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Abstract. Transit time distributions (TTDs) of streamflow are useful descriptors for understanding flow and solute transport

in catchments. Catchment-scale TTDs can be modeled using tracer data (e.g., δ18O; oxygen isotopes) in inflow and outflows,

with StorAge Selection (SAS) functions. However, tracer data are often sparse in space and time, so they need to be inter-

polated to increase their spatio-temporal resolution. Moreover, SAS functions can be parameterized with different forms, but

there is no general agreement on which one should be used. Both of these aspects induce uncertainty in the simulated TTDs,5

and the individual uncertainty sources as well as their combined effect have not been fully investigated. This study provides a

comprehensive analysis of the TTD uncertainty resulting from twelve model setups obtained by combining different interpola-

tion schemes for δ18O in precipitation, and distinct SAS functions. For each model setup, we found behavioral solutions with

satisfactory model performances for instream δ18O (Kling-Gupta Efficiency, KGE>0.57
:::
0.55). Differences in KGE values were

statistically significant, thus showing the relevance of the chosen setup for simulating the TTDs. We found a large uncertainty10

in the simulated TTDs, represented by a large range of variability in the 95% confidence interval of the median transit time

varying
:
at

:::
the

::::
most

:
between 259 and 1009 days across all tested setups. Uncertainty in TTDs was mainly associated with the

temporal interpolation of δ18O in precipitation, the choice between time-variant and time-invariant SAS functions, flow condi-

tions, and less with the spatial interpolation methods
::
the

::::
use

::
of

:::::::::::
non-spatially

::::::::::
interpolated

::::
δ18O

::
in

:::::::::::
precipitation. We discuss the

implications of these results for the SAS framework, uncertainty characterization in TTD-based models, and the influence of15

the uncertainty for water quality and quantity studies.

1 Introduction

Understanding how catchments store and release water of different ages has significant implications for flow and solute trans-

port as water ages encapsulate information about flowpaths characteristics (McGuire and McDonnel, 2006; Botter et al., 2011),

contact time of solutes with the soil matrix (Benettin et al., 2015a; Hrachowitz et al., 2016), and vulnerability assessment (Ku-20

mar et al., 2020). This plays an important role for water resources protection and management, and requires a tool that can

effectively describe catchment-scale transport processes (Rinaldo and Marani, 1987). The age of water in outflows is commonly
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referred to as transit time (TT), i.e., the time elapsed between the entry of a water parcel into the catchment via precipitation

and its exit via streamflow or evapotranspiration. Accordingly, the transit time distribution (TTD) describes the whole spectrum

of the transit times in outflows (Botter et al., 2005; Van der Velde et al., 2010). Early studies have often assumed simplified25

steady-state transport models, resulting in time-invariant TTDs (Niemi, 1977; Rinaldo et al., 2006). However, experimental

simulations showed that TTDs are time-variant due to the variability in meteorological forcing (Botter et al., 2010; Hrachowitz

et al., 2010; Heidbüchel et al., 2020) and activation/deactivation of flowpaths in response to varying hydrologic conditions

(Ambroise, 2004; Heidbüchel et al., 2013). Recent research has introduced new models for representing time-variant TTDs,

for example allowing for the estimation of TTDs without making prior assumptions about their shape (Kirchner, 2019; Kim30

and Troch, 2022), or via parameterization of the StorAge Selections (SAS) functions (Rinaldo et al., 2015; Harman, 2019).

SAS functions describe how catchments selectively remove water of different ages from storage for outflows, and have led

to a new framework of non-stationary transport models based on water age, which have been successfully applied in various

transport modelling studies (Benettin et al., 2015b; Queloz et al., 2015; Kim et al., 2016; Lutz et al., 2017; Wilusz et al., 2017;

Nguyen et al., 2021).35

Model-based TTDs are subjected to uncertainty, which limits their ability for decision support. In general, model prediction

uncertainty stems from model inputs, structure, and parameters (Beven and Freer, 2001). As TTDs are not directly observable,

conservative environmental tracers (e.g., δ18O; oxygen isotopes) in inflow and outflows are commonly used to infer water

ages (Hrachowitz et al., 2013; Birkel and Soulsby, 2015; Stockinger et al., 2015). Long-term, high-frequency tracer data with

appropriate spatial distribution are
:
is

:
generally recommended for sufficient understanding of TTD dynamics across a wide40

range of fast and heterogeneous hydrological behaviors (Kirchner et al., 2004; Danesh-Yazdi et al., 2016; von Freyberg et al.,

2017). Therefore, the lack of appropriate tracer data coverage can hamper our understanding of TTD dynamics at the desired

resolution (McGuire and McDonnel, 2006). Additionally, uncertainty in the driving hydroclimatic fluxes such as precipitation,

discharge, and evapotranspiration could propagate into the uncertainty of the modelling results. Further uncertainty emerges

from the model structure due to the difficulty in representing physical processes because of our incomplete knowledge of45

complex reality (Ajami et al., 2007). Finally, specification of model parameters is also an important source of uncertainty

(Beven, 2006; Kirchner, 2006), as the best-fit parameters may suffer from equifinality (Schoups et al., 2008).

A few studies have investigated the uncertainty in the estimated TTDs with SAS models. Danesh-Yazdi et al. (2018) and

Jing et al. (2019) have analysed the effect of interactions between distinct flow domains, external forcing and recharge rate

on resulting TTDs. Several works (Benettin et al., 2017; Wilusz et al., 2017; Rodriguez et al., 2018, 2021) have explored50

model parameter uncertainty, and suggested that additional types of tracers, data on physical characteristics of the catchment,

and parsimonious parameterization may help to further reduce parametric uncertainty in the SAS modelling approach
::::::
models.

More recently, Buzacott et al. (2020) investigated how gap-filling of the δ18O record in precipitation propagated uncertainty

into the simulated mean water transit time (MTT), i.e., the average time it takes for water to leave the catchment (McDonnel

et al., 2010).55

Despite the studies cited above, there are other aspects particularly significant for SAS modelling causing uncertainty in the

simulated TTDs, which have not yet been thoroughly investigated. First, isotope data are generally sparse globally in space
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and time (von Freyberg et al., 2022), due to laborious and costly sampling campaigns limited to well-equipped areas (Tetzlaff

et al., 2018). As SAS models require continuous time series of input tracer data, different methods for temporal interpolation

could be used to fill gaps in
::::::::
reconstruct

:
isotope values in precipitation; consequently, the interpolated input data are subject to60

uncertainty. Furthermore, the input data of SAS models are influenced by whether the tracer data in precipitation are collected

at a single location within the catchment, or at multiple locations. In the latter scenario, there is a need to account for the

spatial variability of tracer composition in precipitation, which is commonly done via spatial interpolation. Choosing data

from one approach (i.e., tracer data from a single location) over the other (i.e., multiple tracer data spatially interpolated
:::::
based

::
on

:::::::
multiple

:::::::::
locations,

::::::::
including

::::::
stations

:::::::
outside

:::
the

::::::::
catchment

::::::::::
boundaries) can potentially result in different resulting TTDs.65

Finally, SAS functions, employed to model TTDs, must be parameterized and their functional forms need to be specified a-

priori. Commonly used forms are the power law (Benettin et al., 2017; Asadollahi et al., 2020), beta (van der Velde et al., 2012;

Drever and Hrachowitz, 2017) and gamma (Harman, 2015; Wilusz et al., 2017) distributions. However, there is no general

agreement on which SAS function should be used since the hydrological processes that control the patterns and dynamics of

the subsurface vary across catchments. Therefore, the most convenient approach is to simply rely on a specific parameterization70

over another, and estimate its parameters (Harman, 2015). All of these aspects, related to model input, structure and parameter,

induce uncertainty in the simulated TTDs. To date, the role of these individual uncertainty sources and their combined effect

on the modeled TTDs have not been adequately discussed.

This study bridges the aforementioned gaps by specifically exploring the combined effect of sparse input tracer data
:::::
tracer

:::
data

:::::::::::
interpolation

:
and model parameterizations on the simulated TTDs. We investigated TTD uncertainty using a SAS-based75

catchment-scale transport model applied to the Upper Selke catchment, Germany. We evaluated TTDs resulting from twelve

model setups obtained by combining distinct interpolation techniques of δ18O in precipitation, and parameterizations of SAS

functions. For each model setup, we searched for behavioral parameter sets (i.e., those providing acceptable predictions) based

on model performance for instream δ18O, and evaluated the sources of uncertainty , as well as
:::
and their combined effects, in

the modeled TTDs. Overall, our results provide new insights into the uncertainty characterization of TTDs, particularly in the80

absence of high-frequency tracer data, and the use of SAS functions, as well as implications of TTDs uncertainty on water

quantity and quality studies.

