
Editor # Comment & Responses  

Dear authors, 

based on the comments received for your revised manuscript, it turns out that a few additional elements of 
information would be required. These relate essentially to methodological aspects - mainly related to the 
choice of a sinusoidal function in the SAS model (i.e., still justified or not after the removal of the YWF 
from the study), and the choices made for rainfall tracer data (one site vs. multiple sites). I consider these 
elements requiring a minor to moderate revision. I am looking forward to receive the revised version of your 
contribution. 

Best regards, 

Laurent Pfister 

We thank the editor for approving the revision of our manuscript. In the revised version, we have explained 
the reasons for using sine interpolation for stable water isotopes in precipitation, while acknowledging its 
limitations. We have also tested the GAM approach as suggested by the reviewer and presented our findings; 
our major conclusions regarding the uncertainty of SAS-based modeling remain intact, regardless of the 
interpolation method used. We have provided a comprehensive explanation for using both raw (data from 
one station only) and kriged isotopes in precipitation and clarified the selection of raw isotopes at the 
catchment outlet. Finally, we have addressed the impact of different spatial representations of isotopes in 
precipitation on SAS-based results more effectively. 

Please find below our point-to-point responses (text in blue) to the reviewer’s comments (text in black) and 
implemented modifications (text in italic blue) in the original manuscript. The line number in this document 
refers to the track-changes document. 

Reviewer #2 Comment & Responses  

This revised manuscript shows improvements over the previous one. The authors have addressed some (but 
not all) of the issues in the previous manuscript by removing the use of the young water fraction and have 
instead focused on investigating the uncertainties associated with the SAS function modeling. This study 
reiterates a common concern about the uncertainty of SAS models when trace data sets are limited. 
 
The authors considered the uncertainties arising from temporal interpolation and spatial interpolation of the 
rainfall tracer data, as well as the uncertainty arising from the predetermined formula describing the SAS 
function. Although investigating the model uncertainty arising from the temporal interpolation has been 
previously addressed, as acknowledged by the authors (e.g., Buzacott et al., 2020), it seems that the 
incorporation of spatial rainfall tracer data (in addition to the consideration of the predetermined shape of 
the SAS function) could offer a novel contribution. 

The authors concluded that the temporal interpolation method affects the result significantly (L511-512), 
while the spatial interpolation method did not substantially affect the uncertainty (L516-519). (Note that 
the line number in this document is based on the track-change document.) 

However, there are several study designs that I find unconvincing and thus I recommend a major revision. 
Please refer to my comments below. There may be something I'm missing, and if so, I think it would be 
relatively easy for the authors to respond to my comments. 



We thank the reviewer for taking the time to review our manuscript, providing constructive comments and 
for raising relevant issues. We acknowledge them and have carefully addressed them in the revised 
manuscript. Please find our detailed responses to each comment below. 

1. Temporal interpolation: On the use of the sinusoidal function  

The purpose behind using the sinusoidal function in the SAS function model remains unclear. While I 
comprehend that the authors aimed to demonstrate the model's sensitivity to the choice of temporal 
interpolation method, it seems apparent that the sinusoidal function could not capture the observed input 
tracer signal well. Consequently, it is unclear why this particular method, which misses many features in 
data, was used with the SAS function model. Once this question arose, I found it challenging to follow the 
manuscript smoothly. In the previous manuscript, I speculated that, by using the sinusoidal function, the 
authors want to develop an argument related to the young water fraction (which utilizes the sinusoidal 
function), but this issue becomes apparent after the removal of the young water fraction from the 
manuscript. 

Although the sinusoidal function has been utilized in TTD modeling, e.g., when estimating the young water 
fraction, its application there is to focus on capturing only dominant features like seasonality. Note that, for 
the estimation of young water fraction, the outflow tracer time series is also approximated using the 
sinusoidal function. I am unsure if capturing only seasonality is a valuable practice in the SAS function 
modeling. Also, I am not sure about the meaning of uncertainty when the input tracer data that only 
approximates the seasonality is used to model the outflow tracer data that contain more detailed features. 

