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Abstract: The climate change plays a key role in ecosystem evolution and has been 11 

proved to be affected by comprehensive factors including anthropogenic activities. The 12 

application of GCMs (General Circulation Models) launched by CMIP6 (Coupled 13 

Model Intercomparison Project Phase 6) has become a primary implement to catch 14 

future climate characteristics under different future socio-economic pathways. 15 

However, quantitative future climate change records with high credibility generated by 16 

robust GCMs merged datasets from CMIP6 are scarce. Most precious studies depended 17 

on traditional GCMs ensemble datasets (e.g., single, mean and medium) which were 18 

proved to be highly unstable. In this study, three machine learning methods (Ordinary 19 

Least Squares regression, Decision Tree, and Deep Neural Networks) were applied to 20 

ensemble temperature and precipitation from 16 CMIP6 GCMs simultaneously. 21 

Monthly optimal estimation of precipitation and temperature from three datasets were 22 

selected to generate a new ensemble dataset under three Socio-Economic Pathways 23 

(SSP1-2.6, SSP2-4.5 and SSP5-8.5). The new ensemble precipitation (temperature) 24 

dataset with the R=0.81 (0.99) is more accurate than all the single GCM. High credible 25 

analyses demonstrate that Europe and North America contribute more to global 26 

warming than Oceania, Africa and South America. The global continent break through 27 

1.5 ℃, 2 ℃ and 3 ℃ rising threshold in 2024, 2031 and 2048 under SSP5-8.5 scenarios. 28 

Most precipitation aggregates in July and August, while dry months fall in April and 29 

September to next February during the rest of 21st century. Global precipitation will be 30 

accelerated polarization with the decreasing trends of Africa and Asia (p < 0.05) under 31 

the scenario of SSP5-8.5. The proposed analysis provides credible opportunities and 32 
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quantitative fundamental to understand future climate characteristics for ecology and 33 

meteorology. 34 

1. Introduction 35 

As essential components of global climate transformation, the pattern changes of 36 

temperature and precipitation broadly impact agricultural productivity (Iwamura et al., 37 

2020; Ortiz-Bobea et al., 2021; Raupach et al., 2021), ocean acidification (Randall and 38 

van Woesik, 2015; Anthony, 2016), hydrological drought or flooding extremes (Zhang 39 

et al., 2019; Liu et al., 2021; Qi et al., 2021) and spreading viruses (Iwamura et al., 40 

2020; Li et al., 2018), etc. The Paris Agreement was set for reinforcing global response 41 

to control warming level below 2 ℃ and pursuing for 1.5℃ impact (Hulme, 2016; 42 

Schleussner et al., 2016) compared with the pre-industrial period (1850-1900). 43 

However, IPCC Sixth Assessment Report (AR6) statement has affirmed that emissions 44 

of greenhouse gases from anthropogenic activities are responsible for 1.1°C 45 

temperature rising if 1850-1900 is defined as the baseline period (IPCC, 2021). Hence, 46 

it is fundamental to predict climate characteristics depending on the robust projection 47 

data set for formulating future climate change policies. 48 

 49 

The utilization of meteorological station data or satellite products is failed to project 50 

climate changes (Dar and Dar, 2021). However, the Coupled Model Intercomparison 51 

Project (CMIP) has provided a great number of GCMs (General Circulation Models) 52 

for researchers to catch future climate changes. In past decades, former CMIPs played 53 
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an active role in regional studies which were related to climate change projection. Lee 54 

et al. (2020) indicated the rising of maximum precipitation in East Asia will exceed to 55 

7, 15 and 35 percent under RCP2.6, RCP4.5 and RCP8.5 conditions at the end of the 56 

21st century. Gaitán et al. (2019) employed 9 GCMs and demonstrated the greatest 57 

rising daily maximum temperature over Spain will reach to 7℃ until 2100 for RCP8.5. 58 

In the 6th phase of CMIP, five Socio-Economic Pathways (SSPs) which launched to 59 

describe human development challenges (Iqbal et al., 2021; You et al., 2021; Xu et al., 60 

2022; O’Neill et al., 2017). The resolution and dynamic parameterization scheme of 61 

models were also improved from CMIP5 to CMIP6 (Chen et al., 2021; Hamed et al., 62 

2022). However, the findings generated by new ensemble climate global dataset are 63 

rarely reported under CMIP6 with the new emission strategy. Therefore, it is 64 

worthwhile to further utilize CMIP6 GCMs. 65 

 66 

Due to physical parameters sensitivity of GCMs, model outputs perform unequally 67 

credible in a specific region or time. Climate change projection ignoring the temporal 68 

and spatial heterogeneity leads to the incredibility of the estimation.  Utilizing only 69 

one model will improve the uncertainty of climate projection. Therefore, ensemble 70 

methods were widely used by taking advantage of multi GCMs. Currently, the 71 

application of ensemble models can be roughly divided into three categories: (1) use of 72 

individual models, average or medium combination and other traditional statistical 73 

methods with equivalent weights (Fu et al., 2020; Li et al., 2020; Narsey et al., 2020; 74 

Xin et al., 2020; Almazroui et al., 2021; Hermans et al., 2021), (2) new weighted 75 
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procedures with spatiotemporal homogeneity, such as independence weighted mean 76 

(IWM) and multidimensional scaling (MDS) (Sanderson et al., 2015; Bai et al., 2021), 77 

(3) development of machine learning (ML) with nonlinear function to train selected 78 

models adjusted by bias correction (Xu et al., 2020; Wei et al., 2021).  79 

Nowadays, ML applications in data-driven geoscience mainly focus on 80 

downscaling (Tran Anh et al., 2019; Vandal et al., 2019), land cover transmission 81 