2 Study area and data

The Upper Selke catchment is located in the Harz Mountains in Saxony-Anhalt, central Germany (Fig. 1). The study site

is part of the Bode region, an intensively monitored area within the TERENO (TERrestrial ENvironmental Observatories;85

Wollschläger et al., 2017) network. The catchment has a drainage area of 184 km2, the altitude ranges between 184 and 594 m

above mean sea level, and the mean slope is 7.65%. Land use is dominated by forest (broadleaf, coniferous and mixed forest)

and agricultural land (winter cereals, rapeseed and maize), representing 72% and 21% of the catchment, respectively. The soil

is largely composed of cambisols and the underlying geology consists of schist and claystone, resulting in a predominance of

relatively shallow flowpaths (Dupas et al., 2017; Yang, J. et al., 2018).90
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Daily hydroclimatic and monthly tracer data in the Upper Selke were available for the period between February 2013 and

May 2015. Precipitation (P) was taken from the German weather service, while discharge (Q) and evapotranspiration (ET)

were simulated data obtained from the mesoscale Hydrological Model (mHM; (Samaniego et al., 2010; Kumar et al., 2013)

)
::::::::::::::::::::::::::::::::::::::::::
(mHM; Samaniego et al., 2010; Kumar et al., 2013) since continuous measurements were not available for the given outlet

and period. A thorough evaluation of mHM performance for past measurements have been conducted in previous studies (Zink95

et al., 2017; Yang, X. et al., 2018; Nguyen et al., 2021). The average annual P, Q and ET are 703, 108, 596 mm, respectively.

The area is characterized by high flow during November-May (average Q = 0.88 m3/s) and low flow during June-October

(average Q = 0.42 m3/s). Evapotranspiration is higher in June (109 mm/month) and lower in December (10 mm/month). The

average monthly temperature ranges from -0.7◦C in January to 17◦C in July. The δ18O values in precipitation (δ18OP) and in

streamflow (δ18OQ) at monthly resolution were taken from Lutz et al. (2018)(Fig. S1)
:
,
:::
and

:::
are

:::::::::
displayed

::
in

::::
Fig.

:
2. Values100

of δ18OP were used in the form of "raw" (i.e., values collected at the catchment outlet) and processed (i.e., values collected

at multiple location and spatially interpolated using kriging) data (see Section 3.2 for more details). The variability in δ18OP

was larger than δ18OQ (Fig. S1
:
2) because of the damping of the precipitation signal due to mixing and dispersion within the

catchment. Temperature dependence caused more depleted (i.e., more negative) δ18OP in winter than in summer (Fig. S1
:
2).
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Figure 1. Upper Selke catchment with precipitation sampling points (purple dots), river network (blue lines), and elevation in meters above
sea level as colored map; location of the Upper Selke catchment in Germany (upper left corner).

3 Methods105

3.1 Catchment-scale transport model

In this study, we used the tran-SAS model (Benettin and Bertuzzo, 2018) for describing the catchment-scale water mixing and

solute transport based on SAS functions. The catchment was conceptualized as a single storage S(t) (mm), whose water-age
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Figure 2.
::::
Data

::
of

::::
δ18O

:
in
::::::::::

precipitation
::::::
(kriged

:::::
values

::
as

:::
pink

::::
dots

:::
and

:::
raw

:::::
values

::
as

:::::
yellow

::::
dots)

:::
and

:::::::::
streamflow

::::
(blue

::::
dots).

balance can be expressed as follows (Benettin and Bertuzzo, 2018):

S(t) = S0 +V (t) (1)110

∂ST (T,t)

∂t
+
∂ST (T,t)

∂T
= P (t)−Q(t) ·ΩQ(ST , t)−ET (t) ·ΩET (ST , t) (2)

Initial condition: ST(T,t= 0) = ST0(T ) (3)

Boundary condition: ST(0, t) = 0 (4)

where S0 (mm) is the initial storage, V(t) (mm) are the storage variations, P(t) (mm/d), Q(t) (mm/d), and ET(t) (mm/d) are115

precipitation, discharge and evapotranspiration, respectively, ST(T,t) (mm) is the age-ranked storage, ST0(T) (mm) is the initial

age-ranked storage, and ΩQ(ST,t) (-) and ΩET(ST,t) (-) are the cumulative SAS functions for Q and ET, respectively.

By definition, the TTD of streamflow pQ(T,t) (d-1) is calculated as follows (Benettin and Bertuzzo, 2018):

pQ(T,t) =
∂ΩQ(ST , t)

∂ST
· ∂ST
∂T

. (5)

The isotopic signature in streamflow CQ(t) (‰) can be obtained from (Benettin and Bertuzzo, 2018):120

CQ(t) =

+∞∫
0

CS(T,t) · pQ(T,t) · dT (6)

where CS(T,t) (‰) is the isotopic signature of a water parcel in storage. Equations 5 and 6 also apply for ET.

In this study, we tested three SAS parameterizations: the power law time-invariant (PLTI; Eq. 7 (Queloz et al., 2015)), power

law time-variant (PLTV; Eq. 8 (Benettin et al., 2017)), and time-invariant beta (BETATI); Eq. 9 (Drever and Hrachowitz, 2017))

distribution. Here, they are expressed as probability density functions in terms of the normalized age-ranked storage PS(T,t) (-),125
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also known as fractional SAS functions (fSAS):

ω(PS(T,t), t) = k · (PS(T,t))k−1 (7)

ω(PS(T,t), t) = k(t) · (PS(T,t))k(t)−1 (8)

ω(PS(T,t), t) =
(PS(T,t))α−1 · (1−PS(T,t))β−1

B(α,β)
. (9)

The parameters k, α and β determine the catchment’s water age preference for outflows, while B(α,β) is the two-parameter130

beta function. If k<1, or if α<1 and β>1, the system tends to discharge young water. If k>1, or if α>1 and β<1, the catchment

preferably releases old water. The case of k=1 or α=β=1 describes no selection preference (i.e., complete water mixing). PLTV

is characterized by k(t) varying linearly over time between two extremes k1 and k2 as a function of the catchment wetness wi (-),

i.e., wi(t) = (S(t)-Smin)/(Smax-Smin)), where Smin and Smax are the minimum and maximum storage values over the entire period.

3.2 Interpolation techniques for δ18O in precipitation135

We tested the model with two spatial
:::::::::::
representation and two temporal interpolation methods of tracer data

::
for

:::::
δ18OP:to explore

the TTD uncertainty resulting from model input
:::::
impact

::
of

:::::
input

:::::
tracer

::::
data

:::
on

::::::
model

:::::::::::
performance,

::::::
results,

::::
and

:::::::::
uncertainty.

To evaluate the effect of the spatial interpolation, we first set a base case using monthly raw
:::::
spatial

:::::::::::::
representation,

::
we

::::::
firstly

::::
used

:::::
single

::::
point

:
δ18OP taken

:::::::::::
measurement,

::::::
which

::
we

:::::
refer

::
to

::
in

:::
the

::::::::
following

::
as

:::::
"raw"

::::::
δ18OP.

:::::
These

::::::::::::
measurements,

::::::::
obtained

from Lutz et al. (2018), corresponding to the values collected at a single location, i. e. the catchment outletat Meisdorf station140

. Second
::::
were

:::::
taken

::
at

:::
the

:::::::::
catchment

::::::
outlet.

::::
The

::::::::
selection

::
of

::::::
δ18OP ::

at
:::
the

:::::
outlet

::::::::
assumes

:
a
:::::::::::
precipitation

::::::::
collector

::::
close

:::
to

::
the

::::::
stream

::::::
gauge

::
at

:::
the

::::::
outlet,

:::::
which

::
is

::
a

:::::::
common

::::::::::
occurrence

::
in

:::::
many

:::::::::
catchments

:::
for

::::::::
logistical

:::::::
reasons.

:::::::
Indeed,

:::
the

::::::
outlet,

:::::
where

:::::::
instream

:::::
δ18O

::
is
::::::::
sampled,

::::::
serves

::
as

:::::::
location

::::::
where

:::
all

::::::::::
precipitation

::::::
inputs

::::::
across

:::
the

:::::::::
catchment

:::
are

:::::::::
integrated.

::::
For

::::::::::
convenience,

:::::::::::
precipitation

::::::::::
monitoring

::
is

:::
also

:::::
often

:::::::::
conducted

::
at

::
or

::::
near

:::
the

:::::::
gauging

::::::
station

::
at
:::
the

::::::
outlet.