Thank you for bringing up these concerns on the use of the sine function interpolation. 

We acknowledge the uncertainty in sine interpolation as it misses detailed temporal features of the tracer 
dataset, such as individual observed peak values, but rather captures basic characteristics of the temporal 
pattern, such as seasonality. However, the dominant trend in long-term δ¹⁸Op is often the seasonal trend 
(Feng at al., 2009), which can be effectively captured using a sine-wave function (Kirchner, 2016). 

In our study, we compared two relatively simple, rather opposing temporal interpolation approaches, one 
emphasizing seasonality (sine-wave function) and one individual measurements (step function). This 
distinction was highlighted in lines 171-173:  

By employing step function and sine interpolation as techniques to reconstruct tracer data in precipitation, 
we aim to analyze the effects on SAS-based results from two relatively simple, rather opposing approaches: 
one focusing on individual measurements and the other on seasonality. 

Our findings show that both step function and sine interpolation yielded satisfactory goodness-of-fit (Fig. 
5 in the revised manuscript) and effectively captured the trend in simulated instream δ¹⁸O (Fig. 4 in the 
revised manuscript). This highlights the appropriateness of capturing the dominant seasonal trend in 
instream δ¹⁸O. However, using sine interpolation comes with limitations as individual observations are 
generally overestimated (Fig. 4g-l in the revised manuscript; consequently, it is important to acknowledge 
these uncertainties. Nonetheless, our results indicate that interpolation methods that precisely capture all 
observed data (e.g., step function) do not necessarily yield better SAS-based results as a whole. In fact, 
combining step function with raw δ¹⁸Op resulted in larger uncertainty in simulated TT₅₀ (Fig. 6d-f in the 
revised manuscript). This reflects the purpose of our study which is to showcase two relatively simple, 
opposing choices for temporal interpolation to highlight that both (and thus potentially also many other 
methods) give acceptable model results. Hence, we emphasize the need for a comprehensive exploration of 
the uncertainty range, rather than relying solely on a specific model setup which may be subjective. 



It should also be noted that uncertainty associated with sine interpolation found in this study is specific to 
the isotopic dataset used. Under different circumstances, where the isotopic dataset has a more pronounced 
sinusoidal trend (for example, see Fig. 1 of Von Freyberg et al., 2018) and/or higher temporal resolution, 
where the sinusoidal pattern should be more evident, sine interpolation may be more suitable and yield 
better results. However, investigating these aspects goes beyond the scope of the study. 

Overall, in the revised manuscript we have acknowledged the limitations of sine interpolation raised by the 
reviewer, and expressed them in lines 321-329: 

The sine interpolation effectively captured the dominant features of the observed δ¹⁸Op, such as seasonality. 
Consequently, sine interpolation successfully reproduced the seasonal trend in instream δ¹⁸O, although 
simulations overestimated the measurements (Fig. 4g-l). On the other hand, sine interpolation poorly 
reproduced rainfall isotopes during short-term flashy events and missed detailed characteristics of the 
tracer dataset by smoothing the variability in the observed δ¹⁸Op (Fig. 3). As a result, high values of tracer 
data in precipitation are underestimated, whereas low values are overestimated. It is critical to recognize 
these limitations when interpreting modeling results as uncertainty in the simulated δ¹⁸Op may conceal a 
more pronounced hydrological response of the system (Dunn et al., 2008, Birkel et al., 2010, Hrachowitz 
et al., 2011). 

Moreover, we acknowledge that sine-wave fitting of seasonal isotopic cycles is commonly used for 
estimating the young water fraction. However, the sine-wave function has been used in other studies to 
describe temporal variation in δ¹⁸Op (McGuire & McDonnell, 2006; Allen et al., 2019) due to the sinusoidal 
pattern characterizing δ¹⁸O. We have clarified this point in lines 161-165: 

… Second, we used a sine interpolation due to the fact that δ¹⁸Op samples typically exhibit pronounced 
seasonal variations with more depleted values in winter than in summer (Fig. 2). The sine-wave function 
has been used in several studies to describe temporal variation in isotope in precipitation (McGuire & 
McDonnell, 2006; Feng et al., 2009; Allen et al., 2019). 

