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Abstract. Transit time distributions (TTDs) of streamflow are useful descriptors for understanding flow and solute transport

in catchments. Catchment-scale TTDs can be modeled using tracer data (e.g., δ18O; oxygen isotopes) in inflow and outflows,

with StorAge Selection (SAS) functions. However, tracer data are often sparse in space and time, so they need to be inter-

polated to increase their spatio-temporal resolution. Moreover, SAS functions can be parameterized with different forms, but

there is no general agreement on which one should be used. Both of these aspects induce uncertainty in the simulated TTDs,5

and the individual uncertainty sources as well as their combined effect have not been fully investigated. This study provides

a comprehensive analysis of the TTD uncertainty resulting from twelve model setups obtained by combining different inter-

polation schemes for δ18O in precipitation, and distinct SAS functions. For each model setup, we found behavioral solutions

with satisfactory model performances for instream δ18O (Kling-Gupta Efficiency, KGE>0.57). Differences in KGE values were

statistically significant, thus showing the relevance of the chosen setup for simulating the TTDs. We found a large uncertainty10

in the simulated TTDs, represented by a large range of variability in the 95% confidence interval of the median transit time

varying between 259 and 1009 days across all tested setups. Uncertainty in TTDs was mainly associated with the temporal

interpolation of δ18O in precipitation, the choice between time-variant and time-invariant SAS functions, flow conditions, and

less with the spatial interpolation methods. We discuss the implications of these results for the SAS framework, uncertainty

characterization in TTD-based models, and the influence of the uncertainty for water quality and quantity studies.15

1 Introduction

Understanding how catchments store and release water of different ages has significant implications for flow and solute trans-

port as water ages encapsulate information about flowpaths characteristics (McGuire and McDonnel, 2006; Botter et al., 2011),

contact time of solutes with the soil matrix (Benettin et al., 2015a; Hrachowitz et al., 2016), and vulnerability assessment (Ku-

mar et al., 2020). This plays an important role for water resources protection and management, and requires a tool that can20

effectively describe catchment-scale transport processes (Rinaldo and Marani, 1987). The age of water in outflows is commonly

referred to as transit time (TT), i.e., the time elapsed between the entry of a water parcel into the catchment via precipitation
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and its exit via streamflow or evapotranspiration. Accordingly, the transit time distribution (TTD) describes the whole spectrum

of the transit times in outflows (Botter et al., 2005; Van der Velde et al., 2010). Early studies have often assumed simplified

steady-state transport models, resulting in time-invariant TTDs (Niemi, 1977; Rinaldo et al., 2006). However, experimental25

simulations showed that TTDs are time-variant due to the variability in meteorological forcing (Botter et al., 2010; Hrachowitz

et al., 2010; Heidbüchel et al., 2020) and activation/deactivation of flowpaths in response to varying hydrologic conditions

(Ambroise, 2004; Heidbüchel et al., 2013). Recent research has introduced new models for representing time-variant TTDs,

for example allowing for the estimation of TTDs without making prior assumptions about their shape (Kirchner, 2019; Kim

and Troch, 2022), or via parameterization of the StorAge Selections (SAS) functions (Rinaldo et al., 2015; Harman, 2019).30

SAS functions describe how catchments selectively remove water of different ages from storage for outflows, and have led

to a new framework of non-stationary transport models based on water age, which have been successfully applied in various

transport modelling studies (Benettin et al., 2015b; Queloz et al., 2015; Kim et al., 2016; Lutz et al., 2017; Wilusz et al., 2017;

Nguyen et al., 2021).

Model-based TTDs are subjected to uncertainty, which limits their ability for decision support. In general, model prediction35

uncertainty stems from model inputs, structure, and parameters (Beven and Freer, 2001). As TTDs are not directly observable,

conservative environmental tracers (e.g., δ18O; oxygen isotopes) in inflow and outflows are commonly used to infer water

ages (Hrachowitz et al., 2013; Birkel and Soulsby, 2015; Stockinger et al., 2015). Long-term, high-frequency tracer data with

appropriate spatial distribution are generally recommended for sufficient understanding of TTD dynamics across a wide range

of fast and heterogeneous hydrological behaviors (Kirchner et al., 2004; Danesh-Yazdi et al., 2016; von Freyberg et al., 2017).40

Therefore, the lack of appropriate tracer data coverage can hamper our understanding of TTD dynamics at the desired resolution

(McGuire and McDonnel, 2006). Additionally, uncertainty in the driving hydroclimatic fluxes such as precipitation, discharge,

and evapotranspiration could propagate into the uncertainty of the modelling results. Further uncertainty emerges from the

model structure due to the difficulty in representing physical processes because of our incomplete knowledge of complex

reality (Ajami et al., 2007). Finally, specification of model parameters is also an important source of uncertainty (Beven, 2006;45

Kirchner, 2006), as the best-fit parameters may suffer from equifinality (Schoups et al., 2008).

A few studies have investigated the uncertainty in the estimated TTDs with SAS models. Danesh-Yazdi et al. (2018) and

Jing et al. (2019) have analysed the effect of interactions between distinct flow domains, external forcing and recharge rate

on resulting TTDs. Several works (Benettin et al., 2017; Wilusz et al., 2017; Rodriguez et al., 2018, 2021) have explored

model parameter uncertainty, and suggested that additional types of tracers, data on physical characteristics of the catchment,50

and parsimonious parameterization may help to further reduce parametric uncertainty in the SAS modelling approach. More

recently, Buzacott et al. (2020) investigated how gap-filling of the δ18O record in precipitation propagated uncertainty into the

simulated mean water transit time (MTT), i.e., the average time it takes for water to leave the catchment (McDonnel et al.,

2010).