::::::::
Secondly, we used

the spatially interpolated δ18OP estimates from Lutz et al. (2018), which are based on raw observations
::::
with

::::::
kriging

::::::
based145

::
on

:::::::
multiple

:::::::::
locations.

::::
The

::::::
spatial

:::::::::::
interpolation

::::
was

::::::::
conducted

:::
in

:::::::::::::::
Lutz et al. (2018)

::::
using

::::
raw

:::::
δ18OP: from 24 precipitation

collectors spread over the larger area of the Bode region. The spatial interpolation in Lutz et al. (2018) was conducted using

kriging with altitude as an
:::::
Bode

::::::
region,

:::
and

:::::::
altitude

:::
as external drift. The

:
In

::
a
::::::
further

:::::
step,

:::
the kriged δ18OP were further

weighted with spatially distributed monthly precipitation to obtain representative estimates for the study region.
:::::::::
catchment.

::
In

:::
our

:::::
study,

:::
the

::::::
kriged

::::::
δ18OP :::::::

resulted
::
in

::::::
slightly

:::::
more

::::::::
negative

:::::
values

::::
than

:::
the

::::
raw

::::::
δ18OP ::::

from
:::
the

:::::::::
catchment

:::::
outlet

:::::
(Fig.150

::
2)

:::::::
because

::
of

:::
the

::::::::
inclusion

:::
of

::::
more

::::::::
depleted

:::::
δ18OP::::::

values
:::::
from

::::::::
locations

::::
with

::::::
higher

:::::::
altitudes

::::::
during

:::
the

:::::::
kriging

:::::::
process.

::
By

::::::::::
considering

:::::
these

::::
two

::::::
options

:::
for

::::::
spatial

::::::::::::
representation

::
of

::::::
δ18OP,

:::
we

::::::
intend

::
to

::::::
assess

:::
the

::::::::
influence

::
of

::::::
spatial

:::::::::
variability

:::
and

::::::::::
uncertainty

::
in

:::
the

::::::::
simulated

:::::::
outputs

:::::::
between

::::
two

::::::::
opposing

:::::
cases

::::
i.e.,

:::
raw

::::::::
isotopes

::::::::::
representing

:::
the

::::::::
simplest

::::::::
approach

:::
and

::::::
kriged

:::::::
isotopes

::::::
derived

::::
from

::
a
::::
more

:::::::::::
sophisticated

:::::::
method.

::::::
While

::::
there

:::
are

:::::
other

::::::::::
possibilities

:::
for

::::::
spatial

::::::::::::
representation

::
of

:::::
δ18OP,

:::
our

::::::
choice

::::::
allows

::
us

::
to

:::::::::
effectively

:::::::
address

:::
our

:::::::
research

::::::::
question

::::::::
regarding

:::
the

:::::
effects

:::
on

::::
SAS

::::::
models

:::
of

:::::
tracer

::::
data

::
in155

::::::::::
precipitation

::::::::
collected

::
at

:
a
:::::
single

:::::::
location

::::::
within

:::
the

:::::::::
catchment

::
or

:::::::
spatially

::::::::::
interpolated

:::::
from

:::::::
multiple

::::
sites.

:
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SAS model results are sensitive to the choice of the temporal resolution of input tracer data, and shorter time steps are
:
a

::::
finer

::::::::
resolution

::
is generally recommended to achieve a satisfactory level of detail (Benettin and Bertuzzo, 2018). Additionally,

a forward Euler scheme was employed to solve Eq. 2, whose precision increases with high frequency time steps. For these

reasons, we reconstructed daily δ18OP estimates from monthly values with two different interpolation schemes. First, we160

used a step function in which the values between two consecutive samples assumed the value of the last sample. Second, we

used a sine interpolation based on the assumption
:::
due

::
to

:::
the

:::
fact

:
that δ18OP values follow a seasonal cycle

::::::
samples

::::::::
typically

::::::
exhibit

::::::::::
pronounced

:::::::
seasonal

:::::::::
variations

::::
with

:::::
more

::::::::
depleted

:::::
values

:::
in

::::::
winter

::::
than

::
in

:::::::
summer

:
(Fig. S1 in the Supplement,

(Feng et al., 2009)), whose signature
::
2).

:::
The

:::::::::
sine-wave

:::::::
function

:::
has

::::
been

::::
used

::
in
:::::::
several

::::::
studies

::
to

:::::::
describe

:::::::
temporal

::::::::
variation

::
in

:::::
δ18OP::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(McGuire and McDonnel, 2006; Feng et al., 2009; Allen et al., 2019)
:
.
:::
The

::::::::
seasonal

::::::
pattern

:::
of

:::::
δ18OP::::::

values
:
over a165

period of one year can be described by (Kirchner, 2016):

δ18OP(t) = aP · cos(2 ·π · f · t) + bP · sin(2 ·π · f · t) + kP (10)

where a and b are regression coefficients (-), t is the time (decimal years), f is the frequency (yr-1) and k is the vertical offset of

the isotope signal (‰). The coefficients a and b were estimated by fitting Eq. 10 to monthly δ18OP values using the iteratively

re-weighted least squares (IRLS) estimation (von Freyberg et al., 2018). Subsequently, the
:
In

::::
our

:::::
study,

:::
we

::::::::::
reproduced

:::
the170

::::
daily

:::::::::
frequency

:::::::
isotopic

::::
data

:::::::
through

:::
the

:
estimated regression coefficients were used in

::
of Eq. 10to obtain isotope data at

daily frequency. Figure S2 in the Supplement displays the simulated
:
.
::::::
Figure

::
3

:::::::
displays

:::
the

:::::
daily

:
kriged and raw δ18OP

values
:::::::
simulated

:
via step function and sine interpolation;

:::
by

:::::::::
employing

::::
step

:::::::
function

::::
and

:::
sine

:::::::::::
interpolation

::
as

::::::::::
techniques

::
to

:::::::::
reconstruct

:::::
tracer

::::
data

::
in

:::::::::::
precipitation,

:::
we

::::
aim

::
to

::::::
analyze

:::
the

::::::
effects

:::
on

:::::::::
SAS-based

::::::
results

:::::
from

:::
two

::::::::
relatively

::::::
simple,

::::::
rather

:::::::
opposing

::::::::::
approaches:

::::
one

:::::::
focusing

:::
on

::::::::
individual

::::::::::::
measurements

::::
and

::
the

:::::
other

:::
on

:::::::::
seasonality.175

Figure 3.
:::::::
Predicted

::::
δ18O

::
in

:::::::::
precipitation

::::::
(kriged

:::::
values

::
as

:::
pink

::::
lines

:::
and

:::
raw

:::::
values

::
as

::::::
yellow

::::
lines)

:::
via

:::
step

::::::
function

:::
and

::::
sine

::::::::::
interpolation.

3.3 Experimental design

In this study, different scenarios were used to quantify uncertainty in the modeled results. We tested twelve setups com-

posed of three SAS functions (PLTI, PLTV, BETATI), two temporal
::::::::::
interpolation

:
(step and sine function) and two spatial

7



::::::::::::
representations

:
(raw and kriging values) interpolation techniques

:::::
kriged

:::::::
values)

::
of

:::::
δ18OP:(Table 1). For each setup, we per-

formed a Monte-Carlo experiment by running the model with 10,000 parameter sets generated by the Latin Hypercube Sam-180

pling (LHS, McKay et al., 1979)
::::::::::::::::::::::
(LHS; McKay et al., 1979). Model parameters and their search ranges are shown in Table 2.

:
A
::

5
:::::
years

::::::::
warm-up

::::::
period

::::
(i.e.,

::::::::
repetition

::
of
::::

the
::::
input

:::::
data)

:::::
from

:::::::
February

:::::
2008

::
to

:::::::
January

:::::
2013

::::
was

:::::::::
performed

::
to

::::::
reduce

::
the

::::::
impact

:::
of

:::::
model

:::::::::::
initialization.

::::
The

::::::
period

::::
from

::::::::
February

::::
2013

::
to
:::::
May

::::
2015

::::
was

::::
used

::
to

::::
infer

:::::::::
behavioral

::::::::::
parameters

::::
(i.e.,

::::::::
parameter

:::
sets

::::::
giving

:::::::::
acceptable

:::::::::::
predictions),

:::
and

:::::::::::
subsequently

::
to

:::::::
interpret

::::::
model

::::::
results.

