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Highlights 11 

• TCN- and LSTM-based models were proposed to predict groundwater levels in a 12 

coastal aquifer 13 

• Tidal, precipitation and groundwater levels were utilized as input data in the 14 

networks 15 

• In advance 1- day, 3-, 7- and 15-days groundwater levels were predicted with the 16 

highest accuracy of 1-day-lead prediction  17 

• The TCN-based model slightly outperformed the LSTM-based model in accuracy 18 

but less efficiency 19 

 20 

Abstract  21 

Prediction of groundwater level is of immense importance and challenges for the 22 

coastal aquifer management with rapidly increasing climatic change. With the 23 

development of artificial intelligence, the data driven models have been widely adopted 24 

in hydrological processes management. However, due to the limitation of network 25 

framework and construction, they are mostly adopted to produce only one-time step in 26 

advance. Here, the temporal convolutional network (TCN) and long short-term memory 27 
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(LSTM) based models were developed to predict groundwater levels with different 28 

leading periods in a coastal aquifer. The beginning hourly-monitored ten-month data in 29 

two monitoring wells were used for model training and testing, and the data of the 30 

following three months were used as prediction with 24, 72, 180 and 360 time steps (1-31 

day, 3-, 7- and 15-days) in advance. The historical precipitation and tidal level data 32 

were incorporated as input data. For one-step prediction of the two wells, the calculated 33 

R2 of the TCN-based models values were higher and the RMSE values were lower than 34 

that of the LSTM-based model in the prediction stage with shorter running times. For 35 

the advanced prediction, the model accuracy decreased with the increase of advancing 36 

period from 1-day to 3-, 7- and 15-days. By comparing the simulation accuracy and 37 

efficiency, the TCN-based model slightly outperformed the LSTM-based model but less 38 

efficient in training time. Both models showed great ability to learn complex patterns 39 

in advance using historical data with different leading periods, and had been proved to 40 

be valid localized groundwater level prediction tools in the subsurface environment.  41 
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1 Introduction 48 

As the economic development and population escalate in coastal area, the fresh 49 
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groundwater needs continue to mount, seawater intrusion has post great threat to the 50 

availability of portable water resources globally (Baena-Ruiz et al., 2018). In United 51 

States, Mexico, Canada, Australia, China, India, South Korea, Italy and Greece with 52 

dense population, many coastal aquifers have experienced salinization caused by 53 

seawater intrusion (Barlow and Reichard, 2009; Park et al., 2011; Pratheepa et al., 2015; 54 

Zhang et al., 2017; Lu et al., 2013). Protection projects such as aquifer replenishment 55 

can be constructed to alleviate seawater intrusion by artificially increasing groundwater 56 

recharge in the aquifer than what occurs naturally (Abdalla and Al-Rawahi, 2012; Lu 57 

et al., 2019). The replenishment programs have been operated in developed area such 58 

as Perth, Western Australia, and California, USA (Garza-Díaz et al., 2019). The 59 

infrastructures tend to be costly and out of reach for many developing countries. A 60 

reliable seawater intrusion monitoring and predicting system is still essential and is 61 

recognized as the most effective way of keeping freshwater water from contamination 62 

of seawater (Xu and Hu, 2017). 63 

In the past several decades, conventional numerical models have been widely 64 

utilized to simulate and predict the groundwater fluctuation dynamics and chemical 65 

variations (Batelaan et al., 2003; Dai et al., 2020; Huang et al., 2015; Li et al., 2002). 66 

However, the difficulty of acquiring extensive hydrological and geological data and 67 

setting reasonable boundaries limits its application on seawater intrusion management. 68 

Meanwhile, the method is not suitable to simultaneously adopt updated monitoring data 69 

and produce real-time prediction. Under such circumstances, where data source is 70 

scarce, artificial intelligence technology has been proposed in groundwater dynamic 71 
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prediction. Artificial neutral network (ANN) has been greatly improved and became a 72 

robust tool for dealing groundwater problems, where the flow is nonlinear and highly 73 

dynamic in nature (Maier and Dandy, 2000). The conventional network model generally 74 

has defects such as high computational complexity, slow training speed, and failure in 75 

retaining historical information, thus is hardly to be enrolled in the long-term time-76 

series prediction (Cannas et al., 2006; Mei et al., 2017). To solve this problem, 77 

researchers upgraded the conventional networks by integrating them with methods like 78 

genetic algorithm (Danandeh Mehr and Nourani, 2017; Ketabchi and Ataie-Ashtiani, 79 

2015), singular spectrum (Sahoo et al., 2017), and wavelet transform (Gorgij et al., 2017; 80 

