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Highlights11

 A TCN-based model was proposed to predict groundwater levels in coastal12

aquifers13

 Tidal, precipitation and groundwater levels were utilized as input data in the14

networks15

 In advance 1- day, 3-, 7- and 15-days groundwater levels were predicted with the16

highest accuracy of 1 day-lead prediction17

 The TCN-based model outperforms the LSTM in accuracy and efficiency in a18

coastal aquifer19

20

Abstract21

Prediction of groundwater level is of immense importance and challenges for the22

coastal aquifer management with rapidly increasing climatic change. With the23

development of artificial intelligence, the data driven models have been widely24

adopted in predicting hydrological processes. However, due to the limitation of25

network framework and construction, they are mostly adopted to produce only26

one-time step in advance. Here, a TCN-based model is developed to predict27

groundwater level variations with different leading periods in a coastal aquifer. The28
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historical precipitation and tidal level data are incorporated as input data. The first29

hourly-monitored ten-month data were used for model training and testing, and the30

data of the following three months were predicted with 24, 72, 18 and 360 time steps31

in advance. For one-step prediction of the two wells, the calculated R2 are higher than32

0.999 in the prediction stage. The performance is meanwhile compared with a33

powerful network in the field of time-series prediction, long short-term memory34

(LSTM) recurrent network. The corresponding R2 of the LSTM-based model are35

0.996 and 0.998. While the RMSE values of TCN-based model are less than that of36

LSTM-based model with shorter running times. For the advanced prediction, the37

model accuracy greatly decreases with the increase of advancing period from 1-day to38

3-, 7- and 15-days. Overall, the TCN- and LSTM-based models show great ability to39

learn complex patterns in advance using historical data within the time series.40

Considering the simulation accuracy and efficiency, the TCN-based model41

outperforms the LSTM-based model and has been proved to be a valid localized42

groundwater prediction tool in the subsurface environment.43

44

Keywords: prediction; Groundwater level; Coastal aquifer; Temporal convolutional45

networks; Long Short-Term Memory46
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1 Introduction50

As the economic development and population escalate in coastal area, the fresh51

groundwater needs continue to mount, seawater intrusion has post great threat to the52

availability of portable water resources globally (Baena-Ruiz et al., 2018). In United53

States, Mexico, Canada, Australia, India, South Korea, Italy and Greece with dense54

population, numerous coastal aquifers have experienced salinization caused by55

seawater intrusion (Barlow and Reichard, 2009; Park et al., 2011; Pratheepa et al.,56

2015). Protection projects such as aquifer replenishment can be constructed to57

alleviate seawater intrusion by artificially increasing groundwater recharge in58

the aquifer than what occurs naturally (Abdalla and Al-Rawahi, 2012; Lu et al., 2019).59

The replenishment programs have been operated in developed area such as Perth,60

Western Australia, and California, USA (Garza-Díaz et al., 2019). The infrastructure61

tends to be costly and out of reach for many developing countries. A reliable seawater62

intrusion monitoring and predicting system with wells is essential and still the most63

effective method of keeping water chemistry above the seawater interface (Xu and Hu,64

2017).65

In the past several decades, conventional numerical models have been widely66

utilized to simulate and predict the groundwater fluctuation dynamics and chemical67

variations (Batelaan et al., 2003; Dai et al., 2020; Huang et al., 2015; Li et al., 2002).68

However, the difficulty of acquiring extensive hydrological and geological data and69

setting reasonable boundaries limits its application on seawater intrusion management.70

Meanwhile, the method is not suitable to simultaneously adopt updated monitoring71
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data and produce real-time prediction. Under such circumstances, where data source72

is scarce, artificial intelligence technology has been proposed in groundwater dynamic73

prediction. Artificial neutral network (ANN) has been greatly improved and became a74

robust tool for dealing groundwater problems, where the flow is nonlinear and highly75

dynamic in nature (Maier and Dandy, 2000). The conventional network model76

generally has defects such as high computational complexity, slow training speed, and77

failure in retaining historical information, thus is hardly to be enrolled in the78

long-term time-series prediction (Cannas et al., 2006; Mei et al., 2017). To solve this79

problem, researchers upgraded the conventional networks by integrating them with80

methods like genetic algorithm (Danandeh Mehr and Nourani, 2017; Ketabchi and81

Ataie-Ashtiani, 2015), singular spectrum (Sahoo et al., 2017), and wavelet transform82