::::
The

:::::
initial

:::::::::::
concentration

::
of

:::::
δ18O

::
in

::::::
storage

:::
was

:::
set

::
to

:::
9.2

:::
‰

:::::::::
coinciding

::::
with

:::
the

:::::
mean

:::::
δ18OQ::::

over
:::
the

:::::
study

::::::
period.

:
185

Table 1. List of model setups.

setup interpolation SAS function
a step function PLTI
b kriged δ18OP

PLTV
c BETATI
d step function PLTI
e raw δ18OP

PLTV
f BETATI
g sine function PLTI
h kriged δ18OP

PLTV
i BETATI
j sine function PLTI
k raw δ18OP

PLTV
l BETATI

Table 2. Model parameters and search ranges.

SAS parameter Symbol Unit Lower Bound Upper Bound
kQ [-] 0.1 2
kQ1 [-] 0.1 2

Discharge SAS parameter kQ2 [-] 0.1 2
α [-] 0.1 2
β [-] 0.1 2

Evapotranspiration SAS parameter kET [-] 0.1 2
Initial storage S0 [mm] 300 3000

A 5 years warm-up period (i.e., repetition of the input data) from February 2008 to January 2013 was performed to reduce the

impact of the model initialization. The period from February 2013 to May 2015 was used to infer behavioral model parameters

(i.e., parameter sets giving acceptable predictions), and subsequently to interpret the model results. The initial concentration of

δ18O in storage was set to 9.2 ‰ coinciding with the mean δ18OQ over the study period.

The informal likelihood of the Sequential Uncertainty Fitting Procedure (SUFI-2, Abbaspour et al., 2004)190

:::::::::::::::::::::::::::
(SUFI-2; Abbaspour et al., 2004) was applied to account for uncertainty in the SAS parameter sets and resulting mod-

eled estimates. In SUFI-2, the uncertainty in model parameters and simulated results is represented by a uniform distribution,
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which is gradually reduced until a specific criterion is reached. In our study, we calibrated the values of model parameters

until the predicted output matched the measured tracer data
:::::
δ18OQ to a satisfactory level, defined by an objective function. We

employed as objective function the Kling-Gupta efficiency (KGE, Gupta et al., 2009)
::::::::::::::::::::
(KGE; Gupta et al., 2009), and once the195

criterion of KGE≥0.5 was satisfied, we defined a set of behavioral solutions for each model setup. However, since the aim of

this study is to investigate the impact of various sources of uncertainty on simulated outputs , rather than to determine the best

model setupbased on the model efficiency, we decided to set a fixed sample size and narrow down those solutions generated

by SUFI-2 in the previous step. Setting a fixed sample size ensures comparability of results across the twelve tested setups ,

:::::
setups as different sample sizes could influence the uncertainty analysis . For example

:::
i.e., the greater the number of behavioral200

solutions, the wider the uncertainty band. At the same time, by
::
By

:
fixing the sample size, we can still meet the requirement of

a minimum acceptable KGE value (i.e., KGE≥0.5).

In this study, we determined the final behavioral solutions by using a fixed sample size that corresponds to the best 5%

parameter sets and modeled results in terms of KGE. Finally, we constructed

::
To

:::::
assess

:::
the

:::::
range

:::
of

:::::::
possible

:::::::::
behavioral

:::::::
solution

:::
and

:::::::::
understand

:::
the

:::::
level

::
of

:::::::::
uncertainty

:::::::::
associated

::::
with

::
it,

:::
we

:::::::::
calculated205

the 95% confidence intervals
:::::::::
Confidence

:::::::
Interval (CI) based on

::::::
derived

:::
by

:::::::::
computing the 2.5% and 97.5% CIs

::::::::
percentile

::::::
values

of the cumulative distribution in the
:::::::::
parameters

:::
and

:
time series of parameters and output variables (Abbaspour et al., 2004)

to refine the limits of the behavioral solutions
:::::
output

::::::::
variables

::::::::::::::::::::
(Abbaspour et al., 2004).

::::::
These

::::::::
percentile

::::::
values

::::::::
represent

:::
the

:::::
lower

:::
and

:::::
upper

::::::
bounds

:::
of

:::
the

:::
CI,

::::::::::
respectively. In our experimental setup, the main output variables were the instream δ18O

signature and backward median transit time (TT50 (days), i.e., the maximum time elapsed until the youngest 50% of the210

infiltrated water is transferred to the outflow
::::
time

:
it
:::::
takes

:::
for

:::
half

:::
of

::
the

:::::
water

::::::::
particles

::
to

::::
leave

:::
the

::::::
system

:::
as

:::::::::
streamflow

::
at

:::
the

::::::::
catchment

:::::
outlet). Time series of TT50 were extracted directly from daily TTDs (Eq. 5) and used as a metric for the streamflow

age. This was done because TTDs are typically skewed with long tails (Kirchner et al., 2001), hence the median is often a

more suitable metric than, for example, MTT as it is less impacted by the poor identifiability of the older water components

(Benettin et al., 2017).215

4 Results

4.1 Simulated δ18O in streamflow and model performances

Modeled
:::::::
modeled

:
δ18O in streamflow (δ18OQ) represented by the 95% confidence interval (CI) in the ensemble solution

are displayed in Fig. 4. The results reveal how the predicted δ18OQ values enveloped the measured isotopic signature by

reproducing its seasonal fluctuations, with depleted (i.e., more negative) values in winter and enriched (i.e., less negative)220

values in summer. However, the second half of the study period was characterized by more enriched predicted δ18OQ values

than the measured ones. Although the behavioral parameter sets were able to capture the seasonal isotopic trend, they poorly

reproduced the exact values; therefore, the ensemble simulations are characterized by a non-negligible uncertainty.

Figure 4 shows the distinct effects of the interpolated input tracer data and model parameterization on the simulated δ18OQ

values. The step function interpolation generated an erratic isotopic signature in streamflow with flashy fluctuations , explicitly225
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visible in
:
(Fig. 4c and f

:::
a-f). On the other hand, the sine interpolation of δ18OP values yielded a smooth response in the

simulated δ18OQ values (Fig. 4g-l). The sine interpolation also induced larger seasonal tracer cycle amplitudes (Fig. 4g-l) than

those produced when using the step function (Fig. 4a-f). Conversely, no clear visual difference
:::
No

:::::::::
significant

:::::
visual

:::::::::
distinction

was found between kriged (Fig. 4a-cand g-i) and raw (Fig. 4d-fand j-l) δ18OP samples as their general patterns match
:::::
when

::
the

::::
step

:::::::
function

:::::::::::
interpolation

::
is

:::::
used,

:::::
except

:::
for

::
a

::::::
slightly

:::::
larger

::::::::::
uncertainty

:::::::
observed

::::
with

::::
raw

:::::
δ18OP::::::::

samples.
:::::::::::
Furthermore,230

::::
when

::::::::::
employing

:::
the

::::
sine

:::::::::::
interpolation

::::
and

:::
raw

::::::
δ18OP ::::::

values (Fig. S2 in the Supplement). Likewise
:::
4j-l)

::::
the

::::::::::
simulations

:::::::::::
overestimated

:::
the

::::::::
instream

::::::::::::
measurements

::
in

::::::::::
comparison

::
to

:::::
kriged

::::::
values

:::::
(Fig.

::::
4g-i).

:::::::
Finally, distinct SAS parameterizations

did not produce remarkable differences in the simulated δ18OQ values, although PLTV generally yielded simulations that better

enveloped the measured isotopic signature (Figs. 2b
::::
Fig.

::
4b, e, h and k).

Figure 4. Predicted δ18O values in streamflow. Dark blue filled circles represent the observed data; the light blue line and the shaded area
represent, respectively, the ensemble mean of all possible solutions and their range according to the 95% CI.

Despite the differences in the predicted δ18OQ values, all simulations can be considered satisfactory given the KGE values235

ranging between 0.57 and 0.75
:::
0.55

::::
and

::::
0.72, across all tested setups (Fig. 5). These performances can be classified from

intermediate (Thiemig et al., 2013) to good (Andersson et al., 2017; Sutanudjaja et al., 2018). When considering the best

fit, the combination of the step function interpolation and raw δ18OP values performed best. Additionally, PLTV generally

yielded slightly better KGE values than PLTI and BETATI when grouping the setups with the same interpolation technique

:::::::::::::
spatio-temporal

:::::::::::
interpolation of δ18OP. Differences in the mean KGEs were statistically insignificant (t-test with p-values240

> 0.05) between setups h and i
::::
only

:::::::
between

::::::
setups

::
c
:::
and

::
i,
::::

and
::
c

:::
and

::
k
:
(Table 1) , and

::
as

:::
the

:::::
mean

:::::
KGE

::::::
values

:::::
were

:::::
nearly

::::::::
identical;

:
this largely agrees with the visual analysis (Fig. 5). Contrarily, the differences in the mean KGE values

of the remaining setups were statistically significant (p-values < 0.05), indicating that a priori methodological choice (i.e.,

interpolation techniques of δ18OP values and/or SAS parameterization) strongly impact on the overall results. Nonetheless, this
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does not mean that we can clearly identify the most suitable setup, but there is need to carefully analyze the multiple potential245

choices in SAS parameterization and tracer data interpolations, and to evaluate the uncertainty range in modeled predictions.