Seo et al., 2015; Zhang et al., 2019). Singular spectrum analysis and wavelet transform 81 

can help to preprocess the time-series data before they are put into the neural networks 82 

to improve prediction accuracy and efficiency.  83 

With the computing capacity development, deep learning (DL) has emerged as a 84 

very powerful time-series prediction method. DL models are particularly suitable for 85 

big data time-series, because they can automatically extract complex patterns without 86 

feature extraction preprocessing steps (Torres et al., 2019). However, the general fully 87 

connected networks are not effective to capture the temporal dependence of time-series 88 

(Senthil Kumar et al., 2005). Therefore, more specialized DL models, such as recurrent 89 

neural networks (RNN) (Rumelhart et al., 1986) and convolutional neural networks 90 

(CNN) (Lecun et al., 1998) have been adopted in the field of time-series prediction 91 

(Feng et al., 2020). Different from the back-propagation (BP) neural network that the 92 

information flows from the input to the output layer in one direction, the RNN preserves 93 
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the information from the previous step as input to the current step with loops (Coulibaly 94 

et al., 2001). This allows the RNN to handle time-series and other sequential data but 95 

generally is not straightforward for a long-term calculation in practice (Bengio et al., 96 

1994). Therefore, the enhanced RNN model, long short-term memory (LSTM) is 97 

proposed and capable to process high variable-length sequences even with millions of 98 

data points (Fischer and Krauss, 2018; Kratzert et al., 2019) . As one of the best deep 99 

neural network model in time-series predicting, the LSTM has been widely used in the 100 

prediction of temporal variations such as stock market predictions (Fischer and Krauss, 101 

2018), rainfall-runoff (Kumar Dubey et al., 2021) and groundwater level (Solgi et al., 102 

2021). Despite of substantial progresses in hydrology predicting, these networks still 103 

have issues of low training efficiency and low accuracy (Zhan et al., 2022). 104 

More recently, a variant of the CNN architecture known as temporal convolutional 105 

networks (TCN) has acquired popularity (Bai et al., 2018). The prominent characteristic 106 

of TCN is its ability to capture long-term dependencies without information loss (Cao 107 

et al., 2021). Meanwhile, it joints a residual block structure to fix the disappearance of 108 

gradient in the deep network structure (Chen et al., 2020). With proper modifications, 109 

the TCN is quite genetic and easily to be used to build a very deep and extensive 110 

network in sequence modeling. In earth science, the TCN has been successfully applied 111 

to time-series prediction tasks including multivariate time-series predicting for 112 

meteorological data (Wan et al., 2019), probabilistic predicting (Chen et al., 2020) and 113 

wind speed predicting (Gan et al., 2021). Researches suggest that the TCN convincingly 114 

has advantage in popular deep learning models across a broad range of sequence 115 
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modeling tasks (Borovykh et al., 2019; Chen et al., 2020; Wan et al., 2019). Another 116 

import subject is that these networks are mostly used to predict variables in only one 117 

step, which is not enough for the prediction of hydrology information in management. 118 

Researches have been adopted the method to predict the trends of ENSO and sea 119 

temperature (Yan et al.,2020; Jian et al., 2021). However, the potential of TCN has not 120 

been investigated in the sequencing model of hydrogeology field. Therefore, it is 121 

worthy to explore their prediction abilities in leading periods.  122 

The objective of this study is to develop real-time advance prediction climate-123 

dydro hybrid data-driven models of groundwater level in the coastal aquifer based on 124 

TCN and LSTM. The hourly processed tidal, precipitation with groundwater level data 125 

in monitoring wells of Laizhou Bay are utilized to train model and predict the 126 

groundwater level in a period of 1-day, 3-,7- and 15-days. The two models were further 127 

compared in the view of accuracy and efficiency. The rest of the paper is organized as 128 

follows. Sect. 2 introduces the study area and observational data. Sect. 3 illustrates the 129 

detailed concepts of TCN and LSTM, the experimental model settings and model 130 

evaluation criteria. Sect. 4 presents the predicting results and discussions. Finally, the 131 

paper is concluded in Sect. 5. 132 

2 Study area and data processing 133 

2.1 Site description 134 

The study area is located in the south coast of Laizhou Bay, along the Yangzi to 135 

Weifang section in Shandong province of China (Fig. 1). The Laizhou Bay is one of the 136 

earliest and most seriously affected area by seawater intrusion since 1970s in China 137 
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(Han et al., 2014; Zeng et al., 2016). The area is a coastal plain, which contains a series 138 

of Cretaceous to modern sediments that covering the Paleozoic basement. The 139 

sedimentary facies of coastal aquifer are alluvium, proluvial and marine sediments from 140 

south to north (Han et al., 2011). According to the research of (Xue et al., 2000), there 141 

were three seawater intrusion and regression events in the sea area of Laizhou Bay since 142 

the upper Pleistocene. The transgression in the early upper Pleistocene formed the third 143 

marine aquifer containing sedimentary water. These brine were formed by evaporation 144 

and concentration of ancient seawater and re-dissolution and mixing of salt (Dai and 145 