(Gorgij et al., 2017; Seo et al., 2015; Zhang et al., 2019). Singular spectrum analysis83

and wavelet transform can help to preprocess the time-series data before they are put84

into the neural networks to improve prediction accuracy and efficiency.85

With the computing capacity development, deep learning (DL) has emerged as a86

very powerful time-series prediction method. DL models are particularly suitable for87

big data time-series, because they can automatically extract complex patterns without88

feature extraction preprocessing steps (Torres et al., 2019). However, the general fully89

connected networks are not effective to capture the temporal dependence of90

time-series (Senthil Kumar et al., 2005). Therefore, more specialized DL models, such91

as recurrent neural networks (RNN) (Rumelhart et al., 1986) and convolutional neural92

networks (CNN) (Lecun et al., 1998) have been adopted in the field of time-series93
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prediction (Feng et al., 2020). Different from the back-propagation (BP) neural94

network, the RNN preserves the information from the previous step as input to the95

current step with loops (Coulibaly et al., 2001). This allows the RNN to handle96

time-series and other sequential data but generally is not straightforward for a97

long-term calculation in practice (Bengio et al., 1994). Therefore, the enhanced RNN98

model, long short-term memory (LSTM) is proposed and capable to process high99

variable-length sequences even with millions of data points (Fischer and Krauss, 2018;100

Kratzert et al., 2019) . As one of the best deep neural network model in time-series101

predicting, the LSTM has been widely used in the prediction of temporal variations102

such as stock market predictions (Fischer and Krauss, 2018), rainfall-runoff (Kumar103

Dubey et al., 2021) and groundwater level (Solgi et al., 2021). Despite of substantial104

progresses in hydrology predicting, these networks still have issues of low training105

efficiency and low accuracy (Zhan et al., 2022).106

More recently, a variant of the CNN architecture known as temporal107

convolutional networks (TCN) has acquired popularity (Bai et al., 2018). The108

prominent characteristic of TCN is its ability to capture long-term dependencies109

without information loss (Cao et al., 2021). Meanwhile, it joints a residual block110

structure to fix the disappearance of gradient in the deep network structure (Chen et111

al., 2020). With proper modifications, the TCN is quite genetic and easily to be used112

to build a very deep and extensive network in sequence modeling. In earth science,113

the TCN has been successfully applied to time-series prediction tasks including114

multivariate time-series predicting for meteorological data (Wan et al., 2019),115
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probabilistic predicting (Chen et al., 2020) and wind speed predicting (Gan et al.,116

2021). Researches suggest that the TCN convincingly has advantage in several117

popular deep learning models across a broad range of sequence modeling tasks118

(Borovykh et al., 2019; Chen et al., 2020; Wan et al., 2019). However, the potential of119

TCN has not been investigated in the sequencing model of hydrogeology field.120

Another import subject is that these networks are mostly used to predict121

variables in only one step, which is not enough for the prediction of hydrology122

information in management. Therefore, it is worthy to explore their prediction123

abilities in longer periods. The objective of this study is to build a climate-dydro124

hybrid data-driven model with TCN to develop a real-time advance prediction model125

of groundwater level in the coastal aquifers. The hourly processed tidal, precipitation126

with groundwater level data in monitoring wells of Laizhou Bay are utilized to train127

model and prediction the groundwater level in a period of 1-day, 3-,7- and 15-days.128

To further validate the accuracy and efficiency of the proposed model, its129

performance is further compared with the LSTM-based model. The rest of the paper is130

organized as follows. Sect. 2 introduces the study area and observational data. Sect. 3131

illustrates the detailed concept of TCN and LSTM, the experimental model settings132

and model evaluation criteria. Sect. 4 presents the predicting results and discussions.133

Finally, the paper is concluded in Sect. 5.134

2 Study area and data processing135

2.1 Site description136

The study area is located in the south coast of Laizhou Bay, along the Yangzi to137
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Weifang section in Shandong province of China (Fig. 1). The Laizhou Bay is one of138

the earliest and most seriously affected area by seawater intrusion since 1970s in139

China (Han et al., 2014; Zeng et al., 2016). The area is basically a coastal plain, which140

contains a series of Cretaceous to modern sediments that covering the Paleozoic141

basement. The sedimentary facies of coastal aquifer are alluvium, proluvial and142

marine sediments from south to north (Han et al., 2011). According to the research of143