(Condro et al., 2019; Gianinetto et al., 2020) and inversion model construction (Jiang 82 

et al., 2019a; Liu and Grana, 2019), etc. To correct climate models, ML has been proved 83 

to be an effective tool in taking advantage of excellent features from GCMs in several 84 

studies (Wei et al., 2021; Jose et al., 2022). Jose. et al. (2021) employed support vector 85 

machine in maximum temperature ensemble of CMIP GCMs with a slight improvement 86 

of R from 0.522 to 0.7. Kuma. et al. (2022) developed an ANN network to correct cloud 87 

feedback for CMIP5 dataset, which is superior to the mean ensemble approach, but 88 

ANN could only explain 47% variance. Though ML methods was successfully applied 89 

in the precious regional studies, regionalized models were just suitable for specified 90 

periods or regions (Singh et al., 2017). Mitra (2021) anticipated there were significant 91 

room for improvement of ML application in projection of climate variables with spatial-92 

temporal heterogeneity consideration. The robust application of ML application in 93 

global climate projection based on CMIP6 GCMs is still limited and needs to be 94 

explored. 95 

 96 

 97 
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The study aims to investigate global future climate changes based on ensemble 98 

optimized climate datasets through ML. Firstly, the machine learning methods Ordinary 99 

Least Square (OLS), Decision Tree (DT), and Deep Neural Networks (DNN) were used 100 

to simulate historical global temperature and precipitation based on 16 individual 101 

GCMs. Then, the best monthly ensemble model would be selected to project 102 

temperature and precipitation (2015-2100) under SSP1-2.6, SSP2-4.5 and SSP5-8.5 103 

scenarios. Finally, the tendency of global warming under 1.5℃, 2℃ and 3℃ was 104 

explored. The precipitation pattern on a global and continental scale also be identified 105 

under future scenarios. This study can provide scientific dataset support for scholars in 106 

related earth science research and offer predictable opinions on climate management 107 

measures for policy-makers. 108 

 109 

2. Data and Methodology 110 

2.1 Experimental data 111 

2.1.1 Model outputs 112 

In our study, monthly mean temperature and precipitation datasets were provided by 113 

CMIP6 GCMs output. Sixteen GCMs developed by 19 global institutions were selected 114 

as Table 1. The period of 1965-2014 and 2015-2100 were chosen for historical 115 

simulation and future SSPs-RCPs scenarios, respectively. Future climate change was 116 

projected under scenarios SSP1-2.6, SSP2-4.5 and SSP5-8.5 corresponding to the 117 
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sustainable development pathway, central pathway following the historical pattern and 118 

fossil-intensive emission pathway (O'Neill et al., 2016), respectively. There are 119 

different grid sizes for the selected GCMs, therefore bilinear interpolation was applied 120 

to unify the resolution to 0.5°×0.5°. 121 

Table 1 Detailed description of selected CMIP6 models 122 

Model Name Modeling group Original 

resolution 

(lon x lat) 
BCC-CSM2-MR Beijing Climate Center, China / Meteorological Administration, China 1.125°×1.125° 

CanESM5 Canadian Centre for Climate Modelling and Analysis, Canada 2.8125°×2.8125° 

CESM2-WACCM 
National Center for Atmospheric Research, Climate and Global Dynamics 

Laboratory, USA 
1.25°×0.9375° 

CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 1.25°×0.9375° 

CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici,Italy 1.25°×0.9375° 

FGOALS-f3-L Chinese Academy of Sciences, China 1.25°×1° 

INM-CM4-8 Institute for Numerical Mathematics, Russia 2°×1.5° 

INM-CM5-0 Institute for Numerical Mathematics, Russia 2°×1.5° 

KACE-1-0-G 
National Institute of Meteorological Sciences/Korea Meteorological 

Administration, Republic of Korea 
1.875°×1.25° 

MIROC6 
The University of Tokyo, National Institute for Environmental Studies,  

and Japan Agency for Marine–Earth Science, Japan 
1.4063°×1.4063° 

MRI-ESM2-0 Meteorological Research Institute, Japan  1.125°×1.135° 

NESM3 Nanjing University of Information Science and Technology, China 1.875°×1.875° 

TaiESM1 Research Center for Environmental Changes, Taiwan 1.25°×0.9375° 

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 0.9375°×0.9375° 

MPI-ESM1-2-LR Max Planck Institute for Meteorology, Germany 0.9375°×0.9375° 
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FIO-ESM-2-0 

FIO (First Institute of Oceanography, State Oceanic Administration, China), 

QNLM (Qingdao National Laboratory for Marine Science and Technology, 

China) 

1.25°×0.9375° 

 123 

2.1.2 Observation datasets 124 

High resolution (0.5° × 0.5°) CRU TS4.05 grids (Das et al., 2016) were obtained as 125 

monthly observation dataset for mean temperature and precipitation. Compared with 126 

previous CRU TS4.0, the latest version CRU TS4.05 covered more complete time series 127 

(Jan. 1901- Dec. 2020) was provided by the University of East Anglia in July 128 

2021(Ullah et al., 2020). Considering the time-series matching problem and premature 129 

period lack of reliability, data during period (Jan.1965- Dec.2014) were used to simulate 130 

and validate multi-model ensemble results. 131 

 132 

2.2 Multi-model ensemble methods 133 

In the processing of multi-model ensemble, CRU TS4.05 and 16 GCMs was chosen as 134 

ground truth and simulation dataset. Period encompassing 1965-2014 was spilt into 135 

training period (1965-1994) and testing period (1995-2014). The input datasets are 136 

5760 GCMs images and 540 observation images, and each image consists of 67420 137 

pixels (Fig.1). In the training process of ensemble methods, OLS (Ordinary Least 138 

Squares regression), DT (Decision Tree) and DNN (Deep Neural Networks) were 139 

applied to optimize the monthly dataset.  140 

https://doi.org/10.5194/hess-2022-235
Preprint. Discussion started: 6 July 2022
c© Author(s) 2022. CC BY 4.0 License.