Samper, 2006; Zhang et al., 2017). The monitoring wells BH01-BH05 are distributed 146 

in the study area along a cross section perpendicular to the coastline. Among the wells, 147 

the well BH01 and BH05 have relatively integrate data in time and distributed in the 148 

two sides of the cross profile with distinguished annual variation pattern, which are 149 

selected as examples for the developed models. 150 

 151 
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Figure 1. Schematic figure of the study area with monitoring wells BH01-BH05. 152 

2.2 Data collection and pre-processing  153 

 The precipitation and tidal level are selected as the primary factors to affect the 154 

groundwater dynamics in the coastal area. The data in the period of 2011 to 2012 with 155 

groundwater level observations of two wells are combined as the input of the deep 156 

learning models. A total of 28,836 data items are collected for monitoring wells and the 157 

variations of groundwater level, and tidal level with precipitation are shown in Figure 158 

2. The rainfall is concentrated from June to September and in shortage from December 159 

to April. The tide in the study area is irregular mixed with a semi-diurnal variation. In 160 

the experiments, ten months of data from October 2011 to July 2012 is first extracted 161 

for model training and testing. The rest of the data from August 2012 to October 2012 162 

is used to test model prediction accuracy. 163 

In addition, the magnitudes of meteorological and hydrological variables have 164 

obvious temporal variations. To reduce the negative impact on the model learning 165 

ability, especially on the speed of gradient descent, all variables are normalized to 166 

ensure that they remain at the same scale (Kratzert et al., 2019). This pre-processing 167 

method ensures the stable convergence of parameters in the developed TCN- and 168 

LSTM-based models and improve the simulation accuracy of the model. The 169 

normalization formula is as follows: 170 

                         𝑥𝑖
′
𝑖
=

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                           (1) 171 

where xi represents the original data in time i and xi represents the original data in time 172 

i xmax and xmin are the maximum and minimum variable values. The output of the 173 
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network is retransformed to obtain the final groundwater level prediction, which is an 174 

inverse data scaling process.  175 

176 

Figure 2. Time-series of the variables in the study, including (a) precipitation, (b) tide, 177 

(c) groundwater level (GWL). 178 

3 Methodology  179 

3.1 Temporal Convolutional Network  180 

The TCN is first proposed for video action segmentation and detection by 181 

hierarchically capturing intermediate feature presentations. Then the term is extended 182 

for sequential data for a wide family of architectures with generic convolution (Bai et 183 

al., 2018; Lea et al., 2017). Suppose that we have an input hydro-climate sequence at 184 

different times x0, ..., xT, the goal of the modeling is to predict the corresponding 185 
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groundwater level as outputs y0, ..., yT at each time. The problem could transfer to build 186 

a network f that minimizes the function loss between observations and actual network 187 

outputs L[( y0, ..., yT,),( Tyy ˆ,...,ˆ
0 )], where Tyy ˆ,...,ˆ

0 = f(x0, ..., xT). Currently, a typical 188 

TCN consists of dilated, causal 1D full-convolutional layers with the same input and 189 

output lengths. With TCN, the prediction yt depends only on the data from x0 and xt and 190 

not include the future data from xt and xT (Yan et al., 2020). With the three key 191 

components of TCN, it has two distinguishing characteristics: (1) the TCN is able to 192 

map the same length of output as the input sequence as in RNN; (2) the convolution 193 

involved in TCN is causal, eliminating the influence of future information on the output. 194 

3.1.1 Causal Dilated Convolutions 195 

In the TCN, the first advantage is accomplished by a 1D full-convolutional network 196 

(FCN) architecture. Different from the traditional CNN, the FCN transforms the fully 197 

connected layers into the convolutional layers for the last layers, preserving the same 198 

length of output as that of the input (Long et al., 2015). As shown in Fig. 3a, the lengths 199 

of the input, the hidden and the output layers are the same in the FCN. Some zero 200 

padding is needed in this step by adding additional zero-valued entries with a length of 201 

kernel size-1 in each layer. The kernel size is the number of successive elements that 202 

are used to produce one element in the next layer.  203 

 To avoid the information leakage from the future (after time t), the TCN uses 204 

causal convolution instead of standard convolution, where only the elements at or 205 

before time t in the previous layer are adopted into the mapping of the output at time t. 206 