Despite the studies cited above, there are other aspects particularly significant for SAS modelling causing uncertainty in the55

simulated TTDs, which have not yet been thoroughly investigated. First, isotope data are generally sparse globally in space

and time (von Freyberg et al., 2022), due to laborious and costly sampling campaigns limited to well-equipped areas (Tetzlaff
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et al., 2018). As SAS models require continuous time series of input tracer data, different methods for temporal interpolation

could be used to fill gaps in isotope values in precipitation; consequently, the interpolated input data are subject to uncertainty.

Furthermore, the input data of SAS models are influenced by whether the tracer data in precipitation are collected at a single60

location within the catchment, or at multiple locations. In the latter scenario, there is a need to account for the spatial variability

of tracer composition in precipitation, which is commonly done via spatial interpolation. Choosing data from one approach

(i.e., tracer data from a single location) over the other (i.e., multiple tracer data spatially interpolated) can potentially result

in different resulting TTDs. Finally, SAS functions, employed to model TTDs, must be parameterized and their functional

forms need to be specified a-priori. Commonly used forms are the power law (Benettin et al., 2017; Asadollahi et al., 2020),65

beta (van der Velde et al., 2012; Drever and Hrachowitz, 2017) and gamma (Harman, 2015; Wilusz et al., 2017) distributions.

However, there is no general agreement on which SAS function should be used since the hydrological processes that control

the patterns and dynamics of the subsurface vary across catchments. Therefore, the most convenient approach is to simply rely

on a specific parameterization over another, and estimate its parameters (Harman, 2015). All of these aspects, related to model

input, structure and parameter, induce uncertainty in the simulated TTDs. To date, the role of these individual uncertainty70

sources and their combined effect on the modeled TTDs have not been adequately discussed.

This study bridges the aforementioned gaps by specifically exploring the combined effect of sparse input tracer data and

model parameterizations on the simulated TTDs. We investigated TTD uncertainty using a SAS-based catchment-scale trans-

port model applied to the Upper Selke catchment, Germany. We evaluated TTDs resulting from twelve model setups obtained

by combining distinct interpolation techniques of δ18O in precipitation, and parameterizations of SAS functions. For each75

model setup, we searched for behavioral parameter sets (i.e., those providing acceptable predictions) based on model perfor-

mance for instream δ18O, and evaluated the sources of uncertainty, as well as their combined effects, in the modeled TTDs.

Overall, our results provide new insights into the uncertainty characterization of TTDs, particularly in the absence of high-

frequency tracer data, and the use of SAS functions, as well as implications of TTDs uncertainty on water quantity and quality

studies.80

2 Study area and data

The Upper Selke catchment is located in the Harz Mountains in Saxony-Anhalt, central Germany (Fig. 1). The study site

is part of the Bode region, an intensively monitored area within the TERENO (TERrestrial ENvironmental Observatories;

Wollschläger et al., 2017) network. The catchment has a drainage area of 184 km2, the altitude ranges between 184 and 594 m

above mean sea level, and the mean slope is 7.65%. Land use is dominated by forest (broadleaf, coniferous and mixed forest)85

and agricultural land (winter cereals, rapeseed and maize), representing 72% and 21% of the catchment, respectively. The soil

is largely composed of cambisols and the underlying geology consists of schist and claystone, resulting in a predominance of

relatively shallow flowpaths (Dupas et al., 2017; Yang, J. et al., 2018).

Daily hydroclimatic and monthly tracer data in the Upper Selke were available for the period between February 2013 and

May 2015. Precipitation (P) was taken from the German weather service, while discharge (Q) and evapotranspiration (ET) were90
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simulated data obtained from the mesoscale Hydrological Model (mHM; (Samaniego et al., 2010; Kumar et al., 2013)) since

continuous measurements were not available for the given outlet and period. A thorough evaluation of mHM performance for

past measurements have been conducted in previous studies (Zink et al., 2017; Yang, X. et al., 2018; Nguyen et al., 2021). The

average annual P, Q and ET are 703, 108, 596 mm, respectively. The area is characterized by high flow during November-May

(average Q = 0.88 m3/s) and low flow during June-October (average Q = 0.42 m3/s). Evapotranspiration is higher in June (10995

mm/month) and lower in December (10 mm/month). The average monthly temperature ranges from -0.7◦C in January to 17◦C

in July. The δ18O values in precipitation (δ18OP) and in streamflow (δ18OQ) at monthly resolution were taken from Lutz et al.

(2018) (Fig. S1). Values of δ18OP were used in the form of "raw" (i.e., values collected at the catchment outlet) and processed

(i.e., values collected at multiple location and spatially interpolated using kriging) data (see Section 3.2 for more details). The

variability in δ18OP was larger than δ18OQ (Fig. S1) because of the damping of the precipitation signal due to mixing and100

dispersion within the catchment. Temperature dependence caused more depleted (i.e., more negative) δ18OP in winter than in

summer (Fig. S1).