9 

 

 141 

Fig. 1. Weight assignment of 16 GCMs on a time scale  142 

The Ordinary Least Squares regression (OLS) is a widely technique applied for 143 

estimating the unknown coefficients of linear regression equations which determine the 144 

relationship between one or more independent quantitative variables and another 145 

variable (Lee et al., 2022). To construct the optimization function, OLS aims to 146 

minimize the sum of squared residuals between observed and predicted data (Sharif et 147 

al., 2017). The OLS method was employed to assign weights for 16 selected GCMs 148 

with linear regression at the monthly scale. The weight matrix generated by OLS can 149 

be expressed as follow. 150 

[
 
 
 
 
 
𝑊1

𝑊2

⋮
𝑊𝑖

⋮
𝑊12]

 
 
 
 
 

=

[
 
 
 
 
 
 𝛽1

1, 𝛽2
1, ⋯ , 𝛽𝑗

1, ⋯ , 𝛽16
1 , 𝜀1

𝛽1
2, 𝛽2

2, ⋯ , 𝛽𝑗
2, ⋯ , 𝛽16

2 , 𝜀2 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝛽1
𝑖 , 𝛽2

𝑖 , ⋯ , 𝛽𝑗
𝑖, ⋯ , 𝛽16

𝑖 , 𝜀𝑖

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝛽1

12, 𝛽2
12, ⋯ , 𝛽𝑗

12, ⋯ , 𝛽16
12, 𝜀12]

 
 
 
 
 
 

 (1) 151 

https://doi.org/10.5194/hess-2022-235
Preprint. Discussion started: 6 July 2022
c© Author(s) 2022. CC BY 4.0 License.



10 

 

where 𝛽𝑗
𝑖 represents the weight of the jth GCM in the ith month; 𝜀𝑖 represents the 152 

residual generated after weight distribution for ith month. 153 

 154 

To obtain ensemble value of each pixel, the linear model generated by OLS can be 155 

described as follow. 156 

𝑌(𝑖,𝑘) = ∑𝛽𝑗
𝑖𝑋𝑗

(𝑖,𝑘)

𝑖=1

𝑝

+ 𝜀𝑖 (2) 157 

where 𝑌(𝑖,𝑘)  and 𝑋𝑗
(𝑖,𝑘)

  denote the values of single kth pixel value in the ensemble 158 

image and the image of jth GCM, respectively. 159 

 160 

The DT method is usually applied to construct a nonlinear model which is sensitive to 161 

intermediate missing values with stronger explanatory than linear regression (Pekel, 162 

2020). According to the training input dataset, each region is recursively divided into 163 

two subregions originally, in which the output value is determined to construct a binary 164 

decision tree (Jumin et al., 2021). The process can be described as four steps in details:  165 

 166 

Step 1: Each GCM represents a dimension of a space. Dividing the jth dimension of the 167 

space into two regions (R1 and R2) by selected candidate splitting the jth GCM as the 168 

feature, and then splitting the pixel values into two groups as following equations. 169 

R1(j, s) = {x | x(j) ≤ s} (3) 170 

R2(j, s)  =  {x | x(j) > s} (4) 171 

Step 2: Adjusting the j and s to minimize the residual sum of squares following equation 172 

4. 173 
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𝑚𝑖𝑛𝑗,𝑠 [𝑚𝑖𝑛𝑐1
∑ (𝑦𝑖 − 𝑐1)

2

𝑥𝑖∈𝑅1(𝑗,𝑠)

+ 𝑚𝑖𝑛𝑐2
∑ (𝑦𝑖 − 𝑐2)

2

𝑥𝑖∈𝑅2(𝑗,𝑠)

] (5) 174 

𝑐𝑚 =
1

𝑁𝑚
∑ 𝑦𝑖

𝑦𝑖∈𝑅1(𝑗,𝑠)

(𝑥 ∈ 𝑅𝑚, 𝑚 = 1,2) (6) 175 

where Nm is the total number (30 images × 67420 pixel/images) of observation data at 176 

current node; yi is the ith individual sample of observation data. 177 

 178 

Step 3: Repeating steps 1 and 2 to continue increasing the depth of tree and splitting the 179 

subregions R1 and R2 until training loss reaches to criteria threshold. Mean-absolute-180 

error was applied as supported criteria to measure the quality of a split in this study. 181 

 182 

The Deep Neural Network (DNN) is a feedforward artificial neural network, which is 183 

applied to explore the relationship between input features and construct linear equations 184 

for ground truth. It is an effective strategy to solve supervision problems (classification, 185 

regression, clustering, etc.) (Raheli et al., 2017; Jiang et al., 2019b). In this study, DNN 186 

can be split into three parts: 1input layer, 3 hidden layers and 1 output layer, meanwhile 187 

the output of each hidden layer is transformed by the ReLU activation function. To 188 

obtain the optimal weight of selected 16 GCMs on time scale, DNN is needed to 189 

construct for each month. In the process of training, the method adjusts the parameters, 190 

or the weights and biases of the model to minimize error. Our DNN neural network was 191 

designed (Fig. 2) with 0.001 learning rate. Input Nodei represents the pixel values in 192 

the images of ith GCM in the form of vector [pixel1, pixel2, …, pixelm]. Output Node 193 

represents the pixels in the images of ensemble images in the form of vector [pixel1, 194 
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pixel2, …, pixelm]. Supposing there are m and n neurons in the kth and (k+1)th layers, 195 

respectively, the output weight ak of the kth layer can be described as follow. 196 