(Xue et al., 2000), there have been three seawater intrusion and regression events in144

the sea area of Laizhou Bay since the upper Pleistocene. The transgression in the early145

upper Pleistocene formed the third marine aquifer containing sedimentary water.146

These brine were formed by evaporation and concentration of ancient seawater and147

re-dissolution and mixing of salt (Dai and Samper, 2006; Zhang et al., 2017). The148

monitoring wells BH01-BH05 are distributed in the study area along a cross section149

perpendicular to the coastline. Among the wells, the data of well BH01 and BH05 are150

relatively integrate and distributed in the two sides of the cross profile with151

distinguished annual variation pattern, which are selected as examples for the152

developed models.153
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154

Figure 1. Schematic figure of the study area with monitoring wells BH01-BH05.155

2.2 Data collection and preprocessing156

The precipitation and tidal level are selected as the primary factors to affect the157

groundwater dynamics in the coastal area. The data in the period of 2011 to 2012 with158

groundwater level observations of three wells are combined as the input of the deep159

learning models. A total of 37,920 data items are collected for monitoring wells and160

the variations of groundwater level, and tidal level with precipitation are shown in161

Figure 2. The rainfall is concentrated from June to September and in shortage from162

December to April. The tide in the study area is irregular mixed with a semi-diurnal163

variation. In the experiments, ten months of data from October to July 2011 is first164

extracted for model training and testing. The rest of the data from August 2012 to165

October 2012 is used to test model prediction accuracy.166

In addition, the magnitudes of meteorological and hydrological variables have167
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obvious temporal variations. To reduce the negative impact on the model learning168

ability, especially on the speed of gradient descent, all variables are normalized to169

ensure that they remain at the same scale (Kratzert et al., 2019). This preprocessing170

method ensures the stable convergence of parameters in the developed TCN- and171

LSTM-based models and improve the simulation accuracy of the model. The172

normalization formula is as follows:173

�� =
��−�푚��

�푚��−�푚��
(1)174

where xi represents the data in time i; xmax and xmin are the maximum and minimum175

variable values. The output of the network is retransformed to obtain the final176

groundwater level prediction, which is an inverse data scaling process.177

178
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Figure 2. Time-series of the variables in the study, including (a) precipitation, (b) tide,179

(c) groundwater level (GWL).180

3 Methodology181

3.1 Temporal Convolutional Network (TCN)182

The TCN is first proposed by (Lea et al., 2016) for video action segmentation and183

detection by hierarchically capturing intermediate feature presentations. Then the term184

is extended for sequential data for a wide family of architectures with generic185

convolution (Bai et al., 2018; Lea et al., 2017). Suppose that we have an input186

hydro-climate sequence at different times x0, ..., xT, the goal of the modeling is to187

predict the corresponding groundwater level as outputs y0, ..., yT at each time. The188

problem could transfer to build a network f that minimizes the function loss between189

observations and actual network outputs L[( y0, ..., yT,),( Tyy ˆ,...,ˆ0 )], where Tyy ˆ,...,ˆ0 =190

f(x0, ..., xT). Currently, a typical TCN consists of dilated, causal 1D full-convolutional191

layers with the same input and output lengths. With TCN, the prediction yt depends192

only on the data from x0 and xt and not include the future data from xt and xT (Yan et193

al., 2020). With the three key components of TCN, it has two distinguishing194

characteristics: 1) the TCN is able to map the same length of output as the input195

sequence as in RNN; 2) the convolution involved in TCN is causal, eliminating the196

influence of future information on the output.197

3.1.1 Causal Dilated Convolutions198

In the TCN, the first advantage is accomplished by a 1D full-convolutional199

network (FCN) architecture. Different from the traditional CNN, the FCN transforms200

https://doi.org/10.5194/hess-2022-236
Preprint. Discussion started: 22 July 2022
c© Author(s) 2022. CC BY 4.0 License.