Reference: 
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sinusoidal seasonality in precipitation isotopes, Hydrol. Earth Syst. Sci., 23, 3423–3436, 
https://doi.org/10.5194/hess-23-3423-2019, 2019. 

Feng, X., Faiia, A. M., and Posmentier, E. S.: Seasonality of isotopes in precipitation: A global perspective, 
J. Geophys. Res, 114, D08 116, https://doi.org/10.1029/2008JD011279, 2009. 
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https://doi.org/10.1029/2005WR004362, 2006. 

von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water 
fractions to hydro-climatic forcing and655 landscape properties across 22 Swiss catchments, Hydrol. Earth 
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Buzacott et al. (2020) employed a sophisticated temporal interpolation method in the SAS function 
modeling, namely the Generalised Additive Model (GAM), to perform gap-filling and estimate the 
uncertainty of the gap-filled data. They subsequently explored how this estimated input uncertainty 
propagated through the SAS model. I believe that this approach provided more informative insights 

https://doi.org/10.5194/hess-22-3841-2018


compared to utilizing multiple methods that include the uncommon practice of fitting the sinusoidal 
function in the SAS function modeling. 

Thank you for raising this interesting point. We tested the GAM for the reconstruction of both kriged and 
raw δ¹⁸Op used in this study; our findings can be seen below. 

 

Fig 1: Predicted δ¹⁸Op via GAM with kriged (left) and raw (right) data. 

 

Fig. 2: Simulated instream δ¹⁸O from GAM. 

 

Fig. 3: Simulated TT₅₀ from GAM. 

Our results show that in our analysis GAM generally produced a closer fit to the input tracer data (Fig. 1 in 
this document) compared to sine interpolation (Fig. 3 in the revised manuscript). However, when analyzing 
the temporal evolution of simulated instream δ¹⁸Op (Fig. 2 in this document) and TT₅₀ (Fig. 3 in this 
document) using the same SAS function and spatial representation of δ¹⁸Op, GAM did not lead to 



significantly different SAS model results in comparison to sine interpolation (Fig. 4g-l and 6g-l in the 
revised manuscript). Furthermore, the magnitudes of uncertainty in δ¹⁸Op and TT₅₀ are generally 
comparable, except in the case of TT₅₀ when PLTV is utilized.  

We conclude that the improved input reconstruction by GAM does not provide significantly improved SAS-
model output (probably due to the conceptual simplifications inherent to the SAS-model) and, in turn, new 
insights or conclusions in our study. Indeed, similar to what found when using step function and sine 
interpolation, the time-variant SAS functions (PLTI and BETATI) show moderate fluctuations in the TT₅₀ 
time series compared to the time-variant function (PLTV), whereas the uncertainty is generally higher 
during low flow conditions. Therefore, in this study we decided to maintain step function and sine 
interpolation as the two techniques for reconstructing tracer data in time, as they allowed us to explore the 
specific effects of general seasonality (sine function) and individual measurements (step function), while 
evaluating their influence on generating distinct results. However, we acknowledge the existence of other 
interpolation methods, such as the GAM suggested by the reviewer, and have included the results for GAM 
in the Supplement of the revised manuscript for comparison (lines 339-346): 

It is important to note that alternative methods, such as Generalized Additive Models (GAM; Buzacott et 
al., 2020) offer other options for interpolating tracer data. We conducted further tests with the SAS model 
using GAM to reconstruct both kriged and raw δ¹⁸Op using smoothing functions; this provides a more 
sophisticated approach than the intuitive methods used in this study. However, the results, available in the 
Supplement, show that while GAM provided more detailed reconstructed input tracer data (Fig. S1), it did 
not significantly alter the SAS-based results (Figs. S2 and S3) or yield any new insights or conclusions with 
respect to using step function and sine interpolation. Therefore, we conclude that while highly resolved 
input data may seem appealing, it does not lead to substantial benefits for the SAS-based output, supposedly 
due to the conceptual simplifications in the SAS model. 