𝑎𝑘 = 𝑊𝑘𝑎𝑘−1 + 𝑏𝑘 (7) 197 

where 𝑏𝑘  represents 1×n residual vector; 𝑊𝑘  represents a n×m weight matrix 198 

composed of linear coefficient of the kth layer. 199 

 200 

Fig. 2. Main Deep Neural Networks structure constructed in study. ωl
j,k  represents 201 

the weight from the jth neuron in the (l-1)th layer to the kth neuron in the lth layer. 202 

 203 

2.3 Model performance assessment 204 

The statistic indices including correlation coefficient (R), centralized root mean square 205 

difference (CRMSE), standard deviation (SD) ratio and mean absolute error (MAE) are 206 

employed to quantify the loss between simulation and observation data. The 207 

comprehensive rating index was applied to assess the overall result performance. 208 

 209 

Correlation coefficient (R) ranging from -1 to 1 is employed to determine the linear 210 
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relationship between variables. According to R, correlation strength can be divided into 211 

five degrees (Asuero et al., 2006), representing very strong (0.7 < |R| ≤1), strong (0.5 212 

< |R| ≤ 0.7), moderate (0.3 < |R| ≤ 0.5), weak (0 < |R| ≤0.3) and none (|R| = 0) 213 

relationships, respectively. Positive R denotes variables moving in same direction and 214 

negative R represents variables move in opposite direction. The most widely applied 215 

coefficient was generated by the Pearson product-moment correlation. R is calculated 216 

as follows (Maimon et al., 1986): 217 

𝑅 =
∑ (𝑥𝑖 − 𝑚𝑥)

𝑛
𝑖=1 (𝑦𝑖 − 𝑚𝑦)

√[∑ (𝑥𝑖 − 𝑚𝑥)2][∑ (𝑦𝑖 − 𝑚𝑦)2]𝑛
𝑖=1

𝑛
𝑖=1

 (8)
 218 

where xi, yi are the values of x and y for the ith individual; mx, my denote mean value of 219 

compared variables x and y, respectively; n denotes pairs of observation and model data 220 

matched by time-interspace. 221 

 222 

The CRMSE and SD ratio are constructed as following equations (Taylor, 2001): 223 

CRMSE = √
1

𝑛
∑[(𝑥𝑖 − 𝑚𝑥) − (𝑦𝑖 − 𝑚𝑦)]

2
𝑛

𝑖=0

(9) 224 

SD ratio =
√∑ (𝑥𝑖 − 𝑚𝑥)2𝑛

𝑖=1

√∑ (𝑦𝑖 − 𝑚𝑦)2𝑛
𝑖=1

(10) 225 

All parameters in Equation 3 and 4 have the same meaning as Equation 2. 226 

 227 

To evaluate the accuracy of the given model, mean absolute error (MAE) was proposed 228 

with range of 0 to +∞. The lower the value of MAE, the better a model fits the dataset, 229 

where 0 suggests perfect simulation capability. MAE can be expressed as follows: 230 

https://doi.org/10.5194/hess-2022-235
Preprint. Discussion started: 6 July 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑜 − 𝑦𝑝|

𝑁

𝑖=1

(11) 231 

where yo and yp represent the individual of original and predicted values, respectively; 232 

N denotes the number of observed individuals. 233 

 234 

The assessment results of best single models or ensemble methods using different 235 

evaluation indicators will be different. Therefore, Comprehensive Rating Index (CRI) 236 

restricted in 0 to 1 is devised to unify standards to normalize simulation capabilities and 237 

give concise overall ranking summary of 16 studied single models and 3 ensemble 238 

methods (Jiang et al., 2015). The performance with CRI close to 1 is proved to be 239 

suitable. CRI can be computed by the following formula: 240 

CRI = 1 −
1

𝑖 𝑗
∑ 𝑟𝑎𝑛𝑘𝑝

𝑖

𝑝=0

(12) 241 

where i and j denote the number of evaluation indices and investigated models or 242 

methods, respectively; rankp denotes the rank of model or method according to pth index. 243 

3. Results 244 

3.1 Accuracy validation of proposed dataset by observation data in historic period 245 

3.1.1 Accuracy assessment of monthly averaged precipitation and temperature with 246 

Taylor diagram 247 

To illustrate the accuracy of 16 GCMs and 3 ensemble methods, Taylor diagram was 248 

applied to integrate R, SD ratio and CRMSE measurements (Fig. 2). The best optimal 249 
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performance is equipped with the lowest CRMSE, highest R and SD ratio closing to 1 250 

in Taylor diagram. Obviously, the accuracy of OLS and DNN results was better under 251 

historical scenarios than precipitation or temperature from each GCM (Fig. 3a). Despite 252 

slightly more excellent performance in temperature, DT method was far superior to 253 

other single models with a significantly higher R of 0.71 against CRU TS4.05 254 

precipitation under validation period (1995-2014). The SD ratio of 16 models and 3 255 

methods were all closed to 1 while R exceeded to 0.95. The DNN method owned the 256 

perfect simulation with the highest R of 0.985 and lowest CRMSE of 0.171 mm/month, 257 

followed by the OLS method (R=0.983, CRMSE=0.181 mm/month) and the DT 258 

method (R=0.972, CRMSE=0.232 mm/month). The R and CRMSE of single model 259 

ranged from 0.956-0.971 and 0.247-0.298 mm/month. Compared with the CanESM5 260 

model ranked as the poorest model, the DNN method reduces CRMSE by 42.7%. In 261 

terms of precipitation (Fig. 3b), R of the OLS, DT and DNN methods were 0.800, 0.718 262 

and 0.819, larger than other single models with a range of 0.541-0.654, respectively. R 263 

indicated that the simulation result produced by ensemble methods owned higher 264 

credibility. The results accuracy ranked in top three with CRMSE were still datasets 265 

from ensemble methods DNN (CRMSE = 0.601) > OLS (CRMSE = 0.619)> DT 266 

(CRMSE = 0.827). 267 
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 268 

Fig. 3. Taylor diagrams of (a) temperature and (b) precipitation. Ref stands for CRU 269 