Figure 5. Boxplot of model performance ranges in behavioral solutions. The letters on the x-axis refer to the model setup type according to
Table 1. Boxplots filled with the same colors represent model setups characterized by the same interpolation scheme in space and time. On
each box, the central red line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles respectively,
namely the interquartile range (IQR). The whiskers extend to the most extreme data points not considered outliers which are 25th percentile
minus 1.5 times IQR and 25th percentile plus 1.5 times IQR, respectively. The outliers are plotted individually using the red ’+’ mark.

Ranges of the behavioral SAS parameters for the tested setups are summarized in Table S1 in the Supplement. Parameters

for the SAS functions of Q (i.e., kQ, kQ1, kQ2, α and β) were different across the setups although, in general, they were

relatively narrow and well identified. However, the behavioral parameters were better constrained when using the step function

interpolation since their 95% CI was, on average, 26
::
34% narrower than that provided by the sine interpolation, across all the250

SAS parameterizations. The parameters kQ1 and α were also better identified than kQ2 and β, since their 95% CI was, on

average, 67
::
56% narrower, across all tested setups. Conversely, there was no clear difference in the parameters ranges when

using kriged or raw δ18OP values. The evapotranspiration parameter (i.e., kET) was poorly identified in all setups as any value in

the search range provided equally good results. The initial storage (i.e., S0) was only partially constrained as any value between

340
:::
335 mm and 2895 mm was considered acceptable.255

4.2 Simulated transit times and model uncertainty

Figure 6 illustrates the 95% CI of the behavioral solutions for the predicted median transit time (TT50). The results show that

the model simulated largely different ranges of TT50 based on the tested setups. When using PLTI and BETATI ,
::::
(Fig.

:::
6a,

::
c,

::
d,

:
f,
::
g,

::
i,

:
j
:::
and

::
l),

:
the 95% CI was relatively stable with small

::::::
smaller

:
fluctuations throughout the simulation period, compared

to PLTV (Fig. 6a, c, d, f, g, i, j and l
::
b,

::
e,

:
h
::::
and

:
k). However, minor differences emerged across the simulated TT50 as a result260

of the distinct interpolation techniques used for δ18OP. The 95% CI of TT50 was on average larger by 36
::
37%, across all tested

setups, when using raw δ18OP (Fig. 6d-f and j-l) rather than kriged δ18OP (Fig. 6a-c and g-i). This was especially visible when

the step function was used (Fig. 6a-f). Moreover, the sine function
:::::::::::
interpolation generated a 95% CI of TT50 being on average

62% narrower across all tested setups (Fig. 6g-l) with respect to the step function (Fig. 6a-f). These differences were more

evident for high flow conditions
:::::
where

:::
the

::::
95%

::
CI

::
of

:::::
TT50 ::::::

showed
:
a
:::::::::
significant

::::::::
reduction. In addition, the behavioral solutions265
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obtained with the sine function
::::::::::
interpolation

:
(Fig. 6g-l) were more skewed towards shorter mean TT50 values, across all tested

setups, than those of the step function (Fig. 6a-f).

Figure 6. Predicted TT50 of streamflow; the light blue line and the shaded area represent, respectively, the ensemble mean of all possible
solutions and their range according to the 95% CI.

Behavioral solutions obtained with PLTV revealed a similar pattern regardless of the interpolation employed (Fig. 6b, e, h

and k). Nonetheless, there was a noticeable difference in the 95% CI of TT50 under distinct flow regimes. During low flows

and dry periods (i.e., summer and autumn), the time series of predicted TT50 showed large uncertainties ranging at most270

between 259 and 1009 days across the different setups (Fig. 6e). Conversely, during high flows (i.e., winter and spring), the

95% CI was much narrower and varied at least between 129 and 160
:::
126

::::
and

::::
154 days (Fig. 6h). The large 95% CI and

the notable differences across the tested setups highlight the sensitivity and, in turn, the uncertainty of predicted TT50 to the

model parameterization, temporal interpolation of input dataand hydrologic conditions . In contrast, the use of raw or kriged
:
,

:::::::::
hydrologic

:::::::::
conditions

:::
and

:::::::::::
non-spatially

::::::::::
interpolated

:
δ18OPsamples produced smaller differences as the trend in the estimated275

TT50 was very similar. Thus, the spatial interpolation technique impact less the water age simulations. However, the 95% CI of

TT50 was larger when using raw rather than kriged δ18OP values.
:
.

In general, the variability of the predicted TT50 was controlled by the hydrological state of the system (Fig. 6). High discharge

events reduced the TT50 values, while low flow periods were associated with a longer estimated TT50. This is expected as

streamflow during high (low) flows is dominated by near-surface runoff (groundwater) with shallow (deep) flowpaths leading280

to a shorter (longer) TT50. Such differences were particularly visible with PLTV (Fig. 6b, e, h , and k) as the exponent kQ(t)

shift the water selection preference over time as a function of the wet/dry conditions. This resulted in the variability of TT50

being more pronounced than that of PLTI and BETATI, whose SAS parameters for Q are constant over time.

4.3 Catchment-scale water release

SAS functions provided valuable insights into the catchment-scale water release dynamics. Figure 7 presents the behavioral285

solutions releasing water of different ages, and shows that the catchment generally experienced a stronger affinity for realising
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young water (i.e., kQ<1, or α<1 and β>1), rather than old water (i.e., kQ>1, or α>1 and β<1). These findings are in agreement

with other studies in the Upper Selke (Winter et al., 2020; Nguyen et al., 2021). Nonetheless, there were differences in the

water release scheme when comparing various combinations of SAS functions and spatio-temporal interpolation techniques

of isotopes. The use of PLTV resulted in a substantial number of solutions, approximately 50% of all behavioral solutions,290

suggesting a preference for both young and old water. On the other hand, only a few solutions showed affinity for old water

release, and this was more prominent when using the sine interpolationtechnique, raw δ18OP values and PLTI across all tested

setups.

Figure 7. Percentage of behavioral solutions releasing water of different ages.

5 Discussion

5.1 Uncertainty in TTD modelling295

In this study, we characterized the TTD uncertainty arising from some significant and critical aspects for the SAS modelling.

These aspects are also the most directly linked to data interpolation and SAS parameterization that we explored in this work.

The uncertainty analysis has been
:::
was

:
carried out across the twelve tested setups corresponding to different combinations of

spatio-temporal data interpolation techniques and SAS parameterizations. Our results show that the uncertainty (i.e., 95% CI)

of the simulated TT50 (Fig. 6) was firmly dependent on the choice of model setup, and we found that
::
as

:
the 95% CI is

:::
was300

primarily sensitive to the SAS parameterizations as well as temporal interpolation
::::
type

::
of

::::
SAS

::::::::
function,

:::::::
temporal

:::::::::::
interpolation

:::
and

::::::
spatial

:::::::::::
representation

:
of δ18OP, and less on the spatial interpolation of δ18OP.

Uncertainty in the simulated TT50 differed considerably between time-invariant (i.e. PLTI and BETATI; Fig. 6a, c, d, f, g, i,

j and l) and time-variant (i.e., PLTV; Fig. 6b, e, h and k) SAS functions, thus a large sensitivity is associated with the choice

of the SAS parameterization. For example, PLTI and BETATI explicitly assume constant water selection preference over time305

as these functions do not consider temporal variability of the catchment wetness. As a consequence, the resulting simulations

::::
TT50:

had a moderately stable 95% CI in TT50 with smaller fluctuations compared to those of PLTV. Hence, the model setup

with PLTI and BETATI could be appropriate in catchments experiencing a less pronounced seasonality in streamflow and

precipitation.