Further, the dilated convolution is employed to capture long-term historical information 207 
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by skipping a given step size (dilation factor d) in each layer. For example, the dilation 208 

factor d increases from 1 to 4 with the evolution of the network depth (n) in an 209 

exponential increasing pattern. In this way, a very large receiving domain is created and 210 

all the historical records in the input can be involved in the prediction model with a 211 

deep network.  212 

 213 

Figure 3. Architectural elements in the proposed TCN. (a) the structure of causal dilated 214 

convolution; (b) the TCN residual block. An 1x1 convolution is added when residual 215 

input and output have different dimensions; (c) framework of residual connection in the 216 

TCN.  217 

3.2.2 Residual Connections 218 

In a high dimensional and long-term sequence, the network structure could be very 219 

deep with increasing complicity and cause a vanishing gradient. To solve this issue, a 220 

residual block structure is introduced to replace the simple 1D causal convolution layer, 221 

so that the designed TCN structure is more generic (He et al., 2016). The residual block 222 

in a TCN is represented in Fig. 3b. It has two convolutional layers with the same kernel 223 

size and dilation factor and non-linearity. To solve non-linear models, the rectified 224 
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linear unit (ReLU) is added to the top of the convolutional layer (Nair and Hinton, 2010). 225 

The weight normalization is applied between the input of hidden layers (Salimans and 226 

Kingma, 2016). Meanwhile, a dropout is added after each dilated convolution for 227 

regularization (Srivastava et al., 2014). For all connected inner residual blocks, the 228 

channel widths of input and output are consistent. But the width may be different 229 

between the input of the first convolutional layer of the first residual block and the 230 

output of the second convolutional layer of the last residual block. Therefore, a 1×1 231 

convolution is added in the first and last residual block to adjust the dimensions of the 232 

residual tensor into the same. The output of the residual block is represented by
)(ˆ iZ for 233 

the ith block.  234 

3.2.3 Structure of TCN 235 

 A complete structure of TCN is illustrated in Fig.3c. It contains a series of 236 

proceeding residual blocks. The structural characteristics make TCN a deep learning 237 

network model very suitable for complex time-series prediction problems (Lara-238 

Benítez et al., 2020). The main advantage of TCN is that, similar to RNN, they have 239 

flexible receptive fields and can deal with various length input by sliding one-240 

dimensional causal convolution kernel. Furthermore, because TCN shares a 241 

convolution kernel and has parallelism, it can process long sequences in parallel instead 242 

of sequential processing like RNN, so it has lower memory usage and shorter 243 

computing time than a cyclic network. Moreover, RNN often has the problems of 244 

gradient disappearance and gradient explosion, which are mainly caused by sharing 245 

parameters in different periods, while TCN uses a standard backpropagation-through- 246 
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time algorithm (BPTT) for training, so there is little gradient disappearance and 247 

explosion problem (Pascanu et al., 2012). The detailed mathematical calculation and 248 

associated information of the TCN architecture are referred to (Bai et al., 2018).    249 

3.2 Long Short-Term Memory network 250 

LSTM is a special RNN model explicitly designed for long-term dependence 251 

problems. As shown in Fig. 4a, the RNN has a series of repeating modules that 252 

recursively connected in the evolution direction of the sequence. The chain-like 253 

structure permits the RNN to retain important information in a “tanh” layer and produce 254 

the same length of output �̂�𝑡as input xt. However, the short-length “remember time” is 255 

not enough for the groundwater prediction. Especially for our hourly recorded data, a 256 

maximum step about ten reported by Bengio et al. (1994) is unable to count the effect 257 

of annually, seasonally, and even daily groundwater variation. Different from the simple 258 

layer in the RNN, the LSTM has a more complicated repeating module with four 259 

interacting layers.  260 

The core idea of LSTM is the special structure to control the cell state in the 261 

module as shown in Fig. 4b. It includes a cell and an input gate it , a forget gate ft, and 262 

an output gate ot. The information can directly flow down along cells C without critical 263 

changes, therefore, preserving long-term history messages (Zhang et al., 2018b). The 264 

three gates control which data in a sequence is important to keep or throw away, and 265 

protect the relevant information passed down in the cell to make predictions. The forget 266 

gate ft has a sigmoid layer to determine which information is discarded with a value 267 

between 0 and 1. The lower the value, the less the information added to the cell state 268 