TS4.05 observation dataset 270 

 271 

3.1.2 Accuracy assessment by spatial pattern of MAE 272 

To further verify the simulation performance of the single models and ensemble 273 

methods, MAE was employed as another evaluation criterion. The value of MAE closer 274 

to 0 indicated more precise simulation. The quantitative results were shown in Fig.4 275 

where red lines denoted median MAE and blue lines represented mean MAE. In terms 276 

of temperature and precipitation, the ranks of performance determined by mean MAE 277 

were both DNN > OLS > DT > any selected single model. Moreover, median MAE of 278 

the DNN and OLS method were 18.3 mm/month and 18.7 mm/month (1.88 ℃ and 279 

1.96 ℃) in projecting precipitation (temperature), which showed significant robustness 280 

of both methods. 281 
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 282 

 283 

Fig. 4. Boxplots of Quantitative MAE assessment between simulation and observation 284 

dataset for (a) temperature (℃) and (b) precipitation (mm/month). The statistical 285 

distribution of data was displayed based on a five-divided category (minimum, first 286 

quartile, median, third percentile and maximum). 287 

 288 

As for temperature, MAE corresponding to each pixel (0.5°×0.5°) was mapped in Fig 289 

5. According to the simulative mechanism, figures can be divided into two groups: 290 

Fig5(a)-(p) and Fig5(q)-(s). The former revealed MAEs produced by 16 single models, 291 

the latter suggested MAEs processed by ensemble methods. For 16 GCMs, with the 292 
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increase of latitude in the northern hemisphere, the area ratio with red gradually 293 

increased, which implies the upper regions of the northern hemisphere owned higher 294 

density of MAE. Estimation in the southern hemisphere is far better than the northern 295 

hemisphere. Evidently, the projection each single model was far inferior to ensemble 296 

methods. Compared with a single model, the OLS, DT and DNN methods reduced 297 

MAE in the northern hemisphere. For example, it is obvious that the tendency of MAE 298 

from 16 GCMs to ensemble methods decreased in Siberian plain, which locates in the 299 

middle and high latitudes with significant continental climate. The extremely low 300 

temperature in Siberian plain is only second to Antarctic continent, which leads to the 301 

increasing challenge of climate change projection. There were still minor defects in the 302 

sub-regions of the Andes Mountains in South America. The quality of the dataset 303 

generated by different ensemble methods largely depends on the input GCMs, which is 304 

the reason for the shortcomings in above mentioned area. 305 

 306 

A similar MAE assessment is also conducted to precipitation. Contrary to temperature, 307 

MAE performance of precipitation was more excellent in the northern hemisphere than 308 

in the southern hemisphere (Fig. 6). In addition, the error showed an upward tendency 309 

with latitude increasing in the south hemisphere. It is undeniable that ensemble methods 310 

significantly mitigated the gap between observation and simulated gridded data 311 

especially in southeastern Asia continent (Indian Peninsula, the Tibetan Plateau, 312 

Thailand, etc.). Forecasts near the Andes Mountains were still unsatisfactory in 313 

precipitation. Lack of accuracy in single model greatly amplified the difficulty of 314 
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climate change projection. 315 

 316 
Fig. 5. The spatial distribution illustration of temperature MAE produced by selected CMIP6 models, 317 

DNN (Deep Neural Networks), DT (Decision Tree), and OLS (Ordinary Least Squares regression). 318 

 319 

 320 
Fig. 6. The spatial distribution illustration of precipitation MAE produced by selected CMIP6 321 

models, DNN (Deep Neural Networks), DT (Decision Tree) and OLS (Ordinary Least Squares 322 

regression323 
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3.1.3 Overall performance evaluation 324 

Due to the partial model assessment of a single indicator, different metrices result in 325 

different ranks. it is necessary to employ comprehensive index to improve the credible 326 

evaluation. To further measure superiority of different models, different monthly index 327 

rankings were calculated firstly before CRI assessment. The closer the pixel color to 328 

green, the better the ranking is, vice versa. Each pixel in heatmaps of CRI ranking (Fig 329 

6) was calculated by four indices (R, CRMSE, SD ratio and MAE) according to the 330 

monthly ranking of single model and ensembled dataset. What cannot be ignored is that 331 

the proposed datasets from three ML methods ranked ahead of CRI generated by four 332 

indicators with green covered ribbons in both temperature (Fig 7.a) and precipitation 333 

prediction (Fig 7.b). Particularly, the DNN method was the optimal one among 334 

investigated single model and multi-model ensembled datasets. As for temperature, R 335 

values for the DNN methods were all ranked first for all months. Results from the DNN 336 

method ranked at 1 according to the CRMSE and MAE in each month except February, 337 

in which it ranked at 2. 338 

 339 

The precipitation dataset from the DNN method ranked 1 in all months according to the 340 

MAE. The ranks with indicator R and CRMSE were either first or second indicating 341 

stable and perfect performance of DNN. Based on the SD ratio, results from the DNN 342 

method ranked middle. However, the SD ratio represented the overall pattern between 343 

the observation and simulation instead of the corresponding relations sample by sample. 344 
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Therefore, the SD ratio was not regarded to be persuasive compare with other indicators. 345 

