, https://doi.org/10.1016/j.envsoft.2017.03.004, 2017.
589	Ergen, T., and Kozat, S. S.: Efficient Online Learning Algorithms Based on LSTM
590	Neural Networks, IEEE Trans. Neural Netw. Learn. Syst., 29(8), 3772-3783,
591	https://doi.org/10.1109/TNNLS.2017.2741598, 2018.
592	Feng, N., Geng, X., and Qin, L.: Study on MRI Medical Image Segmentation
593	Technology Based on CNN-CRF Model, IEEE Access, 8, 60505-60514,
594	https://doi.org/10.1109/ACCESS.2020.2982197, 2020.
595	Fischer, T., and Krauss, C.: Deep learning with long short-term memory networks for
596	financial market predictions, Eur. J. Oper. Res., 270(2), 654-669,
597	https://doi.org/10.1016/j.ejor.2017.11.054, 2018.
598	Gan, Z., Li, C., Zhou, J., and Tang, G.: Temporal convolutional networks interval
599	prediction model for wind speed forecasting, Electr. Power Syst. Res., 191,
600	106865, https://doi.org/10.1016/j.epsr.2020.106865, 2021.
601	Garza-Díaz, L. E., DeVincentis, A. J., Sandoval-Solis, S., Azizipour, M.,
602	Ortiz-Partida, J. P., Mahlknecht, J., Cahn, M., Medellin-Azuara, J., ASCE, M.,
603	Zaccaria, D., and Kisekka, I.: Land-Use Optimization for Sustainable
604	Agricultural Water Management in Pajaro Valley, California, J. Water Resour.
605	Plan. ManageASCE, 145(12), 5019018,
606	https://doi.org/10.1061/(ASCE)WR.1943-5452.0001117, 2019.
607	Gorgij, A. D., Kisi, O., and Moghaddam, A. A.: Groundwater budget forecasting,
608	using hybrid wavelet-ANN-GP modelling: A case study of Azarshahr Plain,
609	East Azerbaijan, Iran, Hydrol. Res., 48(2), 455-467,
610	https://doi.org/10.2166/nh.2016.202, 2017.
611	Han, D., Kohfahl, C., Song, X., Xiao, G., and Yang, J.: Geochemical and isotopic
612	evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou
613	Bay, China, Appl. Geochem., 26(5), 863-883,
614	https://doi.org/10.1016/j.apgeochem.2011.02.007, 2011.
615	Han, D. M., Song, X. F., Currell, M. J., Yang, J. L., and Xiao, G. Q.: Chemical and

32

616	isotopic constraints on evolution of groundwater salinization in the coastal
617	plain aquifer of Laizhou Bay, China, J. Hydrol., 508, 12-27,
618	https://doi.org/10.1016/j.jhydrol.2013.10.040, 2014.
619	He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image
620	Recognition, In Proceedings of the IEEE conference on computer vision and
621	pattern recognition, IEEE, pp. 770-778,
622	https://doi.org/10.1109/CVPR.2016.90, 2016.
623	Huang, F. K., Chuang, M. H., Wang, G. S., and Yeh, H. D.: Tide-induced
624	groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol., 530,
625	291-305, https://doi.org/10.1016/j.jhydrol.2015.09.032, 2015.
626	Ketabchi, H., and Ataie-Ashtiani, B.: Evolutionary algorithms for the optimal
627	management of coastal groundwater: A comparative study toward future
628	challenges, J. Hydrol., 520, 193-213,
629	https://doi.org/10.1016/j.jhydrol.2014.11.043, 2015.
630	Kingma, D. P., and Ba, J. L.: Adam: A method for stochastic optimization, 3rd
631	International Conference on Learning Representations, San Diego,
632	https://doi.org/10.48550/arXiv. 1412.16980, 2015.
633	Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.:
634	NeuralHydrology - Interpreting LSTMs in Hydrology, N/A, 11700, 347-362,
635	https://doi.org/10.1007/978-3-030-28954-6-19, 2019.
636	Kreyenberg, P. J., Bauser, H. H., and Roth, K.: Velocity Field Estimation on
637	Density - Driven Solute Transport with a Convolutional Neural Network,
638	Water Resour. Res., 55(8), 7275-7293,
639	https://doi.org/10.1029/2019WR024833, 2019.
640	Kumar Dubey, A., Kumar, A., García-Díaz, V., Kumar Sharma, A., and Kanhaiya, K.:
641	Study and analysis of SARIMA and LSTM in forecasting time series data,
642	Sustain. Energy Technol. Assess., 47,
643	https://doi.org/10.1016/j.seta.2021.101474, 2021.
644	Lara-Benítez, P., Carranza-García, M., Luna-Romera, J. M., and Riquelme, J. C.:
645	Temporal Convolutional Networks Applied to Energy-Related Time Series