11

the fully connected layers into the convolutional layers for the last layers, preserving201

the same length of output as that of the input (Long et al., 2015). As shown in Fig. 3a,202

the lengths of the input, the hidden and the output layers are the same in the FCN.203

Some zero padding is needed in this step by adding additional zero-valued entries204

with a length of kernel size-1 in each layer. The kernel size is the number of205

successive elements that are used to produce one element in the next layer.206

To avoid the information leakage from the future (after time t), the TCN uses207

causal convolution instead of standard convolution, where only the elements at or208

before time t in the previous layer are adopted into the mapping of the output at time t.209

Further, the dilated convolution is employed to capture long-term historical210

information by skipping a given step size (dilation factor d) in each layer. For211

example, the dilation factor d increases from 1 to 4 with the evolution of the network212

depth (n) in an exponential increasing pattern. In this way, a very large receiving213

domain is created and all the historical records in the input can be involved in the214

prediction model with a deep network.215

216

Figure 3. Architectural elements in the proposed TCN. (a) the structure of causal217
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dilated convolution; (b) the TCN residual block. An 1x1 convolution is added when218

residual input and output have different dimensions; (c) framework of residual219

connection in the TCN.220

3.2.2 Residual Connections221

In a high dimensional and long-term sequence, the network structure could be222

very deep with increasing complicity and cause a vanishing gradient. To solve this223

issue, a residual block structure is introduced to replace the simple 1D causal224

convolution layer, so that the designed TCN structure is more generic (He et al.,225

2016). The residual block in a TCN is represented in Fig. 3b. It has two convolutional226

layers with the same kernel size and dilation factor and non-linearity. To solve227

non-linear models, the rectified linear unit (ReLU) is added to the top of the228

convolutional layer (Nair and Hinton, 2010). The weight normalization is applied229

between the input of hidden layers (Salimans and Kingma, 2016). Meanwhile, a230

dropout is added after each dilated convolution for regularization (Srivastava et al.,231

2014). For all connected inner residual blocks, the channel widths of input and output232

are consistent. But the width may be different between the input of the first233

convolutional layer of the first residual block and the output of the second234

convolutional layer of the last residual block. Therefore, a 1×1 convolution is added235

in the first and last residual block to adjust the dimensions of the residual tensor into236

the same. The output of the residual block is represented by )(ˆ iZ for the ith block.237

3.2.3 Structure of TCN238

A complete structure of TCN is illustrated in Fig.3c. It contains a series of239
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proceeding residual blocks. The structural characteristics make TCN a deep learning240

network model very suitable for complex time-series prediction problems241

(Lara-Benítez et al., 2020). The main advantage of TCN is that, similar to RNN, they242

have flexible receptive fields and can deal with various length input by sliding243

one-dimensional causal convolution kernel. Furthermore, because TCN shares a244

convolution kernel and has parallelism, it can process long sequences in parallel245

instead of sequential processing like RNN, so it has lower memory usage and shorter246

computing time than a cyclic network. Moreover, RNN often has the problems of247

gradient disappearance and gradient explosion, which are mainly caused by sharing248

parameters in different periods, while TCN uses a standard backpropagation-through-249

time algorithm (BPTT) for training, so there is little gradient disappearance and250

explosion problem (Pascanu et al., 2012). The detailed mathematical calculation and251

associated information of the TCN architecture are referred to (Bai et al., 2018).252

3.2 Long Short-Term Memory network (LSTM)253

LSTM is a special RNN model explicitly designed for long-term dependence254

problems. As shown in Fig. 4a, the RNN has a series of repeating modules that255

recursively connected in the evolution direction of the sequence. The chain-like256

structure permits the RNN to retain important information in a “tanh” layer and257

produce the same length of output ��� as input xt. However, the short-length258

“remember time” is not enough for the groundwater prediction. Especially for our259

hourly recorded data, a maximum step about ten reported by (Bengio et al., 1994) is260

unable to count the effect of annually, seasonally, and even daily groundwater261
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variation. Different from the simple layer in the RNN, the LSTM has a more262

complicated repeating module with four interacting layers.263

The core idea of LSTM is the special structure to control the cell state in the264

module as shown in Fig.4b. It includes a cell and an input gate it , a forget gate ft, and265

an output gate ot. The information can directly flow down along cells C without266

critical changes, therefore, preserving long-term history messages (Zhang et al.,267

2018b). The three gates control which data in a sequence is important to keep or268

throw away, and protect the relevant information passed down in the cell to make269

predictions. The forget gate ft has a sigmoid layer to determine which information is270

discarded with a value between 0 and 1. The lower the value, the less the information271

added to the cell state (Ergen and Kozat, 2018). Opposite the forget gate, the input272

gate it decides what information to retain in the cell state. It is composed of two parts:273

a sigmoid layer and a tanh layer. The two layers are combined to govern which values274

will be updated by generating a new candidate value ��� . The old cell state Ct-1 then275

can be updated into the new cell state Ctwith a weighted function. Finally, the output276

gate ot determines what parts of the cell state should be passed on to the next hidden277

state. The detailed calculation of the LTSM can be referenced to (Lea et al., 2016).278