 346 

 347 

 348 
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 349 

Fig. 7. CRI ranking of 16 single models and datasets from three ML methods. (a) 350 

temperature and (b) precipitation. 351 

 352 

According to the CRI ranking results, the monthly optimal pattern was screened out to 353 

produce the new optimal dataset. In summary, the DNN method had an overwhelming 354 

advantage in all months except in February and April, in which the OLS method was 355 

the optimal method for temperature ensemble. On the other hand, the OLS was the best 356 

method for projecting precipitation from March to June and October, meanwhile the 357 

DNN produced optimal results in other months. Notably, there were two or more 358 

optimal methods in certain months (e.g., March, May) due to the same CRI ranking 359 

produced by the discrepancy of the partial indicator. Considering the stability, 360 

robustness, and R representing fitting ratio, the DNN method was employed as the 361 

optimal method for further predictive analysis when facing above situation. 362 

 363 
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3.2 Years projection for temperature increasing under the 1.5℃ (2℃ / 3℃) global 364 

warming target 365 

From the proposed optimal monthly dataset, temperature was projected under SSP1-366 

2.6, SSP2-4.5 and SSP5-8.5 scenarios for the period of 2015-2100. As well, the pre-367 

industrial period (1850-1900) dataset from CMIP6 was selected as reference to years 368 

projection for temperature increasing under the 1.5℃ (2℃ / 3℃) global warming target. 369 

For further intuitive analysis of temperature anomalies, global studied area was divided 370 

into Asia, Africa, Europe, South America and North America and Oceania continents. 371 

The temperature trends were shown in Figure 8. Clearly, the upward trend of SSP1-2.6 372 

was steadier while steepest upward trend of the SSP5-8.5. What’s more, Asia, Europe 373 

and North America continents contributed more to global warming than Oceania, Africa 374 

and South America continents in both scenarios. 375 

 376 

The following simulated data are processed by 5-year moving average. In order to 377 

further confirm the time period of temperature rise in the study area, the rising targets 378 

of 1.5 ℃, 2 ℃ and 3 ℃ were set in Figure 8. Under the SSP1-2.6 scenario, Asia, Africa, 379 

South America, Oceania and global reach 1.5 ℃ threshold in the year of 2031, 2050, 380 

2034, 2072 and 2037, respectively. Europe and North America continents get to 2℃ 381 

rising level during 2027 to 2029. If future followed the medium emission scenario 382 

namely SSP2-4.5, the years for Africa, South America and Oceania continents 383 

breakthrough 1.5 ℃ (2℃ / 3℃) warming target were 2024 (2037/2075), 2026 384 

(2043/2082) and 2029 (2038/2094). Asia reached 3 ℃ warming target in 2026-2031 385 
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and Europe reached 2 ℃ (3 ℃) level in 2026 (2040). Asia will firstly reach the 3 ℃ 386 

warming level, while Oceania continent is last one. The time breakpoints exceeding 387 

1.5 ℃, 2 ℃ and 3 ℃ thresholds were 2029, 2035 and 2058 under the SSP2-4.5 scenario 388 

in global scale. the SSP5-8.5 scenario was denoted fossil-fueled development 389 

socioeconomic pathway. Therefore, it is not surprised to find the severity of temperature 390 

rising is greater than SSP 2-4.5 scenario. Under the SSP5-8.5 scenario, the time periods 391 

for global continent breakthrough 1.5 ℃, 2 ℃ and 3 ℃ rising threshold were 2024, 392 

2031 and 2048, respectively. The period for Asia, Africa, Europe, South America and 393 

North America and Oceania continents for 3 ℃ warming target were 2024, 2055, 2036, 394 

2031, 2060 and 2062 under the SSP5-8.5. 395 

 396 
Fig. 8. Temperature anomalies of global and continents under (a) SSP1-2.6 (b) SSP2-397 

4.5 and (c) SSP5-8.5 respect to pre-industrial temperature (1850-1900). N. Am 398 

denotes North America. S. Am denotes South America. 399 

3.3 Tracking global and continental future precipitation changes 400 

Monthly precipitation projection from 2015-2100 under three main scenarios were 401 
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analyzed in Fig. 9 and Fig. 10. As the color bar shown, the closer color of the cell is 402 

bright red, the ampler the precipitation is. On the contrary, the closer the color is to 403 

green, the absent the precipitation is. In this study, we defined the spring (March to 404 

May), summer (June to August), Fall (September to November) and Winter (December 405 

to next February) in both north and south hemispheres to facilitate consistent analysis 406 

for different climate zones. 407 

 408 

The tendency in intra-annual precipitation keeps rising under SSPs except for the 409 

decreasing tendency of winter under SSP1-2.6 (Fig. 9). From 2020-2100, July and 410 

August can be classified as wet months. On the other hand, April and September to next 411 

February can be categorized as dry months. In detail, summer rainfall is the most 412 

abundant. The amounts of summer value account for 31.6%, 29.1% and 29.8% of 413 

annual rainfall with the increase rates of summer at 0.30 mm/10a, 0.16 mm/10a and 414 

0.76 mm/10a under SSP1-2.6, SSP2-4.5 and SSP5-8.5. Although the monthly 415 

precipitation in summer rank first in three selected scenarios, the increased monthly 416 

rainfall slopes of autumn, which can be determined as the peak among above SSPs, are 417 