!(

!(

!(

!(

±

0 5 10 15 202.5
Kilometers

!( Gauges for P

Elevation [m.a.s.l]

High : 594

Low : 184

River Network

Figure 1. Upper Selke catchment with precipitation sampling points (purple dots), river network (blue lines), and elevation in meters above
sea level as colored map; location of the Upper Selke catchment in Germany (upper left corner).

3 Methods

3.1 Catchment-scale transport model

In this study, we used the tran-SAS model (Benettin and Bertuzzo, 2018) for describing the catchment-scale water mixing and105

solute transport based on SAS functions. The catchment was conceptualized as a single storage S(t) (mm), whose water-age

balance can be expressed as follows (Benettin and Bertuzzo, 2018):

S(t) = S0 +V (t) (1)
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∂ST (T,t)

∂t
+
∂ST (T,t)

∂T
= P (t)−Q(t) ·ΩQ(ST , t)−ET (t) ·ΩET (ST , t) (2)110

Initial condition: ST(T,t= 0) = ST0(T ) (3)

Boundary condition: ST(0, t) = 0 (4)

where S0 (mm) is the initial storage, V(t) (mm) are the storage variations, P(t) (mm/d), Q(t) (mm/d), and ET(t) (mm/d) are

precipitation, discharge and evapotranspiration, respectively, ST(T,t) (mm) is the age-ranked storage, ST0(T) (mm) is the initial

age-ranked storage, and ΩQ(ST,t) (-) and ΩET(ST,t) (-) are the cumulative SAS functions for Q and ET, respectively.115

By definition, the TTD of streamflow pQ(T,t) (d-1) is calculated as follows (Benettin and Bertuzzo, 2018):

pQ(T,t) =
∂ΩQ(ST , t)

∂ST
· ∂ST
∂T

. (5)

The isotopic signature in streamflow CQ(t) (‰) can be obtained from (Benettin and Bertuzzo, 2018):

CQ(t) =

+∞∫
0

CS(T,t) · pQ(T,t) · dT (6)

where CS(T,t) (‰) is the isotopic signature of a water parcel in storage. Equations 5 and 6 also apply for ET.120

In this study, we tested three SAS parameterizations: the power law time-invariant (PLTI; Eq. 7 (Queloz et al., 2015)), power

law time-variant (PLTV; Eq. 8 (Benettin et al., 2017)), and time-invariant beta (BETATI); Eq. 9 (Drever and Hrachowitz, 2017))

distribution. Here, they are expressed as probability density functions in terms of the normalized age-ranked storage PS(T,t) (-),

also known as fractional SAS functions (fSAS):

ω(PS(T,t), t) = k · (PS(T,t))k−1 (7)125

ω(PS(T,t), t) = k(t) · (PS(T,t))k(t)−1 (8)

ω(PS(T,t), t) =
(PS(T,t))α−1 · (1−PS(T,t))β−1

B(α,β)
. (9)

The parameters k, α and β determine the catchment’s water age preference for outflows, while B(α,β) is the two-parameter

beta function. If k<1, or if α<1 and β>1, the system tends to discharge young water. If k>1, or if α>1 and β<1, the catchment

preferably releases old water. The case of k=1 or α=β=1 describes no selection preference (i.e., complete water mixing). PLTV130

is characterized by k(t) varying linearly over time between two extremes k1 and k2 as a function of the catchment wetness wi (-),

i.e., wi(t) = (S(t)-Smin)/(Smax-Smin)), where Smin and Smax are the minimum and maximum storage values over the entire period.

3.2 Interpolation techniques for δ18O in precipitation

We tested the model with two spatial and two temporal interpolation methods of tracer data to explore the TTD uncertainty

resulting from model input. To evaluate the effect of the spatial interpolation, we first set a base case using monthly raw δ18OP135
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taken from Lutz et al. (2018), corresponding to the values collected at a single location, i.e. the catchment outlet at Meisdorf

station. Second, we used the spatially interpolated δ18OP estimates from Lutz et al. (2018), which are based on raw observations

from 24 precipitation collectors spread over the larger area of the Bode region. The spatial interpolation in Lutz et al. (2018)

was conducted using kriging with altitude as an external drift. The kriged δ18OP were further weighted with spatially distributed

monthly precipitation to obtain representative estimates for the study region.140

SAS model results are sensitive to the choice of the temporal resolution of input tracer data, and shorter time steps are gener-

ally recommended to achieve a satisfactory level of detail (Benettin and Bertuzzo, 2018). Additionally, a forward Euler scheme

was employed to solve Eq. 2, whose precision increases with high frequency time steps. For these reasons, we reconstructed

daily δ18OP estimates from monthly values with two different interpolation schemes. First, we used a step function in which

the values between two consecutive samples assumed the value of the last sample. Second, we used a sine interpolation based145

on the assumption that δ18OP values follow a seasonal cycle (Fig. S1 in the Supplement, (Feng et al., 2009)), whose signature

over a period of one year can be described by (Kirchner, 2016):

δ18OP(t) = aP · cos(2 ·π · f · t) + bP · sin(2 ·π · f · t) + kP (10)

where a and b are regression coefficients (-), t is the time (decimal years), f is the frequency (yr-1) and k is the vertical offset of

the isotope signal (‰). The coefficients a and b were estimated by fitting Eq. 10 to monthly δ18OP values using the iteratively150

re-weighted least squares (IRLS) estimation (von Freyberg et al., 2018). Subsequently, the estimated regression coefficients

were used in Eq. 10 to obtain isotope data at daily frequency. Figure S2 in the Supplement displays the simulated kriged and

raw δ18OP values via step function and sine interpolation.