 14 

(Ergen and Kozat, 2018). Opposite the forget gate, the input gate it decides what 269 

information to retain in the cell state. It is composed of two parts: a sigmoid layer and 270 

a tanh layer. The two layers are combined to govern which values will be updated by 271 

generating a new candidate value �̃�𝑡. The old cell state Ct-1 then can be updated into 272 

the new cell state Ct with a weighted function. Finally, the output gate ot determines 273 

what parts of the cell state should be passed on to the next hidden state. The detailed 274 

calculation of the LTSM can be referenced to (Lea et al., 2016). 275 

 276 

 277 

Figure 4. Graphical representation for (a) chain like structure of the RNN by assigning  278 

xt and ŷt as input and output. The self-connected hidden units allow information to be 279 

passed from one step to the next; (b) LSTM’s memory block based on RNN. The 280 

hidden block includes three gates (input it, forget ft, output ot) and a cell state to select 281 

and pass the historical information. 282 
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3.3 Experimental study 283 

 The TCN- and LSTM-based models were developed separately for monitoring 284 

wells BH01 and BH05. Due to the high complexity of the DL models, setting 285 

appropriate hyper-parameters for the developed networks is very important. Here, the 286 

impact of the size of the input window, the epoch number and the batch size were tested 287 

with different convolutional architectures over the monitoring data (Lara-Benítez et al., 288 

2020). The learning dataset is first divided into two parts: 80% of the time-series data 289 

is used as training set, and 20% of the data is utilized as testing set. The effect of 290 

different splitting strategies is further tested in section 4. With the increase of the epoch 291 

numbers, the curve gradually approaches to the optimal fitting state from the initial non-292 

fitting state, but too many epochs frequently lead to over-fitting of the neural network 293 

(Afaq and Rao, 2020). Meanwhile, the number of iterations generally increases for 294 

updating weights in the neural network. Therefore, the number of epoch from 0 to 300 295 

is evaluated. Batch size represents the number of samples between model weight 296 

updates (Kreyenberg et al., 2019). The value of the batch size often is set between 1 297 

and hundreds. Larger batch size often leads to faster convergence of the model, but may 298 

lead to less ideal of the final weight set. To find the best balance between memory 299 

efficiency and capacity, the batch size should be carefully set to optimize the 300 

performance of the network model. Besides these parameters, the number of filters in 301 

the TCN-based and the hidden nodes in the LSTM-based model were as well tested 302 

within reasonable ranges.  303 

The 1-day, 3-, 7-, and 15-days leading prediction experiments were further 304 
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conducted to test the capacity of DL methods in predicting long-term groundwater level 305 

in the coastal aquifer. To eliminate the randomness of model training, all experiments 306 

were repeated 5 times and the average values of each index were compared. In all 307 

experiments, the average absolute error (MAE) has been used as the loss function of 308 

networks (Lara-Benítez et al., 2020). The Adam optimizer has an adaptive learning rate, 309 

which can improve the convergence speed of deep networks, which has been used to 310 

train the models (Kingma and Ba, 2015). 311 

3.4 Evaluation of model performance 312 

 Two evaluation metrics, coefficient of determination (R2) and root mean square 313 

error (RMSE) are selected to quantify the goodness-of-fit between model outputs and 314 

observations (Zhang et al., 2020). The two criteria are calculated using the following 315 

equations: 316 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (ℎ𝑖 − 𝑦𝑖)2
𝑁
𝑖=1                       (1) 317 

𝑅2 =
∑ (ℎ𝑖−ℎ̅)

2𝑁
𝑖=1 −∑ (ℎ𝑖−𝑦𝑖)

2𝑁
𝑖=1

∑ (ℎ𝑖−ℎ̅)
2𝑁

𝑖=1

                      (2) 318 

where hi is the observed groundwater level at time i, yi is the network prediction values 319 

at time i, ℎ̅  is mean of the observed groundwater levels, and n is the number of 320 

observations. RMSE measures the prediction precision which creates a positive value 321 

by squaring the errors. The RMSE score is between [0, ∞]. If the RMSE approaches to 322 

0, the model prediction is ideal. R2 measures the degree of model replication results, 323 

ranging between [−∞, 1]. For the optimal model prediction, the score of R2 is close to 324 

1.  325 
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4 Results and discussions 326 

4.1 Hyper-parameter trial experiments  327 

4.2.1 Experiments of the TCN-based model 328 

  The TCN-based model was built on Keras platform using TensorFlow of python 329 

as the backend. Taken the groundwater level prediction data set in well BH01 as an 330 

example, the trials were set up with a variety combination of different hyper-parameters 331 

in the TCN-based model as illustrated in Table 1. With the fixed number of epoch, the 332 

simulation results of 32 filters were better than that of 16 and 64 filters. Meanwhile, 333 

under the condition of 32 filters, the accuracy of the model decreased with the 334 

increasing of batch size. The results of the 16 batch size were  better than that of 32 335 

and 64 batches. Based on the above experimental results, the influence of different 336 