646	Forecasting, Applied Sciences, 10(7), https://doi.org/10.3390/app10072322,
647	2020.
648	Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D.: Temporal
649	convolutional networks for action segmentation and detection, Proceedings -
650	30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
651	2017, pp. 1003-1012, https://doi.org/10.1109/CVPR.2017.113, 2017.
652	Lea, C., Vidal, R., Reiter, A., and Hager, G. D.: Temporal convolutional networks: A
653	unified approach to action segmentation, Lecture Notes in Computer Science
654	(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
655	in Bioinformatics). pp. 47-54, https://doi.org/10.1007/978-3-319-49409-8-7,
656	2016.
657	Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning applied to
658	document recognition, Proc. IEEE, 86(11), 2278-2324,
659	https://doi.org/10.1109/5.726791, 1998.
660	Li, H., Jiao, J. J., Luk, M., and Cheung, K.: Tide-induced groundwater level
661	fluctuation in coastal aquifers bounded by L-shaped coastlines, Water Resour.
662	Res., 38(3), 6-6-8, https://doi.org/10.1029/2001WR000556, 2002.
663	Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic
664	segmentation, CVPR, pp. 431-440,
665	https://doi.org/10.1109/CVPR.2015.7298965, 2015.
666	Lu, C. H., Cao, H. F., Ma, J., Shi, W. L., Rathore, S. S., Wu, J. C., and Luo, J.: A
667	Proof - of - Concept Study of Using a Less Permeable Slice Along the
668	Shoreline to Increase Fresh Groundwater Storage of Oceanic Islands:
669	Analytical and Experimental Validation, Water Resour. Res., 55(8),
670	6450-6463, https://doi.org/10.1029/2018wr024529, 2019.
671	Maier, H. R., and Dandy, G. C.: Neural networks for the prediction and forecasting of
672	water resources variables: a review of modelling issues and applications,
673	Environ. Modell. Softw., 15(1), 101-124,
674	https://doi.org/10.1016/S1364-8152(99)00007-9, 2000.
675	Mei, Y., Tan, G., and Liu, Z.: An improved brain-inspired emotional learning

676	algorithm for fast classification, Algorithms, 10(2), 70,
677	https://doi.org/10.3390/a10020070, 2017.
678	Nair, V., and Hinton, G. E.: Rectified linear units improve Restricted Boltzmann
679	machines, In Proceedings of the 27th International Conference on
680	International Conference on Machine Learning, pp. 807-814,
681	https://dl.acm.org/doi/10.5555/3104322.3104425, 2010.
682	Park, Y., Lee, J. Y., Kim, J. H., and Song, S. H.: National scale evaluation of
683	groundwater chemistry in Korea coastal aquifers: evidences of seawater
684	intrusion, Environ. Earth Sci., 66(3), 707-718,
685	https://doi.org/10.1007/s12665-011-1278-3, 2011.
686	Pascanu, R., Mikolov, T., and Bengio, Y.: On the difficulty of training recurrent
687	neural networks, Machine Learning, pp. 2347-2355,
688	https://doi.org/10.48550/arXiv.1211.5063, 2012.
689	Pratheepa, V., Ramesh, S., Sukumaran, N., and Murugesan, A. G.: Identification of
690	the sources for groundwater salinization in the coastal aquifers of Southern
691	Tamil Nadu, India, Environ. Earth Sci., 74(4), 2819-2829,
692	https://doi.org/10.1007/s12665-015-4303-0, 2015.
693	Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by
694	back-propagating errors, Nature, 323(6088), 533-536,
695	https://doi.org/10.1038/323533a0, 1986.
696	Sahoo, S., Russo, T. A., Elliott, J., Foster, I., and Argonne National Lab, A. I. L.:
697	Machine learning algorithms for modeling groundwater level changes in
698	agricultural regions of the U.S, Water Resour. Res., 53(5), 3878-3895,
699	https://doi.org/10.1002/2016WR019933, 2017.
700	Salimans, T., and Kingma, D. P.: Weight normalization: A simple reparameterization
701	to accelerate training of deep neural networks, Advances in Neural
702	Information Processing Systems, pp. 901-909,
703	https://doi.org/10.48550/arXiv.1602.07868, 2016.
704	Senthil Kumar, A. R., Sudheer, K. P., Jain, S. K., and Agarwal, P. K.: Rainfall-runoff
705	modelling using artificial neural networks: comparison of network types,

