
We would like to thank the editor for allowing us to proceed with revising the manuscript, and we 
would like to express our appreciation to the reviewers for their valuable comments. We carefully 
considered all of the feedback we received and incorporated it into our revised manuscript, and 
have also made some minor changes of our own. Below you will find our point-by-point response 
(in blue text) to the reviewers' comments (in black text) as well as the changes we made in response 
to these comments (in bold blue text). 

Referee #1 

This paper presents an analysis of uncertainty in transit time distributions estimated using SAS 
functions, including that arising from the interpolation of input tracer data, and from the SAS 
function parameterization. Uncertainty of each configuration of model and input data is assessed 
from the range of predictions made by the top 5% of monte-carlo sampled parameter sets ranked 
by goodness-of-fit (KGE). The fraction of young water $F_{yw}$ obtained from the method 
proposed by Kirchner (2016) is used to further constrain the behavioral set. This paper aims to 
address an important gap in the literature. There is a need to better understand the uncertainty 
associated with SAS models, and how data can be best used to constrain them.  

We thank the reviewer for acknowledging the important gap in the literature (uncertainty induced 
by SAS parameterization and input data) that we want to address in this manuscript. 

However, I think there are two major problems with the approach used here, and I think the 
resulting conclusions are unsupported as a result. 

- I don't think it makes sense to use $F_{yw}$ to constrain the SAS model parameterizations. 

We appreciate this comment, and we understand the reviewer's concern that it seems it might not 
make more meaningful sense to use Fyw, derived using a relatively simple approach (the sine-
wave fitting approach), to constrain the results already run with the best available data obtained 
from a more “elaborated” model (the StorAge Selection – SAS approach). This is especially true 
as we cannot know if Fyw from the sine-wave approach is better than that from the SAS approach 
or not. We note, however, that the main goal of our study is to highlight the uncertainty in SAS-
based modeled results arising from model inputs, as well as underlying model structure and 
parameters – that have been not thoroughly evaluated yet in previous studies. The use of Fyw from 
the sine-wave fitting approach as an additional and minor part of the presented work, as an attempt 
to suggest a further metric that might be helpful in constraining the model simulations of an already 
calibrated SAS model. 

The reviewer’s comments have stressed the strong assumptions we have made in the use of Fyw 
as an additional model constraint. We agree that it may need a more elaborate procedure that 
considers the uncertainty in sine-wave fitted Fyw and corresponding age thresholds for young 
water (see below for further explanations) to relax some of these assumptions. Adding this to the 
revised manuscript would, however, put the focus too much on the use of Fyw and distract from 
the first and major part of the manuscript i.e. demonstrating the appreciable uncertainty in SAS 



modeling. Hence, we have decided to discard the part about Fyw from this manuscript and instead 
plan to develop and illustrate this approach more thoroughly in a different study. model. 

We have excluded the section on Fyw from this manuscript. 

- I think the use of top 5% KGE to define behavioural parameter sets makes it impossible to 
meaningfully compare the uncertainty of each configuration  

Thank you for this remark. As we understood, the reviewer suggests to use a fixed KGE value for 
defining the behavioral simulations, rather than fixing the sample size based on best 5% KGE, as 
we proposed. 

Firstly, by doing this, we will run into the same problem raised by the reviewer – these behavioral 
simulations do not have the same range in goodness-of-fit i.e. KGE. In fact, if we define the 
behavioral simulations as those with KGE ≥ 0.5, the range of KGE with setup 1 is KGE = [0.5, 
0.64], while for setup 4 IT is KGE = [0.5, 0.72] as it is possible to see in the range of behavioral 
KGE values in Fig. 2 of the original manuscript. Secondly, fixing the KGE threshold will lead to a 
different sample size per each model setup. For example, if we choose a fixed threshold limit of 
KGE ≥ 0.5, the behavioral solutions range between 1,300 and 2,700 across the 12 model setups. 
When looking at the uncertainty in the simulated outputs, the 90% confidence interval is wider for 
model setups that have a larger number of behavioral solutions than for those that have a smaller 
number. Therefore, a varying sample sizes would affect the uncertainty analysis. With a fixed 
sample size based on the 5% best KGE, we can ensure a meaningful comparison in uncertainty 
across the model scenarios. Also, we are still able to meet the requirement of a minimum acceptable 
KGE value (minimum KGE in the behavioral solutions across all tested setups is 0.57). 