279
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280

Figure 4. Graphical representation for a) chain like structure of the RNN by assigning281

xt and y �t as input and output. The self-connected hidden units allow information to be282

passed from one step to the next; b) LSTM’s memory block based on RNN. The283

hidden block includes three gates (input it, forget ft, output ot) and a cell state to select284

and pass the historical information.285

3.3 Experimental study286

Due to the high complexity of the DL models, setting appropriate287

hyper-parameters for the developed networks is very important. Here, the impact of288

the size of the input window, the epoch number and the batch size were tested with289

different convolutional architectures over the monitoring data (Lara-Benítez et al.,290

2020). The learning dataset is first divided into two parts: 80% of the time-series data291

is used as training set, and 20% of the data is utilized as testing set. The effect of292

different splitting strategies is further tested in section 4. With the increase of the293

epoch numbers, the curve gradually approaches to the optimal fitting state from the294

initial non-fitting state, but too many epochs frequently lead to over-fitting of the295

neural network. Meanwhile, the number of iterations generally increases for updating296

weights in the neural network. Therefore, the number of epoch from 0 to 300 is297

evaluated. Batch size represents the number of samples between model weight298
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updates (Kreyenberg et al., 2019). The value of the batch size often is set between 1299

and hundreds. Larger batch size often leads to faster convergence of the model, but300

may lead to less ideal of the final weight set. To find the best balance between301

memory efficiency and capacity, the batch size should be carefully set to optimize the302

performance of the network model. Besides these parameters, the number of filters in303

the TCN-based and the hidden nodes in the LSTM-based model were as well tested304

within reasonable ranges.305

The 1-day, 3-, 7-, and 15-days lead prediction experiments were further306

conducted to test the capacity of DL methods in predicting long-term groundwater307

level in the coastal aquifer. To eliminate the randomness of model training, all308

experiments were repeated 5 times and the average values of each index were309

compared. In all experiments, the average absolute error (MAE) has been used as the310

loss function of networks (Lara-Benítez et al., 2020). The Adam optimizer has an311

adaptive learning rate, which can improve the convergence speed of deep networks,312

which has been used to train the models (Kingma and Ba, 2015).313

3.4 Evaluation of model performance314

Two evaluation metrics, coefficient of determination (R2) and root mean square315

error (RMSE) are selected to quantify the goodness-of-fit between model outputs and316

observations ((Zhang et al., 2020)). The two criteria are calculated using the following317

equations:318

푅푀�� = 1
� �=1

� (ℎ� −��)2� (1)319

푅2 = �=1
� (ℎ�−ℎ �)

2� − �=1
� (ℎ�−��)

2�

�=1
� (ℎ�−ℎ �)

2�
(2)320
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where hi is the observed groundwater level at time i, yi is the network prediction321

values at time i, ℎ � is mean of the observed groundwater levels, and n is the number322

of observations. RMSE measures the prediction precision which creates a positive323

value by squaring the errors. The RMSE score is between [0, ∞]. If the RMSE324

approaches to 0, the model prediction is ideal. R2 measures the degree of model325

replication results, ranging between [−∞, 1]. For the optimal model prediction, the326

score of R2 is close to 1.327

4 Results and discussions328

4.1 Hyper-parameter trial experiments329

4.2.1 Experiments of the TCN-based model330

The TCN-based model is built on Keras platform, using TensorFlow of python331

as the backend. Take the groundwater level dataset in well BH1 as an example, the332

trials are set up with a variety combination of different hyper-parameters that are set333

in the TCN-based model as illustrated in Table 1. With the fixed number of epoch, the334

result of 32 filters is better than that of 16 and 64 filters. Meanwhile, under the335

condition of 32 filters, the results of the model decrease with the increase of batch size.336

Therefore, when three different batches of 16, 32, and 64 are set for testing, the results337

of the 16 batch size of the model are better. Based on the above experimental results,338

the influence of different numbers of epoch on the simulation is further explored with339

the filters equals to 32 and the batch size equals to 16 as shown in Fig.5. The overall340

results of the model are improved when the number of epoch increases from 100 to341

190 though the variation is not strictly linear, and the results turn stable with minor342
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fluctuations when the number of epoch exceeds 200.343