0.28 mm/10a, 0.63 mm/10a and 1.418 mm/10a under SSP1-2.6, SSP2-4.5 and SSP5-418 

8.5, respectively. In terms of SSPs, the monthly wetter tendency of SSP5-8.5 is the most 419 

significant with a rate of 1.14 mm/10a. However, it doesn’t mean that more uniform 420 

global precipitation distribution in all continents will happen. 421 

 422 
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 423 

 424 

 425 

 426 
Fig. 9. Mean precipitation changes of each month for global continents under (a) 427 

SSP1-2.6, (b) SSP2-4.5 and (c) SSP5-8.5. Each cell represents monthly mean 428 

precipitation. Each row is sorted by spring (March to May), summer (June to August), 429 
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fall (September to October) and winter (December to February). The green arrow 430 

turning left denotes downward trend, while red arrow facing right denotes upward 431 

tendency. Asterisk represents significance value with p<0.05. 432 

 433 

According to the abundance of precipitation, South America can be categorized as the 434 

extremely rainy continent (Fig. 10a), while other studied continents can be grouped as 435 

normally rainy continents (Fig. 10b). In respect of SSP1-2.6 and SSP2-4.5, all studied 436 

continents exhibit increasing trends of monthly precipitation. While the largest 437 

decreasing trend polarization of uneven precipitation at the continental scale under 438 

SSP5-8.5 was further detected, suggesting SSP5-8.5 may cause floods or droughts. Asia 439 

and Africa which can be classified as precipitation-deficit continents tend to be drier 440 

from 2015-2100(p < 0.05) with 19.7% and 15.2% decreasing trends. What’s more, 441 

South America will be more humid with as the most abundant precipitation continent. 442 

Similarly, Europe and North America with relatively abundant precipitation will also 443 

usher in more precipitation under SSP5-8.5. To assess the wetting trend of continents 444 

more intuitively, the precipitation increases by 7.62%, 15.5% and 6.72% in Europe, 445 

North America and South America continents, respectively, while the upward trend is 446 

not obvious in Oceania continent. 447 

 448 
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 449 

Fig. 10. Land mean rainfall changes of (a) normally rainy continents (Asia, Africa, 450 

Europe, N. Am (North America) and Oceania) and (b) extremely rainy continent: S. Am 451 

(South America). Each cell represents a monthly mean precipitation value of the 452 

continent land. The order of rows is SSP1-2.6, SSP2-4.5 and SSP5-8.5 for each 453 

continent. The green arrow turning left denotes downward trend, while red arrow facing 454 

right denotes upward tendency. Asterisk (*) represents significance value with p<0.05 455 

4. Discussion 456 

4.1 Higher credibility of the proposed ensemble dataset by comparison with previous 457 

studies 458 

Majority of previous studies were based on CMIP5 to predict future temperature and 459 

precipitation for evaluating ecological impacts of climatic dynamics (Miao et al., 2014; 460 

Navarro-Racines et al., 2020; Putra et al., 2020; Kajtar et al., 2021;Tang et al., 2021; 461 

Wu et al., 2021). More skillful dataset can improve the spatial correlation accuracy and 462 

reduce the bias over the studied region. CMIP6 GCMs with higher resolutions and 463 

human activity simulation conditions have been proved with better performance in 464 

characterizing the completion processes of carbon emissions, radiative forcing and 465 

warming projection (Xin et al., 2020; Zamani et al., 2020; McCrystall et al., 2021; Song 466 

et al., 2021). The newly released CMIP6 GCMs were selected to simulate in this study. 467 

Besides the new alternation of data sources, there is further improvement of ensemble 468 

methods. To decrease the discrepancy between simulation and observation for higher 469 
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accuracy, traditional methods (e.g., multi-model ensemble mean, best fitting single 470 

model selection) were applied (Rivera and Arnould., 2020; Baker et al., 2021; Kajtar et 471 

al., 2021). It is noteworthy that traditional procedure lacks flexibility and ignores the 472 

weight allocation of time dimensions. Studies have demonstrated that deep learning can 473 

reproduce data in pattern coupling with excellent performance (Sun and Archibald,. 474 

2021; Wei et al., 2021). In this study, considering temporal variation, the application of 475 

neural network and machine learning reproduce dataset with higher ability of projecting 476 

climatological rainfall and temperature under SSP1-2.6, SSP2-4.5 and SSP5-8.5. 477 

Detailed assessment was conducted to find that three new methods are more faultless 478 

than any single model. In terms of temperature (precipitation), MAE of proposed 479 

dataset reduced from 4.4 ℃ (46.6 mm/month) to 2.1 ℃ (27.3 mm/month) compared 480 

with single GCM data. 481 

 482 

4.2 Aggravation of global warming and precipitation extreme by socio-economic 483 

pathways 484 

The RCP scenarios adopted in CMIP5 were labelled for the range of radiative forcing 485 

values until 2100 (2.6, 4.5, 6, and 8.5 W·m-2, respectively) (Rao and Garfinkel 2021). 486 

However, SSP-RCPs are joined to describe national policies besides radiative forcing 487 

during CMIP6 (Liao et al. 2020). There are different results of global warming and 488 

precipitation extreme from these two phases, in which it seems more aggravative in 489 

CMIP6 than CMIP5 according to the results from this study. Torres et al. (2022) 490 

projected temperature for South America and stated that the years related to 1.5 ℃ and 491 
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2 ℃ thresholds were 2027 and 2040 under RCP8.5, while 2023 and 2034 under SSP5-492 

8.5 during CMIP6, respectively in this study, in which temperature increasing quicker 493 

in CMIP5 than CMIP6. Additionally, Bokhari et al. (2018) claimed that the mean 494 

temperature over South Asia showed an estimated temperature rising of 3.2℃ under 495 

RCP4.5 until 2050. Compared with the projection conducted by Bokhari et al. (2018), 496 

we have noted that Asia will experience an increasing of 4.32 ℃ under RCP4.5, which 497 

is more intensive than the tendency under SSP2-4.5 in the mid-21st century. Moreover, 498 

Ongoma et al. (2018) estimated an increasing in temperature at 2.8 °C and 5.4 °C over 499 