Despite this, we acknowledge that fixing the sample size is not necessarily better than imposing a 
threshold limit as there will be always a tradeoffs and pros/cons of each of the chosen approaches. 
However, given (i) the arguments provided above, (ii) the objective of our study (showing the 
uncertainty in the modeled outputs arising from model inputs, structure and parameters, not 
identifying the best simulations) and (iii) the large number of model setups explored i.e. 12, we 
find it more appropriate to use the top 5% simulations. Therefore, we would like to keep the 
definition of behavioral solution in the way we proposed in the revised manuscript. Nevertheless, 
during the revision, we will make it clear the reasons regarding the chosen criterion by providing 
the supporting motivation described above.  

Also, as we understood from the reviewer, we cannot use the GLUE methodology if we consider 
the top 5% simulations as behavioral because “each behavioral set would have a different total 
likelihood associated with it (if a formal likelihood were estimated)”. Therefore, in the revised 
manuscript, we will use the informal likelihood (the Sequential Uncertainty Fitting Procedure – 
SUFI-2; Abbaspour et al., 2004), an approach that has been widely used for estimating parameter 
uncertainty of eco-hydrological models (e.g., the Soil and Water Assessment Tools – SWAT, 
Arnold et al., 2012). In this way, we will estimate the uncertainty for the top 5% best parameters 



which is described by a uniform distribution, and not by a formal likelihood such as done in GLUE. 
We have already checked differences in results with the SUFI-2 approach versus those with the 
GLUE approach, and we have found insubstantial differences in the model prediction uncertainty 
(see below for more details). 

Reference:  

Abbaspour, K. C., Johnson, C. A., & van Genuchten, M. T. (2004). Estimating uncertain flow and 
transport parameters using a sequential uncertainty fitting procedure. Vadose Zone Journal , 3 , 
1340–1352. https://doi.org/10.2136/vzj2004.1340.  

Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., ... 
& Jha, M. K. (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 
55(4), 1491-1508. 

We have modified our approach for identifying the behavioral solution from the GLUE 
methodology to the SUFI-2 approach. A description of the new method can be found in lines 
164-170: 

The informal likelihood of the Sequential Uncertainty Fitting Procedure (SUFI-2, Abbaspour 
et al., 2004) was applied to account for uncertainty in the SAS parameter sets and resulting 
modeled estimates. In SUFI-2, the uncertainty in model parameters and simulated results is 
represented by a uniform distribution, which is gradually reduced until a specific criterion is 
reached. In our study, we calibrated the values of model parameters until the predicted output 
matched the measured tracer data to a satisfactory level, defined by an objective function. We 
employed as objective function the Kling-Gupta efficiency (KGE, Gupta et al., 2009), and once 
the criterion of KGE>=0.5 was satisfied, we defined a set of behavioral solutions for each model 
setup.  

Furthermore, we have included an explanation for our decision to maintain the definition of 
behavioral solution based on the top 5% of simulations in terms of KGE. This can be found 
in lines 169-177: 

However, since the aim of this study is to investigate the impact of various sources of uncertainty 
on simulated outputs, rather than to determine the best model setup based on the model 
efficiency, we decided to set a fixed sample size and narrow down those solutions generated by 
SUFI-2 in the previous step. Setting a fixed sample size ensures comparability of results across 
the twelve tested setups, as different sample sizes could influence the uncertainty analysis. For 
example, the greater the number of behavioral solutions, the wider the uncertainty band. At the 
same time, by fixing the sample size, we can still meet the requirement of a minimum acceptable 
KGE value (KGE≥0.5).  

In this study, we determined the final behavioral solutions by using a fixed sample size that 
corresponds to the best 5% parameter sets and modeled results in terms of KGE. … 
 



# Major issues #  

# Use of $F_{yw}$ to constrain SAS models  

- I do not think it makes sense to use the young water fraction obtained from the sine-wave ratio to 
constrain a SAS model. Kirchner's method for this is useful for obtaining rough estimates of the 
fraction of water that is roughly a quarter of a year old from tracer time series. The method might 
be robust (in some sense) but it isn't precise. SAS models are a more complex and sophisticated 
tool that have the *potential* to provide a much more precise estimate of water age distribution 
from the same data. It doesn't make sense to me to use the outputs of a rough-and-ready model to 
constrain the parameters of a more precise one.  

Thank you for this comment. Please, refer to our response above for the proposed modifications 
in the revised manuscript. 