Table 1. The RMSE and R2 values between the observed and predicated groundwater344

levels in well BH1 with different numbers of epochs, different numbers of filters, and345

different batch sizes. The bold values represent the optimal hyper-parameters with the346

smallest RMSE and the highest R2 scores in the TCN-based model.347

Epoch filters Batch size RMSE(m) R2 Time(min)

100 32
16 0.0182 0.9904 1.29

32 0.0117 0.9876 1.05

64 0.0117 0.9875 0.78

200 16
16 0.0078 0.9946 2.41

32 0.0068 0.9959 1.75

64 0.009 0.9942 1.19

200 32
16 0.0059 0.997 2.58

32 0.0075 0.9948 2.01

64 0.0082 0.9938 1.51

200 64
16 0.0125 0.9906 3.68

32 0.0101 0.9907 3.21

64 0.0157 0.9775 2.76

300 32
16 0.0065 0.9955 3.8

32 0.0076 0.9946 3.01

64 0.0099 0.9904 2.22

348

349
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Figure 5. The variation of RMSE and R2 values between the observed and simulated350

groundwater levels of well BH1 with the increasing number of epoch when the351

number of filters is 32 and the batch size is 16.352

4.2.2 Experiments of the LSTM-based model353

The maximum epoch and the number of hidden nodes are two key parameters354

affecting the simulation accuracy of LSTMs (Zhang et al., 2018a). Different355

hyper-parameter combinations are tested as well as in the proposed TCN-based model356

with groundwater levels in well BH1. The RMSE, R2 and running time are shown in357

Table 2. With fixed number of hidden nodes, the results of 100 and 200 epochs are358

better than that in the 300 epochs experiment. A detailed variation of RMSE and R2359

values with increasing hidden nodes and epoch are further illustrated in Fig. 6. The360

figure shows that the RMSE and R2 have a decreasing and increasing trend separately361

when number of epochs is greater than 150 but they turn to the opposite way when it362

is larger than 240. The variations of RMSE and R2 with increasing hidden nodes have363

similar changes as well. The results indicate that though an insufficient number of364

neurons may decrease the learning ability of the network, an increasing training365

hyper-parameters may not ensugare better rFesults.366

Table 2. The RMSE and R2 values between the observed and simulated groundwater367

levels in well BH1 with different numbers of epochs and hidden nodes. The bold368

values represent the optimal hyper-parameters used in the proposed LSTM-based369

model.370

Epoch Hidden nodes RMSE R2 Time(min)

100 50 0.0104 0.9902 1.01
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60 0.0098 0.9916 1.38

70 0.0095 0.9922 1.53

80 0.01 0.9913 1.75

200

50 0.0094 0.9922 1.91

60 0.0089 0.9931 2.59

70 0.0088 0.9932 2.96

80 0.0092 0.9925 3.28

300

50 0.0101 0.9903 2.86

60 0.0105 0.9901 3.85

70 0.0103 0.9907 4.29

80 0.0120 0.9872 4.92

371

372

Figure 6. The variation of RMSE and R2 values between the observed and simulated373

groundwater levels of well BH1 with the increasing of the number of epochs when the374

hidden node is 50.375

The trial experimental results present similar fitting pattern shared by the two376

kind of networks. Inadequate hyper-parameters often leads to deficient learning377

ability of the network. In the contrary, excessive parameter setting may cause neural378

network overfitting issues. In addition, the growing parameters dramatically increase379

the computational cost in the network. For example, the time cost from 50 to 80380

hidden nodes increased about 1.7 times in each iteration trial in the LSTM-based381
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model. Therefore, during implementation, 200 epochs, 32 filters, and the 16 batch size382

were chosen as the optimal parameters in the TCN network. For the LSTM network,383

the number of epoch and hidden nodes were chosen as 200 and 70.384

4.3 Model performance and evaluation385

The optimal hyper-parameters of the proposed TCN-based model for groundwater386

level predicting are shown in Table 1 (epoch = 200, filters = 32 and batch size = 16).387

Besides that, the kernel size in each convolutional layer is set as 6, the dilations are388

[1,2,4,8]. For the LSTM-based model, the batch size is set to 148 with epoch=200 and389

nodes=70. The same hyper-parameters are then utilized to construct TCN and LSTM390

architectures for prediction of groundwater level in different monitoring wells.391