3.3 Experimental design

In this study, different scenarios were used to quantify uncertainty in the modeled results. We tested twelve setups composed155

of three SAS functions (PLTI, PLTV, BETATI), two temporal (step and sine function) and two spatial (raw and kriging values)

interpolation techniques (Table 1). For each setup, we performed a Monte-Carlo experiment by running the model with 10,000

parameter sets generated by the Latin Hypercube Sampling (LHS, McKay et al., 1979). Model parameters and their search

ranges are shown in Table 2.

A 5 years warm-up period (i.e., repetition of the input data) from February 2008 to January 2013 was performed to reduce the160

impact of the model initialization. The period from February 2013 to May 2015 was used to infer behavioral model parameters

(i.e., parameter sets giving acceptable predictions), and subsequently to interpret the model results. The initial concentration of

δ18O in storage was set to 9.2 ‰ coinciding with the mean δ18OQ over the study period.

The informal likelihood of the Sequential Uncertainty Fitting Procedure (SUFI-2, Abbaspour et al., 2004) was applied

to account for uncertainty in the SAS parameter sets and resulting modeled estimates. In SUFI-2, the uncertainty in model165

parameters and simulated results is represented by a uniform distribution, which is gradually reduced until a specific criterion

is reached. In our study, we calibrated the values of model parameters until the predicted output matched the measured tracer

data to a satisfactory level, defined by an objective function. We employed as objective function the Kling-Gupta efficiency
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Table 1. List of model setups.

setup interpolation SAS function
a step function PLTI
b kriged δ18OP

PLTV
c BETATI
d step function PLTI
e raw δ18OP

PLTV
f BETATI
g sine function PLTI
h kriged δ18OP

PLTV
i BETATI
j sine function PLTI
k raw δ18OP

PLTV
l BETATI

Table 2. Model parameters and search ranges.

SAS parameter Symbol Unit Lower Bound Upper Bound
kQ [-] 0.1 2
kQ1 [-] 0.1 2

Discharge SAS parameter kQ2 [-] 0.1 2
α [-] 0.1 2
β [-] 0.1 2

Evapotranspiration SAS parameter kET [-] 0.1 2
Initial storage S0 [mm] 300 3000

(KGE, Gupta et al., 2009), and once the criterion of KGE≥0.5 was satisfied, we defined a set of behavioral solutions for each

model setup. However, since the aim of this study is to investigate the impact of various sources of uncertainty on simulated170

outputs, rather than to determine the best model setup based on the model efficiency, we decided to set a fixed sample size

and narrow down those solutions generated by SUFI-2 in the previous step. Setting a fixed sample size ensures comparability

of results across the twelve tested setups, as different sample sizes could influence the uncertainty analysis. For example, the

greater the number of behavioral solutions, the wider the uncertainty band. At the same time, by fixing the sample size, we can

still meet the requirement of a minimum acceptable KGE value (i.e., KGE≥0.5).175

In this study, we determined the final behavioral solutions by using a fixed sample size that corresponds to the best 5%

parameter sets and modeled results in terms of KGE. Finally, we constructed the 95% confidence intervals (CI) based on the

2.5% and 97.5% CIs of the cumulative distribution in the time series of parameters and output variables (Abbaspour et al.,

2004) to refine the limits of the behavioral solutions. In our experimental setup, the main output variables were the instream

δ18O signature and backward median transit time (TT50 (days), i.e., the maximum time elapsed until the youngest 50% of the180

infiltrated water is transferred to the outflow). Time series of TT50 were extracted directly from daily TTDs (Eq. 5) and used

as a metric for the streamflow age. This was done because TTDs are typically skewed with long tails (Kirchner et al., 2001),
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hence the median is often a more suitable metric than, for example, MTT as it is less impacted by the poor identifiability of the

older water components (Benettin et al., 2017).

4 Results185

4.1 Simulated δ18O in streamflow and model performances

Modeled δ18O in streamflow (δ18OQ) represented by the 95% confidence interval (CI) in the ensemble solution are displayed

in Fig. 2. The results reveal how the predicted δ18OQ values enveloped the measured isotopic signature by reproducing its

seasonal fluctuations, with depleted (i.e., more negative) values in winter and enriched (i.e., less negative) values in summer.

However, the second half of the study period was characterized by more enriched predicted δ18OQ values than the measured190

ones. Although the behavioral parameter sets were able to capture the seasonal isotopic trend, they poorly reproduced the exact

values; therefore, the ensemble simulations are characterized by a non-negligible uncertainty.