If the authors still intend to present the results using the sinusoidal function, it is essential for them to 
provide a compelling argument justifying the necessity of using the sinusoidal function over other methods 
that have been applied for the gap-filling, despite the concerns and points I have raised earlier. Without 
that, I worry that others could argue that the presented large uncertainty (or the significant differences in 
the median transit time, e.g., L511-512) is just because the temporal interpolation method utilizing the 
sinusoidal function was poorly performing. 

Please see our answers above for further clarification. Here we would like to add that because of the 
uncertainties and potential errors in the observed data, determining the best temporal interpolation method 
is a challenge and is outside the scope of this study; our primary objective is to explore the uncertainties 
arising from different, commonly used choices in the model setup. Additionally, our main results regarding 
the uncertainty of the SAS modeling approach remain consistent, even when comparing our more simplistic 
reconstruction methods of δ¹⁸Op with the use of GAM. Finally, despite the limitations, sine interpolation 
reasonably captures the essential characteristics of the tracer input signal for the SAS model at a hand. 

2. Spatial Interpolation: Conclusion regarding the use of spatial rainfall tracer data 

Despite having rainfall data from multiple locations, the authors have chosen to only present results for two 
cases: 1) the SAS model result using the data collected around the outlet, and 2) the result obtained by using 
spatially interpolating values based on data collected at 24 locations using kriging. The decision to focus 
solely on these two rainfall tracer time series is unfortunate and appears to underutilize the full potential of 
the dataset. 

Thank you for raising these relevant concerns on the spatial distribution of isotopes in precipitation. 



In our study, we investigated two contrasting spatial representations of δ¹⁸O to compare their effects on 
model performance, results, and uncertainty. We examined a simple approach using single point δ¹⁸O 
measurements taken at the catchment outlet and a more sophisticated method involving spatial interpolation 
of δ¹⁸O with kriging based on multiple locations, including stations outside the catchment boundary to 
capture regional precipitation patterns. This analysis allowed us to evaluate the influence of spatial 
variability on SAS-based results. Exploring these two contrasting approaches in spatial representation of 
δ¹⁸O aligns with the use of two contrasting temporal interpolation methods, one focusing on seasonality and 
the other on individual measurements. We have clarified this point in lines 150-152: 

By considering these two options for spatial representation of δ¹⁸Op, we intend to assess the range of 
uncertainty in the simulated outputs between two opposing cases i.e., raw isotopes representing the simplest 
approach and kriged isotopes derived from a more sophisticated method. 

While there are certainly other choices for tracer data or interpolation techniques that could be explored, 
we had to make a choice for our experimental design and selected these two cases to provide insights into 
the research question, i.e., are SAS models affected by whether δ¹⁸Op is collected at a single location within 
the catchment or at multiple locations? We have emphasized this point in lines 152-155: 

While there are other possibilities for spatial representation of δ¹⁸Op, our choice allows us to effectively 
address our research question regarding the effects on SAS models of tracer data in precipitation collected 
at a single location within the catchment or spatially interpolated from multiple locations. 

It remains unclear whether the authors would reach the same conclusion when utilizing other rainfall time 
series collected at different locations (for their ‘raw’ case). Consequently, it is unclear what meaningful 
insights can be gleaned from the presented results.  

What was the reasoning behind exploring the two cases (e.g., for the ‘raw’ case, why is the location close 
to the catchment outlet selected)?  