The simulated groundwater level in the training and testing stages by the two392

models are shown in Fig. 7. For both models, the simulated values completely capture393

the variation of groundwater levels in monitoring wells with overlapped plot. The R2394

and RMSE values of simulation results are listed in Table 3. For the TCN-based395

model, the values of RMSE are 0.0019 and 0.0166 for BH1, and the values of R2 are396

larger than 0.999 in the prediction. For the LSTM-based model, the RMSE values are397

0.0074 and 0.0588, and the R2 values are 0.9957 and 0.9980. These metrics indicate398

that both of the models can “remember” the historical records and produce true399

observations. The simulation accuracy of TCN-based models is slightly higher than400

the LSTM-based models. In addition, the running time of the TCN-based model is 2.6401

minutes, which is faster than that of the TCN-based model by eliminating the gate402

selection.403
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404

Figure 7. The simulation results of groundwater level of different monitoring wells by405

TCN-based model. The black dash line divides the data into two groups: the training406

and testing set.407

408

Table 3. The model results for groundwater level in the training and testing and409

prediction stage410

Well Model
Training and Testing Prediction

MAE RMSE R2 MAE RMSE R2

BH01
TCN 0.0017 0.0068 0.9992 0.0009 0.0019 0.9997

LSTM 0.0053 0.0077 0.9990 0.0050 0.0074 0.9957

BH05
TCN 0.0070 0.0279 0.9981 0.0061 0.0166 0.9990

LSTM 0.0082 0.0116 0.9997 0.0168 0.0558 0.9980

411
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4.4 Long term leading time prediction412

The TCN- and LSTM-based models were further adjusted to predict the413

groundwater level of the coastal aquifer over three months ahead with different414

leading period. Prediction results of groundwater level with 1-day, 3-, 7-, and 15-days415

leading time of TCN- and LSTM-based models are illustrated in Fig. 8 and Fig. 9 for416

wells BH1 and BH5 respectively. The results show that the predicted groundwater417

values in monitoring wells have the same change trend as the actual groundwater418

level. Both of the models are able to capture the variation trend of groundwater levels419

in the two monitoring wells.420

421

Figure 8. The observed and prediction values of the groundwater level with TCN- and422

LSTM-based models for 1-day, 3-, 7- and 15-days lead period in monitoring well423

BH01.424

425
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426

Figure 9. The observed and prediction values of the groundwater level with TCN- and427

LSTM-based models for 1-day, 3-, 7- and 15-days lead period in monitoring well428

BH05.429

To quantitatively compare the prediction accuracy of the proposed TCN- and430

LSTM-based models, the results of two evaluation metrics with the model running431

time in different monitoring wells are summarized in Table 4. It can be learned that432

the R2 value of TCN-based models decreased from 0.9386 to 0.1406 for well BH01433

and from 0.9670 to 0.7271 for well BH05. Correspondingly, an increase of RMSE434

values from 0.028 to 0.1209 and 0.0934 to 0.206 are observed for BH01 and BH05,435

separately. A similar variation pattern is recognized for LSTM-based model with436

smaller R2 and higher RMSE than that of the TCN-based model. While, the average437

running time of TCN-based is about 3.4 seconds, which is about 6 seconds for438

LSTM-based models.439

440
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Table 4. The model results for groundwater level in the long term prediction441

Well Model
Prediction

Model
Prediction

RMSE R2 RMSE R2

BH01

TCN-1 0.0280 0.9386 LSTM-1 0.0349 0.9047

TCN-3 0.0550 0.7638 LSTM-3 0.0640 0.6802
TCN-7 0.0741 0.5713 LSTM-7 0.0956 0.2874

TCN-15 0.1209 -0.1407 LSTM-15 0.1486 -0.7227

BH05

TCN-1 0.0934 0.9670 LSTM-1 0.1012 0.9613

TCN-3 0.1375 0.9285 LSTM-3 0.1086 0.9554
TCN-7 0.1084 0.9296 LSTM-7 0.2050 0.8406

TCN-15 0.2060 0.7271 LSTM-15 0.3515 0.5330

442

The results showed that the TCN- and LSTM-based models are able to predict the443

variation of groundwater levels with longer leading period more than one time step.444

The performance of the two networks were further evaluated with Taylor diagrams by445

taking different criteria aspects into account (Taylor, 2001). The comparisons of446