Figure 2 shows the distinct effects of the interpolated input tracer data and model parameterization on the simulated δ18OQ

values. The step function interpolation generated an erratic isotopic signature in streamflow with flashy fluctuations, explicitly

visible in Fig. 2c and f. On the other hand, the sine interpolation of δ18OP values yielded a smooth response in the simulated195

δ18OQ values (Fig. 2g-l). The sine interpolation also induced larger seasonal tracer cycle amplitudes (Fig. 2g-l) than those

produced when using the step function (Fig. 2a-f). Conversely, no clear visual difference was found between kriged (Fig. 2a-c

and g-i) and raw (Fig. 2d-f and j-l) δ18OP samples as their general patterns match (Fig. S2 in the Supplement). Likewise, distinct

SAS parameterizations did not produce remarkable differences in the simulated δ18OQ values, although PLTV generally yielded

simulations that better enveloped the measured isotopic signature (Figs. 2b, e, h and k).200
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Figure 2. Predicted δ18O values in streamflow. Dark blue filled circles represent the observed data; the light blue line and the shaded area
represent, respectively, the ensemble mean of all possible solutions and their range according to the 95% CI.
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Despite the differences in the predicted δ18OQ values, all simulations can be considered satisfactory given the KGE values

ranging between 0.57 and 0.75, across all tested setups (Fig. 3). These performances can be classified from intermediate

(Thiemig et al., 2013) to good (Andersson et al., 2017; Sutanudjaja et al., 2018). When considering the best fit, the combination

of the step function interpolation and raw δ18OP values performed best. Additionally, PLTV generally yielded slightly better

KGE values than PLTI and BETATI when grouping the setups with the same interpolation technique of δ18OP. Differences in205

the mean KGEs were statistically insignificant (t-test with p-values > 0.05) between setups h and i (Table 1), and this largely

agrees with the visual analysis (Fig. 3). Contrarily, the differences in the mean KGE values of the remaining setups were

statistically significant (p-values < 0.05), indicating that a priori methodological choice (i.e., interpolation techniques of δ18OP

values and/or SAS parameterization) strongly impact on the overall results. Nonetheless, this does not mean that we can clearly

identify the most suitable setup, but there is need to carefully analyze the multiple potential choices in SAS parameterization210

and tracer data interpolations, and to evaluate the uncertainty range in modeled predictions.

a b c d e f g h  i   j  k   l
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    25% - 1.5 * IQR ━ 75% + 1.5 * IQR

■ 1825% ━ 75% (raw δ O, sine function)

Figure 3. Boxplot of model performance ranges in behavioral solutions. The letters on the x-axis refer to the model setup type according to
Table 1. Boxplots filled with the same colors represent model setups characterized by the same interpolation scheme in space and time. On
each box, the central red line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles respectively,
namely the interquartile range (IQR). The whiskers extend to the most extreme data points not considered outliers which are 25th percentile
minus 1.5 times IQR and 25th percentile plus 1.5 times IQR, respectively. The outliers are plotted individually using the red ’+’ mark.

Ranges of the behavioral SAS parameters for the tested setups are summarized in Table S1 in the Supplement. Parameters

for the SAS functions of Q (i.e., kQ, kQ1, kQ2, α and β) were different across the setups although, in general, they were

relatively narrow and well identified. However, the behavioral parameters were better constrained when using the step function

interpolation since their 95% CI was, on average, 26% narrower than that provided by the sine interpolation, across all the SAS215

parameterizations. The parameters kQ1 and α were also better identified than kQ2 and β, since their 95% CI was, on average,

67% narrower, across all tested setups. Conversely, there was no clear difference in the parameters ranges when using kriged

or raw δ18OP values. The evapotranspiration parameter (i.e., kET) was poorly identified in all setups as any value in the search

range provided equally good results. The initial storage (i.e., S0) was only partially constrained as any value between 340 mm

and 2895 mm was considered acceptable.220
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4.2 Simulated transit times and model uncertainty

Figure 4 illustrates the 95% CI of the behavioral solutions for the predicted median transit time (TT50). The results show that

the model simulated largely different ranges of TT50 based on the tested setups. When using PLTI and BETATI, the 95% CI

was relatively stable with small fluctuations throughout the simulation period, compared to PLTV (Fig. 4a, c, d, f, g, i, j and

l). However, minor differences emerged across the simulated TT50 as a result of the distinct interpolation techniques used for225

δ18OP. The 95% CI of TT50 was on average larger by 36%, across all tested setups, when using raw δ18OP (Fig. 4d-f and j-l)

rather than kriged δ18OP (Fig. 4a-c and g-i). This was especially visible when the step function was used (Fig. 4a-f). Moreover,

the sine function generated a 95% CI of TT50 being on average 62% narrower across all tested setups (Fig. 4g-l) with respect to

the step function (Fig. 4a-f). These differences were more evident for high flow conditions. In addition, the behavioral solutions

obtained with the sine function (Fig. 4g-l) were more skewed towards shorter mean TT50 values, across all tested setups, than230

those of the step function (Fig. 4a-f).
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Figure 4. Predicted TT50 of streamflow; the light blue line and the shaded area represent, respectively, the ensemble mean of all possible
solutions and their range according to the 95% CI.

Behavioral solutions obtained with PLTV revealed a similar pattern regardless of the interpolation employed (Fig. 4b, e, h

and k). Nonetheless, there was a noticeable difference in the 95% CI of TT50 under distinct flow regimes. During low flows and

dry periods (i.e., summer and autumn), the time series of predicted TT50 showed large uncertainties ranging at most between

259 and 1009 days across the different setups (Fig. 4e). Conversely, during high flows (i.e., winter and spring), the 95% CI was235

much narrower and varied at least between 129 and 160 days (Fig. 4h). The large 95% CI and the notable differences across the

tested setups highlight the sensitivity and, in turn, the uncertainty of predicted TT50 to the model parameterization, temporal

interpolation of input data and hydrologic conditions. In contrast, the use of raw or kriged δ18OP samples produced smaller

differences as the trend in the estimated TT50 was very similar. Thus, the spatial interpolation technique impact less the water

age simulations. However, the 95% CI of TT50 was larger when using raw rather than kriged δ18OP values.240
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In general, the variability of the predicted TT50 was controlled by the hydrological state of the system (Fig. 4). High discharge

events reduced the TT50 values, while low flow periods were associated with a longer estimated TT50. This is expected as

streamflow during high (low) flows is dominated by near-surface runoff (groundwater) with shallow (deep) flowpaths leading

to a shorter (longer) TT50. Such differences were particularly visible with PLTV (Fig. 4b, e, h , and k) as the exponent kQ(t)

shift the water selection preference over time as a function of the wet/dry conditions. This resulted in the variability of TT50245

being more pronounced than that of PLTI and BETATI, whose SAS parameters for Q are constant over time.