706	Hydrol. Process., 19(6), 1277-1291, https://doi.org/10.1002/hyp.5581, 2005.
707	Seo, Y., Kim, S., Kisi, O., and Singh, V. P.: Daily water level forecasting using
708	wavelet decomposition and artificial intelligence techniques, J. Hydrol., 520,
709	224-243, https://doi.org/10.1016/j.jhydrol.2014.11.050, 2015.
710	Solgi, R., Loáiciga, H. A., and Kram, M.: Long short-term memory neural network
711	(LSTM-NN) for aquifer level time series forecasting using in-situ piezometric
712	observations, J. Hydrol., 601, https://doi.org/10.1016/j.jhydrol.2021.126800,
713	2021.
714	Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.:
715	Dropout: A simple way to prevent neural networks from overfitting, J. Mach.
716	Learn. Res., 15(1), 1929-1958,
717	https://dl.acm.org/doi/abs/10.5555/2627435.2670313, 2014.
718	Taylor, K. E.: Summarizing multiple aspects of model performance in a single
719	diagram, J. Geophys. ResAtmos., 106, 7183-7192,
720	https://doi.org/10.1029/2000JD900719, 2001.
721	Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-Álvarez, F.: Deep
722	Learning for Big Data Time Series Forecasting Applied to Solar Power, The
723	13th International Conference on Soft Computing Models in Industrial and
724	Environmental Applications, pp. 123-133,
725	https://doi.org/10.1007/978-3-319-94120-2_12, 2018.
726	Wan, R., Mei, S., Wang, J., Liu, M., and Yang, F.: Multivariate temporal
727	convolutional network: A deep neural networks approach for multivariate time
728	series forecasting, Electronics, 8(8),
729	https://doi.org/10.3390/electronics8080876, 2019.
730	Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial
731	neural networks: a comparison of long short-term memory (LSTM),
732	convolutional neural networks (CNNs), and non-linear autoregressive
733	networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25(3),
734	1671-1687, https://doi.org/10.5194/hess-25-1671-2021, 2021.
735	Xu, Z., and Hu, B.X.: Development of a discrete-continuum VDFST-CFP numerical

736	model for simulating seawater intrusion to a coastal karst aquifer with a
737	conduit system, Water Resour. Res., 53(1), 688-711,
738	https://doi.org/10.1002/2016wr018758, 2017.
739	Xue, Y., Wu, J., Ye, S., and Zhang, Y.: Hydrogeological and hydrogeochemical
740	studies for salt water intrusion on the south coast of Laizhou Bay, China,
741	Groundwater, 38(1), 38-45,
742	https://doi.org/10.1111/j.1745-6584.2000.tb00200.x, 2000.
743	Yan, J., Mu, L., Wang, L., Ranjan, R., and Zomaya, A. Y.: Temporal Convolutional
744	Networks for the Advance Prediction of ENSO, Sci Rep., 10(1), 8055-8055,
745	https://doi.org/10.1038/s41598-020-65070-5, 2020.
746	Zeng, X., Wu, J., Wang, D., and Zhu, X.: Assessing the pollution risk of a
747	groundwater source field at western Laizhou Bay under seawater intrusion,
748	Environ. Res., 148, 586-594, https://doi.org/10.1016/j.envres.2015.11.022,
749	2016.
750	Zhan, C., Dai, Z., Soltanian, M. R., and Zhang, X.: Stage - wise stochastic deep
751	learning inversion framework for subsurface sedimentary structure
752	identification, Geophys. Res. Lett., 49(1), e2021GL095823,
753	https://doi.org/10.1029/2021GL095823, 2022.
754	Zhang, D., Lin, J. Q., Peng, Q. D., Wang, D. S., Yang, T. T., Sorooshian, S., Liu, X.
755	F., and Zhuang, J. B.: Modeling and simulating of reservoir operation using
756	the artificial neural network, support vector regression, deep learning
757	algorithm, J. Hydrol., 565, 720-736,
758	https://doi.org/10.1016/j.jhydrol.2018.08.050, 2018a.
759	Zhang, J., Zhang, X. Y., Niu, J., Hu, B. X., Soltanian, M. R., Qiu, H., and Yang, L.:
760	Prediction of groundwater level in seashore reclaimed land using wavelet and
761	artificial neural network-based hybrid model, J. Hydrol., 577, 123948,
762	https://doi.org/10.1016/j.jhydrol.2019.123948, 2019.
763	Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J.: Developing a Long Short-Term
764	Memory (LSTM) based model for predicting water table depth in agricultural
765	areas, J. Hydrol., 561, 918-929, https://doi.org/10.1016/j.jhydrol.2018.04.065,

766	2018b.
767	Zhang, X. Y., Dong, F., Dai, H., Hu, B. X., Qin, G. X., Li, D., Lv, X. S., Dai, Z. X.,
768	and Soltanian, M. R.: Influence of lunar semidiurnal tides on groundwater
769	dynamics in estuarine aquifers, Hydrogeol. J., 28(4), 1419-1429,
770	https://doi.org/10.1007/s10040-020-02136-8, 2020.
771	Zhang, X. Y., Miao, J. J., Hu, B. X., Liu, H. W., Zhang, H, X., and Ma, Z.:
772	Hydrogeochemical characterization and groundwater quality assessment in
773	intruded coastal brine aquifers (Laizhou Bay, China), Environ. Sci. Pollut.
774	Res., 24(26), 21073-21090, https://doi.org/10.1007/s11356-017-9641-x, 2017.
775	