numbers of epoch on the simulation was further explored with the filters was 32 and 337 

the batch size was 16 as shown in Fig.5. The overall results of the model were improved 338 

when the number of epoch increased from 100 to 190 though the variation was not 339 

strictly linear, and the variations became stable with minor fluctuations when the 340 

number of epoch exceeded 200. 341 

Table 1. The RMSE and R2 values between the observed and predicted groundwater 342 

levels in well BH01 with different numbers of epochs, different numbers of filters, and 343 

different batch sizes. The bold values represent the optimal hyper-parameters with the 344 

smallest RMSE and the highest R2 scores in the TCN-based model. 345 

 346 

Epoch Filters Batch size RMSE(m) R2 Time(min) 

16 0.0182 0.9904 1.29 
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100 32 
32 0.0117 0.9876 1.05 

64 0.0117 0.9875 0.78 

200 16 

16 0.0078 0.9946 2.41 

32 0.0068 0.9959 1.75 

64 0.0090 0.9942 1.19 

200 32 

16 0.0059 0.9970 2.58 

32 0.0075 0.9948 2.01 

64 0.0082 0.9938 1.51 

200 64 

16 0.0125 0.9906 3.68 

32 0.0101 0.9907 3.21 

64 0.0157 0.9775 2.76 

300 32 

16 0.0065 0.9955 3.8 

32 0.0076 0.9946 3.01 

64 0.0099 0.9904 2.22 

 347 

 348 

Figure 5. The variation of RMSE and R2 values between the observed and predicted 349 

groundwater levels of well BH01 with the increasing number of epoch when the number 350 

of filters is 32 and the batch size is 16. 351 

4.2.2 Experiments of the LSTM-based model 352 

The number of epochs and hidden nodes are two key parameters affecting the 353 

simulation accuracy of LSTMs (Zhang et al., 2018a). Different hyper-parameter 354 
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combinations were tested as well as in the proposed TCN-based model with 355 

groundwater levels in well BH01. The RMSE, R2 and running time are shown in Table 356 

2. With a fixed number of hidden nodes, the results of 100 and 200 epochs were better 357 

than that in the 300 epochs experiment. A detailed variation of RMSE and R2 values 358 

with increasing number of hidden nodes and epochs is further illustrated in Fig. 6. The 359 

figure shows that the RMSE and R2 have a decreasing and increasing trend separately 360 

when the number of epochs is greater than 150, but is reversed when it is larger than 361 

240. The variations of RMSE and R2 with increasing hidden nodes have similar changes 362 

as shown in Table 2. Though an insufficient number of neurons may decrease the 363 

learning ability of the network, the results indicate that an increasing training hyper-364 

parameters may not necessary to ensure better prediction.  365 

Table 2. The RMSE and R2 values between the observed and predicted groundwater 366 

levels in well BH01 with different numbers of epochs and hidden nodes. The bold 367 

values represent the optimal hyper-parameters used in the proposed LSTM-based 368 

model. 369 

Epoch Hidden nodes RMSE R2 Time(min) 

100 

50 0.0104 0.9902 1.01 

60 0.0098 0.9916 1.38 

70 0.0095 0.9922 1.53 

80 0.01 0.9913 1.75 

200 

50 0.0094 0.9922 1.91 

60 0.0089 0.9931 2.59 

70 0.0088 0.9932 2.96 

80 0.0092 0.9925 3.28 

300 
50 0.0101 0.9903 2.86 

60 0.0105 0.9901 3.85 
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70 0.0103 0.9907 4.29 

80 0.0120 0.9872 4.92 

 370 

 371 

Figure 6. The variation of RMSE and R2 values between the observed and predicted 372 

groundwater levels of well BH01 with the increasing of the number of epochs when the 373 

hidden node is 50. 374 

The trial experimental results present similar fitting pattern shared by the two kind 375 

of networks. The growing value of parameters dramatically increases the computational 376 

cost in the network. For example, the time cost from 50 to 80 hidden nodes has 377 

increased about 1.7 times in each iteration trial in the LSTM-based model. Finally, 200 378 

epochs, 32 filters, and the 16 batch size were chosen as the optimal parameters in the 379 

TCN network. For the LSTM network, the number of epoch and hidden nodes were 380 

chosen as 200 and 70. 381 

4.3 Model performance and evaluation 382 

The optimal hyper-parameters of the proposed TCN-based model for 383 

groundwater level predicting are shown in Table 1 (epoch = 200, filters = 32 and batch 384 

size = 16). Besides that, the kernel size in each convolutional layer is set as 6, the 385 
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dilations are [1,2,4,8]. For the LSTM-based model, the batch size is set to 148 with 386 

epoch=200 and nodes=70. The same hyper-parameters are then utilized to construct 387 