East Africa under the RCP4.5 and RCP8.5 scenarios until 2100, respectively. Notably, 500 

the increasing tendency over Africa in CMIP6 of this study is 3.4 and 6.0 °C under 501 

SSP2-4.5 and 5-8.5, respectively, which is acuter than the increment under RCP4.5 and 502 

RCP8.5. Thus, global warming seems to be accelerated under the new socio-economic 503 

pathways in CMIP6. 504 

 505 

In terms of precipitation, Zhu et al. (2021) demonstrated that the annual precipitation 506 

over China would increase by 4.4% and 7% in CMIP5, which is weaker than the trends 507 

representing 5.3% and 8.6% under corresponding scenarios in CMIP6. Moreover, Sinha 508 

et al. (2018) reported the precipitation Florida may experience 5% rising under RCP4.5, 509 

which is 3% lower than trends in SSP2-4.5. It can be demonstrated that the changes of 510 

temperature rising and precipitation extreme in these studies agree with our findings, 511 

which reveals socio-economic pathways could aggravate global warming and 512 

precipitation extreme in the 21st centry. 513 
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 514 

4.3 Implication for climate changing pattern projected from proposed datasets 515 

It is obvious that the severity of climate changes follows the order of SSP5-8.5 > SSP2-516 

4.5 > SSP1-2.6, in which the scenarios represent durable sustainability, intermediate 517 

and fossil-fuel driven high emissions, respectively. Under SSP5-8.5 scenario, GDP 518 

growth develops at high speed at the cost of high energy intension in the absence of 519 

newly proposed climate management policies. Compared with SSP1-2.6 and SSP2-4.5, 520 

time periods breakthrough warming targets come in advance under SSP5-8.5. The 521 

analysis results imply that we must adopt reasonable climate intervention policies, 522 

including through the pursuit of alternative clean energy instead of fossil fuel-driven 523 

approaches. This study also indicated that the phenomena that wet regions become 524 

wetter while dry regions become drier due to high emissions, is affected by economic 525 

development model to a certain extent. Therefore, conversion of economic 526 

development patterns is also one of the factors to be considered in drought and flood 527 

mitigation measures. In multi-propose ecological projects, hydropower, agricultural 528 

irrigation, drought monitoring and land utilization management need credible 529 

evaporation evidence (Paredes et al., 2020). The meteorological factors are related to 530 

evaporation estimation. (Lu et al., 2021; Tian et al., 2022). Related equations or indexes 531 

(e.g., Penman–Monteith, standardized precipitation index and the standardized 532 

precipitation evapotranspiration index) can be constructed employing climate variables 533 

to project future ecological system changes (Almorox et al., 2018; Pei et al., 2020). The 534 
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new ensemble climate dataset is expected to accurately project climate change and its 535 

long-term effects of ecology and environment at a global scale. 536 

5. Conclusion 537 

In this study, high credible findings were proposed based on new ensemble CMIP6 538 

ensemble dataset. We applied three machine learning methods (OLS, DT and DNN) to 539 

construct new temperature and precipitation projection dataset, simultaneously. After 540 

accuracy evaluation, the optimal monthly methods were selected to generate ensemble 541 

dataset under SSP1-2.6, SSP2-4.5 and SSP5-8.5 scenarios. The optimal dataset proved 542 

to be higher accuracy from five statistic indicators (R, CRMSE, MAE, SD ratio and 543 

CRI) than CMIP6 single model. The ensemble dataset owned CRI ranking first and SD 544 

ratio closing to 1 in each month. The new temperature dataset displayed perfect 545 

simulation (R = 0.99, CRMSE = 0.19 ℃, MAE = 2.05 ℃) compared with single CMIP6 546 

GCM (0.95 < R < 0.97, 0.25 ℃< CRMSE < 0.30 ℃, 3.45 ℃ < MAE < 4.39 ℃), while 547 

the new ensembled precipitation dataset was higher credible (R = 0.81, CRMSE = 0.61 548 

mm/month, MAE = 27.31 mm/month) than the single CMIP6 GCM (0.59 < R < 0.77, 549 

0.86 mm/month < CRMSE < 1.1 mm/month, 39.7 mm/month < MAE < 46.57 550 

mm/month).  551 

 552 

High credibility findings were conducted depending on this new dataset. Firstly, the 553 

intensity order of temperature rising is SSP5-8.5 > SSP2-4.5 > SSP1-2.6 over a global 554 

scale. Aisa, Europe and North America continents contributed more to global warming 555 
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than Oceania, Africa and South America continents under studied three SSPs scenarios.  556 

Secondly, the global continent breakthrough 1.5 ℃, 2 ℃ and 3 ℃ rising thresholds in 557 

2024, 2031 and 2048, under SSP5-8.5 scenario. Thirdly, precipitation aggregated 558 

during July and August over the global region. April and September to subsequent 559 

February can be categorized as dry months under selected SSPs. Fourthly, the 560 

ensembled dataset implicates that SSP5-8.5 scenario will accelerate global precipitation 561 

polarization (p < 0.05). Precipitation changes in Africa and Asia will decrease, 562 

meanwhile, Europe, Oceania and South America will be wetter under the SSP5-8.5 563 

scenario. Associated with former studies, our findings proved that socio-economic 564 

pathways could boost global warming and precipitation extreme. 565 

6. Data availability 566 

The CMIP6 GCMs can be downloaded at https://esgf-node.llnl.gov /search/cmip6/. 567 

CRU TS4.05 dataset is available at https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05/. 568 

The ensemble global new dataset can be accessed via open community Zenodo at 569 

https://doi.org/10.5281/zenodo.6565574 (Lu and Zhang, 2022). 570 
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