Figure 4 in this document shows raw δ¹⁸Op measured at various locations in the Upper Selke, revealing 
minimal spatial variability. In our study, we particularly focused on using raw data from the outlet. While 
we could have opted for another location, we chose the station close to the gauge at the outlet in the 
lowlands, assuming that at this location a precipitation collector would most likely be found in most 
catchments. Logistically, sampling instream δ¹⁸O at the outlet is common practice as it is the location where 
all precipitation inputs across the catchment are integrated into streamflow. For convenience, also 
precipitation is often monitored at or near the gauging station at the outlet. We acknowledge that this 
approach may not be the best practice in catchments where several precipitation stations exist, as it has its 
own limitations, and we stated this at lines 353-356. However, it is important to note that our goal was not 
to determine the best approach for the spatial representation of δ¹⁸Op (even the absence of interpolation) 
but rather we aimed to compare two contrasting methods to examine differences in SAS-based outcomes 
and uncertainties. 

We have provided further clarification on this point in lines 139-142: 

The selection of δ¹⁸Op at the outlet assumes a precipitation collector close to the stream gauge at the outlet, 
which is a common occurrence in many catchments for logistical reasons. Indeed, the outlet, where 
instream δ¹⁸O is sampled, serves as location where all precipitation inputs across the catchment are 
integrated. For convenience, precipitation monitoring is also often conducted at or near the gauging station 
at the outlet. 



  

Fig. 4: Measured δ¹⁸Op (left) from the four precipitation collectors in the Upper Selke (right). 

Why do the two rainfall tracer time series presented in Figure S1 are similar?  

In our study, we found that differences between the δ¹⁸Op time series reconstructed using step function and 
sine interpolation methods were similar, except for a slightly more depleted signal in the kriged δ¹⁸Op due 
to the inclusion of isotopes from higher-altitude locations within the kriging process. This could be different 
for other catchments and it is outside the scope of the study to test the accuracy/representativeness of 
specific interpolation methods. 

While there were no significant differences in the evolution of the TT₅₀ time series and instream δ¹⁸O 
between the two methods for spatial representation of δ¹⁸Op, higher uncertainty was observed when using 
raw δ¹⁸Op. This highlights the potential advantages of spatial interpolation over the simplistic use of δ¹⁸Op 
from a single location, particularly with step function. This finding shows how relying solely on model 
performance (Fig. 5 in the revised manuscript) may not reveal the increased uncertainty associated with the 
single-station method (or other chosen methods). By incorporating uncertainty analysis, it is possible to 
make informed decisions about the most suitable representation/interpolation method for a specific 
application. 

Taking this into consideration, we have revised the text to emphasize the distinct implications of using raw 
and kriged δ¹⁸Op in SAS models. 

Lines 12-14: 

The large 95% CI and the notable differences across the tested setups highlight the sensitivity and, in turn, 
uncertainty of predicted TT₅₀ associated with the model parameterization, choice of temporal interpolation 
of input data, hydrologic conditions and non-spatially interpolated δ¹⁸Op. 

Lines 347-358: 

The spatial representation of δ¹⁸Op values had limited impact on the overall pattern of simulated TT₅₀ as 
the TT₅₀ time series were comparable with both kriged (Fig. 6a-c and g-i) or raw (Fig. 6d-f and j-l) δ¹⁸Op. 
Nonetheless, the spatial interpolation of δ¹⁸Op from different locations resulted in a reduction in the 
uncertainty of TT₅₀, which was particularly evident with step function. This difference may be attributed to 
the fact that the Upper Selke is a large (mesoscale) catchment with a substantial gradient in elevation, and, 
as a consequence, a single point measurement for δ¹⁸Op may be generally overly simplistic. 

This finding highlights the importance of considering not only the model performance in terms of goodness-
of-fit (Fig. 5; raw values with a step function interpolation produced higher KGE values), but also the 
uncertainty range in predicted TT₅₀. 
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Lines 376-379: 

Furthermore, our results highlight the importance of gaining tracer datasets of good quality (i.e., tracer 
data with a finer temporal resolution), considering the spatial variability of the isotopic composition in 
precipitation and, possibly, employing a model parameterization that best describes the catchment-specific 
storage and release dynamics. 

When should we expect a spatially interpolated value to be similar to at-a-point measurement and when we 
shouldn’t? 