TCN and LSTM architectures for prediction of groundwater level in different 388 

monitoring wells.  389 

The one step ahead simulated groundwater level in the training and testing, and 390 

prediction stages by the two models are shown in Fig. 7. For both models, the simulated 391 

values completely capture the variation of groundwater levels in monitoring wells with 392 

overlapped plot. The R2 and RMSE values of simulation results are listed in Table 3. In 393 

the prediction stage, the values of RMSE are 0.0019 and 0.0166 for BH01 and BH05, 394 

and the values of R2 are larger than 0.999 in the prediction for the TCN-based model. 395 

For the LSTM-based model, the RMSE values are 0.0074 and 0.0588, and the R2 values 396 

are 0.9957 and 0.9980. These metrics indicate that both models can “remember” the 397 

historical records and produce true observations. The simulation accuracy of TCN-398 

based models is slightly higher than the LSTM-based models. In addition, the running 399 

time of the TCN-based model is 2.6 minutes, which is faster than that of the TCN-based 400 

model.  401 
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 402 

Figure 7. The simulation results of groundwater level of monitoring wells BH01 and 403 

BH05 by TCN-based model. The black dash line divides the data into two groups: the 404 

training and testing dataset, and the prediction dataset.  405 

 406 

Table 3. The model results for groundwater level in the training and testing and 407 

prediction stage 408 

Well Model 

Training and Testing Prediction 

MAE RMSE R2 MAE RMSE R2 

BH01 
TCN 0.0017 0.0068 0.9992 0.0009 0.0019 0.9997 

LSTM 0.0053 0.0077 0.9990 0.0050 0.0074 0.9957 

BH05 
TCN 0.0070 0.0279 0.9981 0.0061 0.0166 0.9990 

LSTM 0.0082 0.0116 0.9997 0.0168 0.0558 0.9980 

 409 
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4.4 Long term leading time prediction 410 

The TCN- and LSTM-based models were further adjusted to predict the 411 

groundwater levels over three months ahead with different leading period. Prediction 412 

results with 1-day, 3-, 7-, and 15-days leading time with TCN- and LSTM-based models 413 

are illustrated in Fig. 8 and Fig. 9 for wells BH01 and BH05, respectively. The results 414 

show that the predicted groundwater values have the same change trend as the actual 415 

groundwater level in monitoring wells. Both of the models are able to capture the 416 

variation trend of groundwater levels with longer leading period more than one time 417 

step in the two monitoring wells. 418 

419 

Figure 8. The observed and predicted values of the groundwater level with TCN- and 420 

LSTM-based models for 1-day, 3-, 7- and 15-days lead period in monitoring well BH01. 421 

 422 
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 423 

Figure 9. The observed and predicted values of the groundwater level with TCN- and 424 

LSTM-based models for 1-day, 3-, 7- and 15-days leading period in monitoring well 425 

BH05. 426 

To quantitatively compare the prediction accuracy of the proposed TCN- and 427 

LSTM-based models, the results of two evaluation metrics with the model running time 428 

are summarized in Table 4. It can be learned that the R2 value of TCN-based models 429 

decreased from 0.9386 to -0.1407 for well BH01 and from 0.9670 to 0.7271 for well 430 

BH05. Correspondingly, an increase of RMSE values from 0.028 to 0.1209 and 0.0934 431 

to 0.206 are observed for BH01 and BH05, separately. A similar variation pattern is 432 

recognized for LSTM-based model with smaller R2 and higher RMSE than that of the 433 

TCN-based model. Notably, the running time of advance prediction is much longer than 434 

that of single step prediction. Meanwhile, with the increasing of leading period, the 435 

time had been raised nonlinearly. Further, in this process, the TCN-based model cost 436 

longer time than that of LSTM-based model. 437 
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Table 4. The model results for groundwater level in the long term prediction 438 

Well Model 
Prediction 

Mins Model 
Prediction 

Mins 
RMSE R2 RMSE R2 

BH01 

TCN-1 0.0280 0.9386 5.38 LSTM-1 0.0349 0.9047 3.76 

TCN-3 0.0550 0.7638 16.1 LSTM-3 0.0640 0.6802 11.01 

TCN-7 0.0741 0.5713 34.3 LSTM-7 0.0956 0.2874 26.27 

TCN-15 0.1209 -0.1407 94.95 LSTM-15 0.1486 -0.7227 85.13 

BH05 

TCN-1 0.0934 0.9670 5.19 LSTM-1 0.1012 0.9613 3.78 

TCN-3 0.1375 0.9285 16.18 LSTM-3 0.1086 0.9554 11.4 

TCN-7 0.1084 0.9296 35.44 LSTM-7 0.2050 0.8406 26.2 

TCN-15 0.2060 0.7271 80.46 LSTM-15 0.3515 0.5330 73.45 

 439 

The performance of the two networks was further evaluated with Taylor diagrams 440 

by taking different criteria aspects which including standard deviation (SD), correlation 441 

coefficient (COR), root mean square deviation (RMSD) into account (Taylor, 2001). 442 