Here, we want to add that additional complexity to constrain models does not necessarily lead to a 
better result than the use of simple models. This, for example, has been demonstrated and supported 
in the hydrological community through different studies (Michaud and Sorooshian, 1994, Orth et 
al., 2015, Merz et al., 2022). Also, the reviewer argues that the sine-wave fitting approach is not 
precise. Although we cannot generally falsify this statement, it is also difficult to prove that it is 
fully correct given that the level of “preciseness” is difficult to assess for both approaches (sine-
wave fitting and SAS functions). To our knowledge, there are no studies proving that Fyw from 
the sine-wave fitting approach is not “precise”. Conversely, the sine-wave fitting approach has 
increasingly been acknowledged in the past years for estimating Fyw (Jasecko et al., 2016,  Lutz 
et al., 2018; von Freyberg et al., 2018 , Stockinger et al., 2019; Gallart et al., 2020). However, we 
agree that there is a need for a more rigorous testing to better understand, which approach provides 
a better estimate of Fyw based on the available data (same as done for the transit times in a recent 
paper by Benettin et al., 2022). Since this topic is out of the scope of current work, we will revise 
our work - excluding the part on Fyw discussion - and focus on the uncertainty in the SAS models. 

References:  

- Michaud, J. and Sorooshian, S. (1994) Comparison of Simple versus Complex Distributed Runoff 
Models in a Midsized Semi-Arid Basin. Water Resources Research, 30, 593–605, 
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We have excluded the section on Fyw from this manuscript. 

- I believe the fact that the authors do find that $F_{yw}$ has power to constrain the SAS 
parameters is largely because the uncertainty in the associated age threshold $\tau_{yw}$ is not 
accounted for. The method that $F_{yw}$ relies on is based on a variety of assumptions, including 
that the inputs are sinusoidal and that the transit time distribution is approximately a gamma 
distribution. Two important *and distinct* sources of uncertainty here are:  

- The threshold age of the young water fraction $\tau_{yw}$ is not 75 days, as suggested by the 
authors. Rather it depends on the shape parameter of the assumed gamma distribution. As Figure 
10 of Kirchner (2016) shows, for a shape parameter of 0.2 it is around 40 days, while for a shape 
parameter of 2 it is more like 100 days. This considerable uncertainty is not accounted for in the 
present paper.  

- The estimates of amplitudes $A_q$ and $A_p$ obtained from fitting sinusoids to the observed 
tracer timeseries are uncertain, and that uncertainty ought to be estimated and propagated into 
uncertainty in $F_{yw}$. The authors may have accounted for this (if I understand the brief 
statement on line 165) but they claim that in doing so they have also accounted for the uncertainty 
in $\tau_{yw}$, which is not the case. These errors are independent of each other. The errors 

https://doi.org/10.1002/hyp.13806
https://doi.org/10.1029/2022WR033096


obtained for $F_{yw}$ were only 0.07-0.08 (line 325), which I suspect contributes far less 
uncertainty than the 60-day window bracketing $\tau_{yw}$ paper.  

Thank you for the above observations on the uncertainty in Fyw and the young water threshold 
($\tau_{yw}$). Although we will remove the Fyw part from the manuscript, we acknowledge that 
the uncertainty in $\tau_{yw}$ was not properly addressed in our original manuscript. We agree 
with the reviewer that not only the uncertainty in Fyw (which we accounted for in the original 
manuscript) should be considered, but also in $\tau_{yw}$ (which we did not) when fitting the 
sine function to the tracer data in inflow and outflow. 

We have excluded the section on Fyw from this manuscript. 

- Furthermore, the theory behind $F_{yw}$ and $\tau_{yw}$ rests on the assumption that flows 
through the system are steady, the transit time distribution is invariant, and that the input signal is 
a perfect sinusoid. These are not the case in general in real watersheds, which results in additional 
epistemic uncertainty into the estimates of $F_{yw}$ and $\tau_{yw}$. These particular sources 
of uncertainty do not necessarily apply to the SAS models, since they can allow for variable flows, 
variable transit time distributions, and make use of the observed input signal.  

Thank you for this comment. Although we will remove the Fyw part from the revised manuscript, 
we would like to comment on the aspect of the steady state assumption - correctly highlighted by 
the reviewer. In the original manuscript we first estimated the transient daily transit time 
distribution (TTD) and then derived the marginal TTD, from which we calculated the Fyw values. 
By estimating the marginal TTD, we assume to reflect the steady state behavior, though admittedly 
not perfect, but this could be a reasonable approach. To the aspects of the input signal and the 
transit time distribution, we agree with the reviewer that the isotope signal in inflow and outflow 
does not perfectly follow the sinusoidal as the marginal TTD might not perfectly follow a gamma 
distribution. Therefore, we acknowledge that the approach presented in the original manuscript has 
some limitations and there is uncertainty in Fyw (which we accounted for in the original 
manuscript) and in $\tau_{yw}$ (which we did not) when fitting the sine function to the tracer data 
in inflow and outflow. 