The spatially interpolated δ¹⁸O used in this study were obtained by applying kriging with altitude as external 
drift (work done in Lutz et al., 2018) on a set of stations that also includes some stations outside the 
catchment boundaries, after which a catchment-average of the kriged values was obtained. This was done 
because the isotopic composition can vary with altitude due to factors such as temperature. The kriging 
process predicts isotopes at unknown locations by using isotopes which are known only at given locations 
of the study area. In our study, we found that the values for kriged and spatially averaged δ¹⁸Op are slightly 
more negative than raw δ¹⁸Op, as the raw δ¹⁸Op at the multiple locations (partially in the mountainous area) 
considered in the kriging process are more negative than the raw δ¹⁸Op measured at the catchment outlet 
(in the lowland part) of the study area.  

The above points have been incorporated at lines 144-149: 

The spatial interpolation was conducted in Lutz et al., (2018) using δ¹⁸Op from 24 precipitation collectors 
spread over the larger Bode region, and altitude as external drift. In a further step, the kriged δ¹⁸Op were 
weighted with spatially distributed monthly precipitation to obtain representative estimates for the study 
catchment. In our study, the kriged (and spatially averaged) δ¹⁸Op resulted in slightly more negative values 
than the raw δ¹⁸Op from the catchment outlet (Fig. 2 and 3) because of the inclusion of more depleted δ¹⁸Op 
values from locations with higher altitudes during the kriging process. 

I personally like the arguments provided in L392-395 as they read like the additional information (the 
information used in the kriging) is valuable in the SAS function model (though unclear if the authors would 
get to the same conclusion if they chose another location for the ‘raw’ case). However, it is not clearly 
stated in the Conclusion section (e.g., in L516-519). That part of the Conclusion may be to be modified. 

We revised the part about spatial interpolation in the Conclusions section on lines 4566-470: 

Finally, there was a comparable pattern in the modeled results when using kriged versus raw isotopes, but 
the kriged values yielded an uncertainty reduction in TT₅₀. This highlights the potential advantage of 
spatially interpolated values over a single measurement representative of the entire catchment, particularly 
in mesoscale catchments varying in elevation. 

3. Other comments 

Figures S1 and S2: The figures illustrate one of the most important results, i.e., the interpolation results. It 
would greatly enhance the manuscript's comprehensibility if these figures were included in the main 
manuscript not in the supplement, as they are essential to understand the study. 

Figures S1 and S2 have been moved from the Supplement to the main text and now represent Figures 2 and 
3, respectively. 

L224: The meaning of '2.5% and 97.5% CIs' is unclear. 



We have clarified the meaning of ‘2.5% and 97.5% CIs’ by writing in lines 202-206: To assess the range 
of possible behavioral solutions and understand the level of uncertainty associated with the solutions, we 
computed the 95% Confidence Interval (CI), which was derived by calculating the values of the 2.5% and 
97.5% percentile of the cumulative distribution in the time series of the output variables. These values 
represent the lower and upper limits of the CI, respectively. 

L227: The definition provided for 'backward' median transit time seems to align more with the definition 
of ‘forward’ median transit time. 

The median transit time is the time it takes for half of the water particles to leave the system; the backward 
representation relates to the ages of water particles leaving the system at a given time, thus they are 
considered in terms of the distribution of entrance times. Therefore, at lines 208-209 we have revised the 
text on the backward median transit time as: the time it takes for half of the water particles to leave the 
system as streamflow at the catchment outlet. 

L356-357: I would recommend removing such trivial and somewhat unrelated results and interpretations 
from the manuscript. 

L505-507: The same argument repeated in the Conclusions section. It is unclear if this trivial statement is 
relevant to the uncertainty explored in this study. 

L356-357, L505-507: I noticed that I have already provided the same comment for the previous manuscript. 
I still do not see the relevance of this argument in this study. If the authors think that the argument is 
necessary, please explain how you arrived at the argument based on the findings presented in this study. 

In the revised manuscript we have removed results and interpretations referring to the suitability of a time-
invariant or time-variant SAS function depending on the presence or absence of pronounced seasonality in 
hydrological conditions.  

Figure 3: Please correct the legend. 