The comparisons of TCN- and LSTM-based model are shown in Fig. 10. As the metrics 443 

distributed away from the reference point (Ref), the deviation of prediction from 444 

observation is generally increased with extending of leading period. Taken well BH05 445 

for example, the prediction with 1-day (24 hours prediction window) in advance are the 446 

highest in agreement with the actual situation in the two models. The 1-day leading 447 

prediction results have the lowest RMSD values and highest R2 values for both models. 448 

The prediction precision gradually decreases with the extending of leading time to 3-449 

days, 7-days and 15-days. For well BH01, an out of trending point is observed. The 15-450 

days prediction results of LSTM-based model is closer to the Ref point compared with 451 

the TCN-based model. The reason is that the simulation data is highly correlated with 452 

observations as shown in Fig.8.  453 
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 454 

Figure 10. Taylor diagrams with statistical (SD, COR,RMSD) comparison results of 455 

the TCN-based and LSTM-based models for well (a) BH01 (b) BH05.  456 

Overall, the TCN- and LSTM-based models both have strong prediction ability in 457 

long term hydrological time series data. Both models are able to provide accurate 458 

predictions once they are trained. The simulation accuracy of the TCN-based model is 459 

slightly better than that of the LSTM-based model in the three months prediction but 460 

the difference is not significant with p>0.05 in t-test. The causal dilated convolutions 461 

used by TCNs are proved to be good at capturing long-term dependencies of time series 462 

data. Meanwhile, the model precision decreases and the running time increases with 463 

raising leading period. The processing speed of parallel convolution TCN-based models 464 

for long input sequences is slower than that of recurrent networks. This seems to be a 465 

shortage in real-time monitoring and early warning. A leading period shorter than 7 466 

days is recommended to ensure both of the accuracy and efficiency of the models in 467 

real-time monitoring and early warning.  468 

4.5 Influence of training set percentage 469 

The data-driven methods are supported by data; however, how much data is needed 470 
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to build an effective model is still a challenging problem (Reichstein et al., 2019). This 471 

is because specific problems depend on application cases, data features, and model 472 

features (Wunsch et al., 2021). Here we discuss the effect of training set percentage on 473 

the TCN- and LSTM-based models. In our study, the data is the hourly-monitored data 474 

from 2011 to 2012. From 2011, we set 20%, 30% to 90% training sets in turn, so as to 475 

gradually expand the length of training set. 476 

Fig. 11 shows the effect of increased percentage of training set on the performance 477 

of the model. All experiments were repeated five times, and the average values of each 478 

index were compared. It can be seen that the performance of the TCN-based model 479 

improved with the increase of the percentage of training set. When the training set 480 

reached 80%, the performance was relatively optimal, and then the performance began 481 

to deteriorate with the increase of the percentage of training set. At the same time, it 482 

can be seen that the performance of the LSTM-based model tends to be stable when the 483 

training set reaches 70%, and then decreases slightly with the increase of training set. 484 

Therefore, a training set evaluation is recommended before the training and testing. We 485 

should carefully evaluate and shorten the training data set as much as possible when 486 

necessary. Finally, we set 80% of the training set length to simulate the coastal aquifer 487 

time-series data. 488 
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 489 

Figure 11. Influence of training set percentage on the performance of the model for (a) 490 

BH01 and (b) BH05. 491 

5 Conclusions 492 

The TCN- and LSTM-based deep learning models were proposed in this paper to 493 

predict groundwater levels in a coastal aquifer. Hyper-parameter searches was first 494 

conducted to obtain good architecture configurations. The results indicated that a deeper, 495 

broader model does not necessarily guarantee better predictions. The optimal 496 

configurations then were adopted for the networks of all monitoring data. Both of the 497 

TCN- and LSTM- based model well captured the fluctuation of groundwater levels and 498 

achieved satisfactory performance on the prediction. Meanwhile, a decreasing precision 499 

is revealed when the leading time increases in advance prediction. In view of accuracy, 500 

the TCN-based model outperforms the LSTM-based model but less efficiency in long-501 
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term simulation. Thus, both models can bu used as promising method for time-series 502 

prediction of hydrogeological data especially when the regional data is difficult to 503 

collect in a complex system. 504 
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