On the other hand, including an explicit time dependence in the SAS function strongly affected the 95% CI of TT50. PLTV310

produced a wider 95% CI notably during low flow conditions, which can hinder the ability of the TTDs
:::::
TTDs

:::::
ability

:
to provide
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robust insights on flow and solute transport behaviors in the study area during low flow conditions. This highlights the need

to further constrain PLTV with additional data, which could involve obtaining tracer data at a finer resolution or additional

information on the evapotranspiration and initial storage. In addition, the exceptionally old flow components associated with

a very large 95% CI of TT50 might be a distortion of the actual TT50 values, which can usually be more reliably estimated315

using radioactive tracers rather than stable isotopes (Visser et al., 2019). Hence, PLTV-based TT50 greater than the observed

period (828 days) should be interpreted carefully. However,
::
It

::
is

::::::::
important

::
to

::::
note

::::
that

:
in this study we discussed the frac-

tional (fSAS) functions, while another form of the SAS functions, such as the rank SAS (rSAS) functions, may have different

uncertaintycharacteristics. This is mainly due to the difference in how the storage is considered, because fSAS functions are

expressed as function of the normalized age-ranked storage, which is equal to the cumulative residence time, while rSAS func-320

tions depend on the age-ranked storage, which is the volume of water in storage ranked from youngest to oldest (Harman,

2015).

Likewise, the high-frequency reconstruction of δ18OP estimates from monthly values
::::
from

:::::::
monthly

:::::::
samples

:
via interpolation

created further uncertaintythat would not arise when using real high-frequency data. The sine interpolation poorly reproduced

flashy rainfall events and only captured the average damped trend of the
::::::::
effectively

::::::::
captured

:::
the

::::::::
dominant

:::::::
features

:::
of

:::
the325

:::::::
observed

::::::
δ18OP,

::::
such

:::
as

:::::::::
seasonality.

::::::::::::
Consequently,

::::
sine

:::::::::::
interpolation

::::::::::
successfully

::::::::::
reproduced

:::
the

:::::::
seasonal

:::::
trend

::
in

::::::::
instream

::::
δ18O,

::::::::
although

:::::::::
simulations

::::::::::::
overestimated

:::
the

::::::::::::
measurements

::::
(Fig.

:::::
4g-l).

::
On

:::
the

:::::
other

:::::
hand,

:::
sine

:::::::::::
interpolation

:::::
poorly

::::::::::
reproduced

::::::
rainfall

:::::::
isotopes

::::::
during

:::::::::
short-term

::::::
flashy

:::::
events

::::
and

::::::
missed

:::::::
detailed

::::::::::::
characteristics

:::
of

:::
the

:::::
tracer

:::::::
dataset

::
by

::::::::::
smoothing

:::
the

::::::::
variability

::
in

:::
the

:
observed δ18OP samples (Fig. S2 in the Supplement). Hence, related results must be interpreted with caution

as tracer data uncertainty
::
3).

:::
As

:
a
:::::
result,

:::::
high

:::::
values

::
of

::::::
δ18OP :::

are
:::::::::::::
underestimated,

:::::::
whereas

:::
low

::::::
values

:::
are

::::::::::::
overestimated.

::
It

::
is330

::::::
critical

::
to

::::::::
recognize

:::::
these

:::::::::
limitations

:::::
when

::::::::::
interpreting

::::::::
modelling

::::::
results

::
as
::::::::::

uncertainty
::
in

:::
the

:::::::::
simulated

:::::
δ18OP:

may conceal

a more pronounced hydrological response
::
of

:::
the

::::::
system

:
(Dunn et al., 2008; Birkel et al., 2010; Hrachowitz et al., 2011).

Contrarily, the step function interpolation preserved the maxima in the monthly observed δ18OP values , and reproduced
::
by

::::::::
capturing their variation correctly

::::
(Fig.

:::
3).

::::::::::
Simulations

::::::
showed

::
a
:::::
better

::
fit

::::
with

::::::::
measured

::::::::
instream

::::
δ18O

::::
(Fig.

:::::
4a-f)

:::
and

::::::
higher

:::::
model

:::::::::::
performance

::::
(Fig.

:::
5).

:::::::::
However,

:::::::::
combining

::::
step

:::::::
function

::::
with

::::
raw

::::::
δ18OP :::::::

resulted
::
in

:::::
larger

::::::::::
uncertainty

::
of

:::::::::
simulated335

::::
TT50::::

(Fig.
::::::

6d-f).
::::
This

::::::
reflects

:::
the

:::::
need

:::
for

:
a
:::::::::::::

comprehensive
::::::::::
exploration

::
of

:::
the

::::::::::
uncertainty

::::::
range,

:::::
rather

::::
than

::::::
relying

::::::
solely

::
on

:::
the

:::::::::::::
goodness-of-fit. Nonetheless, the results obtained in this study are based on this particular isotope dataset, while the

sine interpolation may be better applicable in other circumstances. Overall, the temporal interpolation of tracers resulted in

largely differing
:::::
choice

:::::::
between

::::
step

:::::::
function

::::
and

::::
sine

:::::::::::
interpolation

::::::
largely

:::::::
affected

:::
the reconstructed input data depending

on whether the step function or sine interpolation were used (Fig. S2 in the Supplement). This explains why the
::
3),

:::::::
leading

::
to340

::::::::
significant

::::::::::
differences

::
in simulated TT50 is different between the two interpolations or, in other words, why the uncertainty in

TT50 is large.
:::
and

:::::::::
associated

::::::::::
uncertainty.

:
It
::
is

::::::::
important

::
to
::::
note

::::
that

:::::::::
alternative

:::::::
methods,

:::::
such

::
as

::::::::::
Generalized

:::::::
Additive

:::::::
Models

::::::::::::::::::::::::
(GAM; Buzacott et al., 2020),

::::
offer

:::::
other

::::::
options

:::
for

:::::::::::
interpolating

:::::
tracer

::::
data.

:::
We

:::::::::
conducted

::::::
further

::::
tests

::::
with

:::
the

::::
SAS

::::::
model

::::
using

::::::
GAM

::
to

:::::::::
reconstruct

::::
both

::::::
kriged

:::
and

::::
raw

:::::
δ18OP :::::

using
:::::::::
smoothing

::::::::
functions;

::::
this

:::::::
provides

:
a
:::::
more

:::::::::::
sophisticated

::::::::
approach

:::
than

:::
the

:::::::
intuitive

::::::::
methods

::::
used

::
in

:::
this

:::::
study.

::::::::
However,

:::
the

::::::
results,

::::::::
available

::
in

:::
the

::::::::::
Supplement,

:::::
show

:::
that

:::::
while

:::::
GAM

::::::::
provided345

::::
more

:::::::
detailed

:::::::::::
reconstructed

:::::
input

:::::
tracer

::::
data

::::
(Fig.

::::
S1),

:
it
::::
did

:::
not

::::::::::
significantly

::::
alter

:::
the

:::::::::
SAS-based

::::::
results

:::::
(Figs.

:::
S2

:::
and

::::
S3)

::
or
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::::
yield

:::
any

::::
new

:::::::
insights

::
or

::::::::::
conclusions

:::::
about

::::::::::
uncertainty

::::
with

::::::
respect

::
to

:::::
using

::::
step

:::::::
function

::::
and

:::
sine

::::::::::::
interpolation.

:::::::::
Therefore,

::
we

::::::::
conclude

::::
that

:::::
while

:::::
highly

::::::::
resolved

::::
input

::::
data

::::
may

:::::
seem

:::::::::
appealing,

:
it
::::
does

::::
not

:::::::::
necessarily

::::
lead

::
to

:::::::::
substantial

:::::::
benefits

:::
for

::
the

::::::::::
SAS-based

::::::
output,

:::::::::
supposedly

::::
due

::
to

:::
the

:::::::::
conceptual

::::::::::::
simplifications

::
in

:::
the

::::
SAS

::::::
model.

:

On the contrary, the spatial interpolation method did not strongly affect the
:::
The

::::::
spatial

::::::::::::
representation

::
of

::::::
δ18OP :::::

values
::::
had350

::::::
limited

::::::
impact

:::
on

:::
the

::::::
overall

::::::
pattern

:::
of simulated TT50 as the trend in the time series was similar when using

:::
time

::::::
series

::::
were

::::::::::
comparable

::::
with

::::
both

:
kriged (Fig. 6a-c and g-i) or

:::
and

:
raw (Fig. 6d-f and j-l) δ18OP. This could be attributed to minor

differences between kriged and raw isotopes (Figs. S1 and S2 in the Supplement). Nonetheless, there was a larger 95% CI of

TT50 when using raw rather than kriged
::::::::::
Nonetheless,

:::
the

::::::
spatial

:::::::::::
interpolation

::
of δ18OP , and this was particularly visible when

the step function interpolation was used
::::
from

::::::::
different

:::::::
locations

:::::::
resulted

::
in
::
a
::::::::
reduction

::
in

:::
the

::::::::::
uncertainty

::
of

:::::
TT50,

:::::
which

::::
was355

:::::::::
particularly

:::::::
evident

::::
with

::::
step

:::::::
function (Fig. 6a-f). Therefore, the spatial interpolation of

:::
This

:::::::::
difference

::::
may

::
be

:::::::::
attributed

::
to

::
the

::::
fact

::::
that

:::
the

:::::
Upper

:::::
Selke

::
is

:
a
:::::
large

::::::::::
(mesoscale)

:::::::::
catchment

::::
with

:
a
:::::::::
substantial

:::::::
gradient

:::
in

::::::::
elevation,

::::
and,

::
as

:
a
::::::::::::

consequence,

:::::::::::
measurement

:::
for δ18Oin precipitation from different locations resulted in an apparent reduction of uncertainty in

:P:::::
from

::::
only

:::
one

:::::::
location

::::
may

:::
be

::::::::
generally

::::::
overly

:::::::::
simplistic.