We have corrected the legend. 

L402: The term 'uniform' may not be appropriate here. It seems that the authors are referring to potential 
event-to-event variations in the flow pathway during low-flow conditions. (Maybe I am wrong here.) 

The term ‘uniform’ in the phrase ‘...flows in the soil matrix are less uniform...’ refers to the variability of 
flow pattern and direction under dry conditions. We have clarified this in lines 362-378: 

… Conversely, under dry conditions, when usually only longer flowpaths carrying older water are active 
(Soulsby and Tetzlaff, 2008; Jasechko et al., 2017), water partially flows through a drier soil zone where 
flow is more erratic (i.e. flow directions and patterns can vary widely) as the conductivity is controlled by 
soil moisture. As a result, wet areas can be patchy and water flows preferentially at certain locations only, 
as opposed to spatially uniform flow through the soil matrix; this might make it more challenging to 
constrain older water ages. 

'raw' vs. 'kriged': Just a suggestion, it may be better with something like 'at-a-point' vs. 'kriged'. 

We chose to keep the term "raw" to emphasize that the isotopic observations were directly sampled without 
undergoing post-processing or adjustment. This distinguishes them from the kriged values, which involves 
additional processing. However, we also clarified in the manuscript that the term “raw” also refers to data 
from a single station only as opposed to an average value from multiple stations. 



L162-164: The use of ‘time steps’ in these sentences is confusing. It might be better to replace the first 
instance with something like ‘finer temporal resolution’. 

We have replaced time steps with a finer temporal resolution at line 156. 

L412: The meaning of “true” model parameterization is unclear. 

By true model parameterization, we refer to the type of SAS function (e.g. PLTI, PLTV or BETATI in our 
case study) that is best suited to describe the catchment-specific storage and release dynamics. To avoid 
misunderstandings, we have written best instead of true at line 378. 

L455-456: Not clear in what sense the median transit time has relevant implications for water ‘quantity’. 

The implications of median transit time for the water quantity we refer to are water storage, groundwater 
and hydrological processes, provided in Section 5.3 in the previous version of the manuscript. To make it 
clearer, we have rephrased this aspect in the revised version in lines 402-418:  

The value of TT₅₀ has relevant implications for both water quantity and quality, as does its uncertainty. The 
larger the 95% CI in the simulated TT₅₀, the greater the difference in the TT₅₀ values, which, ultimately, 
implies distinct hydrological processes, water availability, groundwater recharge and solute export 
dynamics (McDonnel et al., 2010). 

For example, knowing the TTD and its uncertainty may be crucial for characterizing the catchment's 
response to climatic change (Wilusz et al., 2017). Considering the increasing severity of droughts in the 
past decades (Dai, 2013), a catchment with a shorter TT₅₀ and a dominant release of young water might be 
more affected by droughts than a catchment with a longer TT₅₀ whose stream is fed by relatively old water 
sources. Therefore, a short TT₅₀ reveals a low drought resilience of the catchment and limited water 
availability, which could limit streamflow generation processes and change the instream water quality 
status during drought periods (Winter et al., 2023). Likewise, TTD uncertainty may affect the understanding 
of the water infiltration rate, hydrological processes and aquifer recharge, as a shorter TT₅₀ suggests that 
water is quickly routed to the catchment outlet rather than infiltrating deeply into the groundwater. Finally, 
TTD uncertainty can have an impact on the quantification of the modern groundwater age, i.e., 
groundwater younger than 50 years (Bethke and Johnson, 2008). According to (Jasechko, 2019) the correct 
identification of modern groundwater abundance and distribution can help determine its renewal (Le Gal 
La Salle et al., 2001; Huang et al., 2017), groundwater wells and depths most likely to contain contaminants 
(Visser et al., 2013; Opazo et al., 2016), and the part of the aquifer flushed more rapidly. 

 L489: What does 'data fitting' refer to here? 

Data fitting refers to tracer data interpolation. To be consistent with the rest of the text, we have changed 
data fitting to tracer data interpolation technique in time and space at line 438. 