TCN- and LSTM-based model are shown in Fig. 10. As the metrics distributed away447

from the reference point (Ref), the deviation of prediction from observation is448

gradually increased with extending of leading period. Taken well BH01 for example,449

the prediction with 1-day (24 hours prediction window) in advance are the highest in450

agreement with the actual situation in the two models. The two simulation results451

have the lowest RMSE values and highest R2 values for both models. The prediction452

precision gradually decreases with the extending of leading time. For the leading time453

smaller than 7-days, 168 time steps prediction in advance, the evaluation metrics have454

acceptable values of less than 0.1 for RMSE but the R2 values have been greatly455

dropped. For the 15-days (360 time steps) leading period, the RMSE of the TCN- and456

LSTM-based models have increased to 0.1209 and 0.1486 with negative R2 values,457
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which suggest a kind of overestimation in well BH01.458

459

Figure 10. Taylor diagrams with statistical (RMSE, correlation coefficient, and460

standard deviation) comparison results of the TCN-based and LSTM-based models461

for well (a) BH01 (b) BH05.462

Overall, TCN- and LSTM-based models both have strong prediction ability. The463

performance of the TCN-based model is better than that of the LSTM-based model in464

the three months prediction concerning both model precision and running time.465

However, the model precision decreases when the leading period is increasing. The466

causal dilated convolutions used by TCNs are better at capturing long-term467

dependencies of time series data than recurrent units, improving the efficiency of468

neural networks and shortening the network running time. The TCN-based models are469

able to provide accurate predictions once they are trained. As expected, the processing470

speed of parallel convolution TCN-based models for long input sequences is faster471

than that of recurrent networks. This seems to be a basic advantage of real-time472

monitoring and early warning. In real-time monitoring and early warning, it is473

necessary to obtain predictions quickly to make wise decisions.474
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4.5 Influence of training set percentage475

In the following section, we discuss the similarities and differences between476

TCN- and LSTM-based in terms of training set percentage. As we all know,477

data-driven methods are supported by data; however, how much data is needed to478

build an effective model is still a problem. This is because specific problems depend479

on application cases, data features, and model features (Wunsch et al., 2021). In our480

study, the data is the hourly-monitored data from 2011 to 2012. From 2011, we set481

20%, 30% to 90% training sets in turn, so as to gradually expand the length of training482

set.483

Fig. 11 shows the effect of increasing the percentage of training set on the484

performance of the model. All experiments were repeated five times, and the average485

values of each index were compared to make them comparable. We observed that the486

overall performance of the TCN-based model improved with the increase of the487

percentage of training set. When the training set reached 80%, the performance was488

relatively optimal, and then the performance began to deteriorate with the increase of489

the percentage of training set; at the same time, it can be seen that the performance of490

the LSTM-based model tends to be stable when the training set reaches 70%, and then491

decreases slightly with the increase of training set. Therefore, it is not that the more492

training sets, the better the performance of the model. We should carefully evaluate493

and shorten the training data set as much as possible when necessary. Finally, we set494

80% of the training set length to simulate the coastal aquifer time-series data.495
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496

Figure 11. Influence of the percentage of training set on the performance of the model497

5 Conclusions498

A TCN-based deep learning model is proposed in this paper to predict499

groundwater levels in coastal aquifers. Hyper-parameter searches was first conducted500

and several different TCN-based models were tested to obtain a good architecture501

configuration. The results indicate that a deeper, broader model does not necessarily502

guarantee better predictions. The optimal configuration then were adopted for the503

networks of all monitoring data. This means that different data could share the same504

network architecture without adjusting in each case and broaden its application in505

different areas. With comparison to observations, the TCN-based model has achieved506

satisfactory performance on the prediction of groundwater levels, which can well507
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capture the fluctuation of water level and provide possible saltwater intrusion508

information in the coastal area. Thus, it can be used as a new promising method for509

time-series prediction of hydrogeological data especially when the regional data is510

difficult to collect in a complex system.511

To validate the newly developed TCN-based model, its performance is compared512

with the LSTM-based recurrent networks. The TCN-based model outperforms the513

LSTM-based model in view of both accuracy and efficiency. Meanwhile, three514

months ahead predictions were conducted with different leading periods. A515

decreasing precision is revealed when the leading time increases. In particular, once516

TCN was trained, due to the use of parallel convolution to process the input sequence,517

its prediction speed is significantly faster than recurrent networks. In summary, our518

research shows that TCN is a very powerful alternative to the LSTM network. It can519

provide accurate predictions and is suitable for more complex real-time applications520

because of its high efficiency.521
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