::::
This

::::::
finding

:::::::::
highlights

:::
the

::::::::::
importance

::
of

::::::::::
considering

::::
not

::::
only

:::
the

::::::
model

::::::::::
performance

::::
(Fig.

::
5;
::::
raw

:::::
values

::::
with

::
a

:::
step

:::::::
function

:::::::::::
interpolation

::::::::
produced

::::::
higher

::::
KGE

:::::::
values),

:::
but

:::
also

:::
the

::::::::::
uncertainty

:::::
range360

::
in

:::::::
predicted

:
TT50.

In addition
::::::
Finally, we found that the uncertainty was larger under dry conditions when lower flow and longer TT50 were

observed. This was especially visible when using the time-variant SAS function (Fig. 6b, e, h and k). It might be due to the

fact that under wet conditions, there is a high level of hydrologic connectivity within the catchment (Ambroise, 2004; Blume

and van Meerveld, 2015; Hrachowitz et al., 2016), which results in nearly all flow paths being active and contributing to the365

streamflowthat.
:::::
This, ultimately, may make TT50 values easier to constrain. Conversely, under dry conditions, when there is

low connectivity within the catchment, only certain flow paths are active ,
::::::
usually

::::
only

::::::
longer

::::::::
flowpaths

:::::::
carrying

:::::
older

:::::
water

::
are

::::::
active

::::::::::::::::::::::::::::::::::::::::
(Soulsby and Tetzlaff, 2008; Jasechko et al., 2017)

:
,
:::::
water

:::::::
partially

:::::
flows

::::::
through

::
a

::::
drier

:::
soil

::::
zone

::::::
where

:::
flow

::
is
:::::
more

:::::
erratic

:
(i.e. , usually those carrying older water to the stream (Soulsby and Tetzlaff, 2008; Jasechko et al., 2017). Hence, these

flows are less uniform, making
::::
flow

::::::::
directions

:::
and

:::::::
patterns

:::
can

::::
vary

:::::::
widely)

::
as

:::
the

::::::::::
conductivity

::
is
:::::::::
controlled

::
by

::::
soil

::::::::
moisture.370

::
As

::
a
:::::
result,

::::
wet

::::
areas

::::
can

::
be

::::::
patchy

::::
and

:::::
water

:::::
flows

:::::::::::
preferentially

::
at

::::::
certain

::::::::
locations

:::::
only,

::
as

:::::::
opposed

::
to

::::::::
spatially

:::::::
uniform

::::
flow

::::::
through

:::
the

::::
soil

::::::
matrix;

:::
this

:::::
might

:::::
make

:
it more challenging to constrain their older water ages. Similarly, Benettin et al.

(2017) found higher uncertainty in the simulated SAS-based median water ages during drier periods, potentially due to higher

uncertainty in the total storage. Moreover, non-SAS functions studies have observed major uncertainties and deviations from

observations in lumped modeled results during low flow conditions (Kumar et al., 2010). This was primarily due to the lack of375

spatial variability of catchment characteristics in lumped models, a critical factor controlling low flow regimes in rivers.

The dissimilarities in the simulated TT50 across the tested setups underline the importance of accounting for uncertainty in

model-based TTDs. The uncertainty analysis with SUFI-2 performed in this study was essential to best describe the parameter

identifiability and bounds of the behavioral solutions of each output variable. Furthermore, our results highlight the importance

of gaining tracer datasets of good quality , meaning
::::
(i.e., tracer data with a finer resolution,

:::::::
temporal

::::::::::
resolution),

::::::::::
considering380

::
the

::::::
spatial

:::::::::
variability

::
of

:::
the

:::::::
isotopic

::::::::::
composition

:::
in

::::::::::
precipitation

:
and, possibly, employing the "true" model parameterization
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which correctly
:
a
:::::
model

::::::::::::::
parameterization

::::
that

:::
best

:
describes the catchment-specific storage and release dynamics. The second

:::
last point can be defined according to a precise conceptual knowledge of the catchment’s functioning and information from

previous studies in similar catchments.

5.2 TTD modelling: advantages and limitations385

Our results provide visually plausible seasonal fluctuations of the predicted δ18OQ samples (Fig. 4), and satisfactory KGE

values (Fig. 5), despite the uncertainty arising from model inputs, structure and parameters. The good match with observations

provides high confidence in the simulated TT50 for the Upper Selke. The magnitude of the uncertainty resulting from different

setups cannot be generalized, but the overall approach for uncertainty assessment presented here could be extended to other

areas and TTD studies. However, we recognize some limitations and indicate below possible reasons and, in turn, improvements390

that future work could achieve.

First, the limited length of the δ18O time series might not describe the system accurately, hence implementing

longer time series could improve the parameter identifiability and provide a more accurate estimation of the TTDs.

Second, this study relied on stable water isotopes, which might underestimate the tails of the TTDs (Stewart et al.,

2010; Seeger and Weiler, 2014; Wang et al., 2022). Possible advancements could be reached by using decaying trac-395

ers varying over a larger timescale than stable water isotopes (e.g., tritium, (Stewart et al., 2012; Morgenstern et al., 2015)),

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., tritium; Stewart et al., 2012; Morgenstern et al., 2015),

:
and imparting more information on old water. Next, future work

should retrieve more information on
:::
the

:::::::::::::::
evapotranspiration ET and the initial storage S0, whose parameters were poorly identi-

fied. However, this issue is common in transport studies that rely on measurements of instream stable water isotopes (Benettin

et al., 2017; Buzacott et al., 2020). As a way forward, information on the ET isotopic compositions might help better constrain400

ET parameters and assess their affinity for young/old water. Regarding constraining the range of S0, further information can

be gained from geophysical surveys in the study areas or groundwater modeling
::::::::
modelling, as well as using decaying isotopes

(Visser et al., 2019).

5.3 Implications of TTD uncertainties

This study characterized the uncertainty in TTDs, which summarize the catchment’s hydrologic transport behavior, and thereby405

comprise decisive information for water managers. The uncertainty in the predicted
::::
value

::
of

:
TT50 has relevant implications

for both water quantity and quality; the
:
,
::
as

::::
does

:::
its

::::::::::
uncertainty.

::::
The

:
larger the 95% CI in the simulated TT50, the greater

the difference in the TT50 values, which, ultimately, implies distinct water release
::::::::::
hydrological

:::::::::
processes,

:::::
water

::::::::::
availability,

::::::::::
groundwater

:::::::
recharge

:
and solute export dynamics (McDonnel et al., 2010).

Uncertainty in TTDs
:::
For

::::::::
example,

:::::::
knowing

:::
the

:::::
TTD

:::
and

:::
its

:::::::::
uncertainty

:
may be crucial for characterizing the catchment’s410

response to climatic changes
:::::
change

:
(Wilusz et al., 2017). Considering the increasing severity of droughts in the past decades

(Dai, 2013), a catchment that largely releases
::::
with

:
a
::::::
shorter

::::
TT50:::

and
::
a
::::::::
dominant

::::::
release

::
of young water might be more affected

by droughts than a catchment whose
::::
with

:
a
::::::

longer
:::::
TT50,

::::::
which

:::::
means

::::
that

:::
its stream is fed by relatively old water sources.