4.3 Catchment-scale water release

SAS functions provided valuable insights into the catchment-scale water release dynamics. Figure 5 presents the behavioral

solutions releasing water of different ages, and shows that the catchment generally experienced a stronger affinity for realising

young water (i.e., kQ<1, or α<1 and β>1), rather than old water (i.e., kQ>1, or α>1 and β<1). These findings are in agreement250

with other studies in the Upper Selke (Winter et al., 2020; Nguyen et al., 2021). Nonetheless, there were differences in the

water release scheme when comparing various combinations of SAS functions and spatio-temporal interpolation techniques

of isotopes. The use of PLTV resulted in a substantial number of solutions, approximately 50% of all behavioral solutions,

suggesting a preference for both young and old water. On the other hand, only a few solutions showed affinity for old water

release, and this was more prominent when using the sine interpolation technique, raw δ18OP values and PLTI across all tested255

setups.
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Figure 5. Percentage of behavioral solutions releasing water of different ages.

5 Discussion

5.1 Uncertainty in TTD modelling

In this study, we characterized the TTD uncertainty arising from some significant and critical aspects for the SAS modelling.

These aspects are also the most directly linked to data interpolation and SAS parameterization that we explored in this work.260

The uncertainty analysis has been carried out across the twelve tested setups corresponding to different combinations of spatio-

temporal data interpolation techniques and SAS parameterizations. Our results show that the uncertainty (i.e., 95% CI) of the
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simulated TT50 (Fig. 4) was firmly dependent on the choice of model setup, and we found that the 95% CI is primarily sensitive

to the SAS parameterizations as well as temporal interpolation of δ18OP, and less on the spatial interpolation of δ18OP.

Uncertainty in the simulated TT50 differed considerably between time-invariant (i.e. PLTI and BETATI; Fig. 4a, c, d, f, g, i,265

j and l) and time-variant (i.e., PLTV; Fig. 4b, e, h and k) SAS functions, thus a large sensitivity is associated with the choice of

the SAS parameterization. For example, PLTI and BETATI explicitly assume constant water selection preference over time as

these functions do not consider temporal variability of the catchment wetness. As a consequence, the resulting simulations had

a moderately stable 95% CI in TT50 with smaller fluctuations compared to those of PLTV. Hence, the model setup with PLTI

and BETATI could be appropriate in catchments experiencing a less pronounced seasonality in streamflow and precipitation.270

On the other hand, including an explicit time dependence in the SAS function strongly affected the 95% CI of TT50. PLTV

produced a wider 95% CI notably during low flow conditions, which can hinder the ability of the TTDs to provide robust

insights on flow and solute transport behaviors in the study area during low flow conditions. This highlights the need to further

constrain PLTV with additional data, which could involve obtaining tracer data at a finer resolution or additional information

on the evapotranspiration and initial storage. In addition, the exceptionally old flow components associated with a very large275

95% CI of TT50 might be a distortion of the actual TT50 values, which can usually be more reliably estimated using radioactive

tracers rather than stable isotopes (Visser et al., 2019). Hence, PLTV-based TT50 greater than the observed period (828 days)

should be interpreted carefully. However, in this study we discussed the fractional (fSAS) functions, while another form of the

SAS functions, such as the rank SAS (rSAS) functions, may have different uncertainty characteristics. This is mainly due to

the difference in how the storage is considered, because fSAS functions are expressed as function of the normalized age-ranked280

storage, which is equal to the cumulative residence time, while rSAS functions depend on the age-ranked storage, which is the

volume of water in storage ranked from youngest to oldest (Harman, 2015).

Likewise, the high-frequency reconstruction of δ18OP estimates from monthly values via interpolation created further uncer-

tainty that would not arise when using real high-frequency data. The sine interpolation poorly reproduced flashy rainfall events

and only captured the average damped trend of the observed δ18OP samples (Fig. S2 in the Supplement). Hence, related results285

must be interpreted with caution as tracer data uncertainty may conceal a more pronounced hydrological response (Dunn et al.,

2008; Birkel et al., 2010; Hrachowitz et al., 2011). Contrarily, the step function interpolation preserved the maxima in the

monthly observed δ18OP values, and reproduced their variation correctly. Nonetheless, the results obtained in this study are

based on this particular isotope dataset, while the sine interpolation may be better applicable in other circumstances. Overall,

the temporal interpolation of tracers resulted in largely differing reconstructed input data depending on whether the step func-290

tion or sine interpolation were used (Fig. S2 in the Supplement). This explains why the simulated TT50 is different between the

two interpolations or, in other words, why the uncertainty in TT50 is large.

On the contrary, the spatial interpolation method did not strongly affect the simulated TT50 as the trend in the time series

was similar when using kriged (Fig. 4a-c and g-i) or raw (Fig. 4d-f and j-l) δ18OP. This could be attributed to minor differences

between kriged and raw isotopes (Figs. S1 and S2 in the Supplement). Nonetheless, there was a larger 95% CI of TT50 when295

using raw rather than kriged δ18OP, and this was particularly visible when the step function interpolation was used (Fig. 4a-
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f). Therefore, the spatial interpolation of δ18O in precipitation from different locations resulted in an apparent reduction of

uncertainty in TT50.

In addition, we found that the uncertainty was larger under dry conditions when lower flow and longer TT50 were observed.

This was especially visible when using the time-variant SAS function (Fig. 4b, e, h and k). It might be due to the fact that300

under wet conditions, there is a high level of hydrologic connectivity within the catchment (Ambroise, 2004; Blume and van

Meerveld, 2015; Hrachowitz et al., 2016), which results in nearly all flow paths being active and contributing to the streamflow

that, ultimately, may make TT50 values easier to constrain. Conversely, under dry conditions, when there is low connectivity

within the catchment, only certain flow paths are active, i.e., usually those carrying older water to the stream (Soulsby and

Tetzlaff, 2008; Jasechko et al., 2017). Hence, these flows are less uniform, making it more challenging to constrain their older305

water ages. Similarly, Benettin et al. (2017) found higher uncertainty in the simulated SAS-based median water ages during

drier periods, potentially due to higher uncertainty in the total storage. Moreover, non-SAS functions studies have observed

major uncertainties and deviations from observations in lumped modeled results during low flow conditions (Kumar et al.,

2010). This was primarily due to the lack of spatial variability of catchment characteristics in lumped models, a critical factor

controlling low flow regimes in rivers.310

The dissimilarities in the simulated TT50 across the tested setups underline the importance of accounting for uncertainty in

model-based TTDs. The uncertainty analysis with SUFI-2 performed in this study was essential to best describe the parameter

identifiability and bounds of the behavioral solutions of each output variable. Furthermore, our results highlight the importance

of gaining tracer datasets of good quality, meaning tracer data with a finer resolution, and, possibly, employing the "true"

model parameterization which correctly describes the catchment-specific storage and release dynamics. The second point can315

be defined according to a precise conceptual knowledge of the catchment’s functioning and information from previous studies

in similar catchments.

5.2 TTD modelling: advantages and limitations

Our results provide visually plausible seasonal fluctuations of the predicted δ18OQ samples (Fig. 2), and satisfactory KGE

values (Fig. 3), despite the uncertainty arising from model inputs, structure and parameters. The good match with observations320

provides high confidence in the simulated TT50 for the Upper Selke. The magnitude of the uncertainty resulting from different

setups cannot be generalized, but the overall approach for uncertainty assessment presented here could be extended to other

areas and TTD studies. However, we recognize some limitations and indicate below possible reasons and, in turn, improvements

that future work could achieve.

First, the limited length of the δ18O time series might not describe the system accurately, hence implementing longer time325

series could improve the parameter identifiability and provide a more accurate estimation of the TTDs. Second, this study relied

on stable water isotopes, which might underestimate the tails of the TTDs (Stewart et al., 2010; Seeger and Weiler, 2014; Wang

et al., 2022). Possible advancements could be reached by using decaying tracers varying over a larger timescale than stable

water isotopes (e.g., tritium, (Stewart et al., 2012; Morgenstern et al., 2015)), and imparting more information on old water.

Next, future work should retrieve more information on ET and the initial storage S0, whose parameters were poorly identified.330
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However, this issue is common in transport studies that rely on measurements of instream stable water isotopes (Benettin et al.,

2017; Buzacott et al., 2020). As a way forward, information on the ET isotopic compositions might help better constrain ET

parameters and assess their affinity for young/old water. Regarding constraining the range of S0, further information can be

gained from geophysical surveys in the study areas or groundwater modeling, as well as using decaying isotopes (Visser et al.,

2019).335

5.3 Implications of TTD uncertainties

This study characterized the uncertainty in TTDs, which summarize the catchment’s hydrologic transport behavior, and thereby

comprise decisive information for water managers. The uncertainty in the predicted TT50 has relevant implications for both

water quantity and quality; the larger the 95% CI in the simulated TT50, the greater the difference in the TT50 values, which,

ultimately, implies distinct water release and solute export dynamics (McDonnel et al., 2010).340

Uncertainty in TTDs may be crucial for characterizing the catchment’s response to climatic changes (Wilusz et al., 2017).

Considering the increasing severity of droughts in the past decades (Dai, 2013), a catchment that largely releases young water

might be more affected by droughts than a catchment whose stream is fed by relatively old water sources. A short TT50 reveals

a low drought resilience of the catchment, which could limit streamflow generation processes and change the instream wa-

ter quality status. Likewise, TTD uncertainty may affect the quantification of the modern groundwater age, i.e., groundwater345

younger than 50 years (Bethke and Johnson, 2008). According to (Jasecko, 2019), the correct identification of modern ground-

water abundance and distribution can help determine its renewal (Le Gal La Salle et al., 2001; Huang et al., 2017), groundwater

wells and depths most likely to contain contaminants (Visser et al., 2013; Opazo et al., 2016), and the part of the aquifer flushed

more rapidly.