A
::::::::
Therefore,

::
a short TT50 reveals a low drought resilience of the catchment

:::
and

::::::
limited

:::::
water

:::::::::
availability, which could limit
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streamflow generation processes and change the instream water quality status
:::::
during

:::::::
drought

:::::::
periods

:::::::::::::::::
(Winter et al., 2023)415

. Likewise, TTD uncertainty may affect the
::::::::::::
understanding

::
of

:::
the

:::::
water

:::::::::
infiltration

:::::
rate,

::::::::::
hydrological

:::::::::
processes

:::
and

:::::::
aquifer

:::::::
recharge,

:::
as

:
a
::::::
shorter

:::::
TT50::::::::

suggests
:::
that

:::::
water

::
is
:::::::

quickly
::::::
routed

::
to

:::
the

:::::::::
catchment

:::::
outlet

::::::
rather

::::
than

:::::::::
infiltrating

::::::
deeply

::::
into

::
the

::::::::::::
groundwater.

:::::::
Finally,

::::
TTD

::::::::::
uncertainty

:::
can

:::::
have

:::
an

::::::
impact

:::
on

:::
the

:
quantification of the modern groundwater age, i.e.,

groundwater younger than 50 years (Bethke and Johnson, 2008). According to (Jasechko, 2019)
:::::::::::::
Jasechko (2019), the correct

identification of modern groundwater abundance and distribution can help determine its renewal (Le Gal La Salle et al., 2001;420

Huang et al., 2017), groundwater wells and depths most likely to contain contaminants (Visser et al., 2013; Opazo et al., 2016),

and the part of the aquifer flushed more rapidly.

Uncertainty in TTDs also impacts on assessing the fate of dissolved solutes, such as nitrates

(Yang, X. et al., 2018; Nguyen et al., 2021, 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(Yang, X. et al., 2018; Nguyen et al., 2021, 2022; Lutz et al., 2022), pesti-

cides (Holvoet et al., 2007; Lutz et al., 2017), and chlorides (Kirchner et al., 2000; Benettin et al., 2013). These solutes425

constitute a crucial source of diffuse water pollution in agricultural areas (Jiang et al., 2014; Kumar et al., 2020), as they are

spread on the soil in large quantities especially during the growing season. Exposure time of solutes with the soil matrix has

strong consequences for biogeochemical reactions, such as denitrification in the case of nitrates (Kolbe et al., 2019; Kumar

et al., 2020). A short TT50 suggests that water can be rapidly conveyed to the stream network (Kirchner et al., 2001), with

limited time for denitrification. This explains the elevated instream concentration and short-term impact of nitrate export430

compared to that of a longer TT50, which is typically associated with old water release and low nitrate concentration (Nguyen

et al., 2021). Similarly, pesticide transport is highly affected by the TTD uncertainty as a long TT50 suggests little pesticide

degradation due to decreased microbial activity along deeper flowpaths (Rodríguez-Cruz et al., 2006). In other cases, a

shorter TT50 may limit the time for degradation causing a peak in the instream concentration (Leu et al., 2004). Overall, a

longer TT50 can delay or buffer the catchment’s reactive solute response at the outlet (Dupas et al., 2016; Van Meter et al.,435

2017). This creates a long-term effect of hydrological legacies and a continuous problem with diffuse pollution of nitrates

(Ehrhardt et al., 2019; Winter et al., 2020) and pesticides (Lutz et al., 2013), which can persist in the catchment for several

years. Finally, TTD uncertainties also play an important role in chloride transport, although chlorides are commonly known

to be conservative (Svensson et al., 2012). A short TT50 may indicate rapid chloride mobilization, whereas a long TT50

implies chloride persistence in groundwater; thereby chloride accumulates and is released at lower rates, with impacts on the440

ecosystem functions, vegetation uptake and metabolism (Xu et al., 1999).

Understanding the uncertainty in TTDs is crucial for the aforementioned implications. While previous studies have used only

a specific SAS function and/or specific data fitting technique
:::::
tracer

:::
data

:::::::::::
interpolation

::::::::
technique

::
in

::::
time

:::
and

:::::
space, here we show

that there could be a wide range of different results in terms of water ages, model performances and parameter uncertainty. This

is due to the specific choice regarding SAS parameterization and tracer data interpolation. With this, we want to convey that445

uncertainty is omnipresent in TTD-based models, and we need to recognise it, especially when dealing with sparse tracer data

and multiple choices for model parameterization. Therefore, we want to encourage future studies to explore these uncertainties

in other catchments and different geophysical settings, with the final aim to investigate whether these uncertainties may affect

the conclusions of water quantity and quality studies for management purposes.

17



6 Conclusions450

This study explored the uncertainty in TTDs of streamflow, resulting from twelve model setups obtained from different SAS

parameterizations (i.e., PLTI, PLTV and BETATI), and reconstruction of the precipitation isotopic signature in time and space

via interpolation (step function vs. sine-fit, raw vs. kriged values).

We found satisfactory KGE values, whose differences across the tested setups were statistically significant, meaning that the

choice of the setup matters. As a consequence, distinct setups led to considerably different simulated TT50 values. The choice455

between using time-variant or time-invariant SAS functions was crucial as the time-invariant functions generated a moderately

stable
::::::::
moderate

:::::::::
fluctuations

::
in
:::
the

:
95% CI of the estimated TT50 because of the constant water selection preference over time.

These functions may be more appropriate for those catchments experiencing relatively little seasonality in the hydrological

conditions.

On the other hand, the time-variant SAS function captured the dynamics of the catchment wetness, resulting in a pronounced460

seasonality
:::::
more

::::::::::
pronounced

:::::::::
fluctuations

:
of TT50. However, the time-variant SAS function also produced a larger 95% CI in

TT50, notably during drier periods, which might indicate the need to constrain the function with additional data (e.g., finer tracer

data resolution, and/or information on evapotranspiration and storage). Significant differences in TT50 were observed depend-

ing on the employed temporal interpolations. Results from the sine interpolation
:::::::
produced

::
a
::::::
smaller

::::::::::
uncertainty

::
in

:::::
TT50,

::::
with

::
the

::::
time

:::::
series

:::::::
skewed

::::::
towards

:::::::
smaller

::::::
values.

::::::::
However,

::::
such

:::::
results

:
must be interpreted carefully as they

::
the

::::
sine

:::::::::::
interpolation465

poorly reproduced flashy events in precipitation, thus indicating that some more dynamic transport processes were not fully

accounted for. Conversely, the step function interpolation
::::::
resulted

::
in

::
a
:::::
larger

::::::::::
uncertainty

::
of

:::::
TT50,

::::
but

:
it
:

was able to better

reproduce the measured δ18OP data
::
by

:::::::::
capturing

:::
the

::::
peak

::::::
values,

:::
as

:::::::
opposed

::
to

:::
the

::::
sine

:::::::::::
interpolation. Dry conditions were

another reason for uncertainty as indicated by the high variance in the simulated TT50 values
:
,
:::::
which

::
is
:::::::::
potentially

:::::::::
attributed

::
to

:::
the

:::::
water

:::::::::::
preferentially

:::::::
moving

::
at

::::::
certain

::::::::
locations,

::::::
making

::::
wet

:::::
areas

::::::
patchy,

::
so

::
it

::::
may

::
be

:::::
more

::::::::::
challenging

::
to

:::::::::
accurately470

:::::::
constrain

:::::
older

:::::
water

::::
ages. Finally, the use of spatial interpolation methods did not substantially affect the uncertainty in TT50

as there were no appreciable differences in the trend of the modeled results between kriged and
::::
there

::::
was

::::::::::
comparable

::::::
pattern

::
in

::
the

::::::::
modeled

:::::
results

:::::
when

:::::
using

::::::
kriged

:::::
versus raw isotopes, although the 95% CI

:::
but

:::
the

:::::
kriged

::::::
values

::::::
yielded

::
an

::::::::::
uncertainty

::::::::
reduction in TT50was wider when using raw δ18OP. .

::::
This

:::::::::
highlights

:::
the

::::::::
potential

::::::::
advantage

::
of
::::::::

spatially
::::::::::
interpolated

::::::
values

:::
over

::
a
:::::
single

:::::::::::
measurement

::::::::::::
representative

::
of

:::
the

:::::
entire

::::
area,

::::::::::
particularly

::
in

:::::::::
mesoscale

:::::::::
catchment

::::::
varying

::
in

:::::::::
elevation.475

Our study provides
:::::
These

:::::::
findings

::::::
provide

:
new insights into TTD uncertainty when high-frequency tracer data are missing

and the SAS framework is used. Regardless of the degree of efficiency or uncertainty, the decision on which setup is more

plausible depends on a full
::
the

::::
best conceptual knowledge of the catchment functioning. We consider the presented approach as

potentially applicable to other studies for enabling a better characterization of TTDs uncertainty, improving TTD simulations

and, ultimately, informing water management. These aspects are particularly crucial in view of evermore extreme climatic480

conditions and increasing water pollution under global change.
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