Uncertainty in TTDs also impacts on assessing the fate of dissolved solutes, such as nitrates (Yang, X. et al., 2018; Nguyen350

et al., 2021, 2022), pesticides (Holvoet et al., 2007; Lutz et al., 2017), and chlorides (Kirchner et al., 2000; Benettin et al.,

2013). These solutes constitute a crucial source of diffuse water pollution in agricultural areas (Jiang et al., 2014; Kumar et al.,

2020), as they are spread on the soil in large quantities especially during the growing season. Exposure time of solutes with the

soil matrix has strong consequences for biogeochemical reactions, such as denitrification in the case of nitrates (Kolbe et al.,

2019; Kumar et al., 2020). A short TT50 suggests that water can be rapidly conveyed to the stream network (Kirchner et al.,355

2001), with limited time for denitrification. This explains the elevated instream concentration and short-term impact of nitrate

export compared to that of a longer TT50, which is typically associated with old water release and low nitrate concentration

(Nguyen et al., 2021). Similarly, pesticide transport is highly affected by the TTD uncertainty as a long TT50 suggests little

pesticide degradation due to decreased microbial activity along deeper flowpaths (Rodríguez-Cruz et al., 2006). In other cases,

a shorter TT50 may limit the time for degradation causing a peak in the instream concentration (Leu et al., 2004). Overall, a360

longer TT50 can delay or buffer the catchment’s reactive solute response at the outlet (Dupas et al., 2016; Van Meter et al.,

2017). This creates a long-term effect of hydrological legacies and a continuous problem with diffuse pollution of nitrates

(Ehrhardt et al., 2019; Winter et al., 2020) and pesticides (Lutz et al., 2013), which can persist in the catchment for several

years. Finally, TTD uncertainties also play an important role in chloride transport, although chlorides are commonly known to
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be conservative (Svensson et al., 2012). A short TT50 may indicate rapid chloride mobilization, whereas a long TT50 implies365

chloride persistence in groundwater; thereby chloride accumulates and is released at lower rates, with impacts on the ecosystem

functions, vegetation uptake and metabolism (Xu et al., 1999).

Understanding the uncertainty in TTDs is crucial for the aforementioned implications. While previous studies have used only

a specific SAS function and/or specific data fitting technique, here we show that there could be a wide range of different results

in terms of water ages, model performances and parameter uncertainty. This is due to the specific choice regarding SAS param-370

eterization and tracer data interpolation. With this, we want to convey that uncertainty is omnipresent in TTD-based models,

and we need to recognise it, especially when dealing with sparse tracer data and multiple choices for model parameterization.

Therefore, we want to encourage future studies to explore these uncertainties in other catchments and different geophysical

settings, with the final aim to investigate whether these uncertainties may affect the conclusions of water quantity and quality

studies for management purposes.375

6 Conclusions

This study explored the uncertainty in TTDs of streamflow, resulting from twelve model setups obtained from different SAS

parameterizations (i.e., PLTI, PLTV and BETATI), and reconstruction of the precipitation isotopic signature in time and space

via interpolation (step function vs. sine-fit, raw vs. kriged values).

We found satisfactory KGE values, whose differences across the tested setups were statistically significant, meaning that the380

choice of the setup matters. As a consequence, distinct setups led to considerably different simulated TT50 values. The choice

between using time-variant or time-invariant SAS functions was crucial as the time-invariant functions generated a moderately

stable 95% CI of the estimated TT50 because of the constant water selection preference over time. These functions may be

more appropriate for those catchments experiencing relatively little seasonality in the hydrological conditions.

On the other hand, the time-variant SAS function captured the dynamics of the catchment wetness, resulting in a pronounced385

seasonality of TT50. However, the time-variant SAS function also produced a larger 95% CI in TT50, notably during drier

periods, which might indicate the need to constrain the function with additional data (e.g., finer tracer data resolution, and/or

information on evapotranspiration and storage). Significant differences in TT50 were observed depending on the employed

temporal interpolations. Results from the sine interpolation must be interpreted carefully as they poorly reproduced flashy

events in precipitation, thus indicating that some more dynamic transport processes were not fully accounted for. Conversely,390

the step function interpolation was able to better reproduce the measured δ18OP data. Dry conditions were another reason for

uncertainty as indicated by the high variance in the simulated TT50 values. Finally, the use of spatial interpolation methods

did not substantially affect the uncertainty in TT50 as there were no appreciable differences in the trend of the modeled results

between kriged and raw isotopes, although the 95% CI in TT50 was wider when using raw δ18OP.

Our study provides new insights into TTD uncertainty when high-frequency tracer data are missing and the SAS framework395

is used. Regardless of the degree of efficiency or uncertainty, the decision on which setup is more plausible depends on a full

conceptual knowledge of the catchment functioning. We consider the presented approach as potentially applicable to other
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studies for enabling a better characterization of TTDs uncertainty, improving TTD simulations and, ultimately, informing

water management. These aspects are particularly crucial in view of evermore extreme climatic conditions and increasing

water pollution under global change.400

Code and data availability. The model used in this study is presented at https://doi.org/10.5194/gmd-11-1627-2018. The iteratively re-

weighted least squares (IRLS) method used to get modelled daily kriged and raw isotope (δ18O) in precipitation with the sine interpolation

is presented at https://doi.org/10.5194/hess-22-3841-2018. Hydrocliamtic time series, δ18O data and interpolated δ18O time series can be

accessed at https://doi.org/10.5281/zenodo.6630477.
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