However, it could also be argued the other way around: SAS functions have uncertainties (e.g. lack 
of agreement on which model parameterization to use, equifinality of parameters, assumptions 
regarding age distributions of evapotranspiration) that, in contrast, do not apply to Fyw obtained 
with the sine-wave fitting approach. Indeed, we explored and highlighted some of these 
uncertainties in the current study (i.e. tracer data interpolation and choice for SAS 
parameterization), which have not been emphasized in detail in previous studies. 

We have excluded the section on Fyw from this manuscript. 

- In fact, it is possible to reproduce the model used to justify Kirchner's method as a SAS model. 
This can be done by approximating the flows as constant, replacing the inputs concentrations with 
sinusoids, and choosing a SAS function whose corresponding steady-state TTD is a gamma. From 



this perspective $F_{yw}$ and $\tau_{yw}$ can be viewed as outputs of a particular SAS model 
parameterization run with degraded data. Why should the results of that parameterization be used 
to constrain other parameterizations run with the best available data?  

Thanks for this observation. We agree with the reviewer that, being the SAS parameters already 
calibrated and being the model already run with the best available data, there may be no reason for 
further constraining the model with any additional metrics e.g. Fyw. For this reason, as we have 
already augmented in the first response, we will remove the Fyw part from the manuscript. 

We have excluded the section on Fyw from this manuscript. 

## Use of top 5% KGE as the 'behavioural' parameter set  

- The use of the top 5% KGE as the 'behavioural' parameter set makes it impossible to make 
meaningful comparisons between the different parameterizations (i.e. PLTI, PLTV, BETA). This 
is because the range of goodness-of-fit (i.e. the KGE) of each model's behavioral set depends on 
the size of the pool from which it was taken, in addition to how well it actually fits the data.  The 
range of KGE in the top 5% depends on the assumed prior distribution of the parameter set, since 
that determines what the 5% is a percentage of. Since each parameterization has fundamentally 
incommensurate parameters, there isn't an obvious way to normalize for this dependence across 
different parameter spaces. As a result each behavioral set would have a different total likelihood 
associated with it (if a formal likelihood were estimated). Comparing these different behavioral 
parameterizations therefore makes no sense, since they have been held to different standards.  

- One consequence of effectively holding each parameterization to a different standard is that the 
error associated with the more flexible parameterizations (PLTV, BETA) is larger than that 
associated with the less flexible one (PLTI), when we would expect the opposite to hold. This is 
particularly true given that PLTI represents a special case of both PLTV and BETA (when 
$k_{Q1}=k_{Q2}=k$ and when $\alpha=k, \beta=1$ respectively). However, as seen in Figure 2 
the behavioral sets of BETA (and to a lesser extent PLTV) seem to include models that are 
considerably worse fits to the data than the worst models in the behavioral set of PLTI.  

- To make meaningful comparisons between different parameterizations the analysis would need 
to be redone with a standard for 'behavioral' that is consistent across the different parameterizations. 
This might be as simple as choosing a cutoff value of KGE to define the behavioral set, but it would 
likely change the resulting conclusions about the merits of each parameterization.  

Thank you for this observation. Please, refer to our response above for the reasons why we want to 
keep the definition of behavioral solution based on the 5% best simulations in terms of KGE, and 
the proposed modifications in the revised manuscript. 

Here, we just want to show that there are no significant differences in the results with the SUFI-2 
approach compared to those with the GLUE approach for quantifying the model prediction 



uncertainty (e.g. as shown below for the simulated instream isotope and median transit times for 
one of the 12 tested model setups). 

 

 

We have modified our approach for identifying the behavioral solution from the GLUE 
methodology to the SUFI-2 approach. A description of the new method can be found in lines 
164-170: 

The informal likelihood of the Sequential Uncertainty Fitting Procedure (SUFI-2, Abbaspour 
et al., 2004) was applied to account for uncertainty in the SAS parameter sets and resulting 
modeled estimates. In SUFI-2, the uncertainty in model parameters and simulated results is 
represented by a uniform distribution, which is gradually reduced until a specific criterion is 
reached. In our study, we calibrated the values of model parameters until the predicted output 
matched the measured tracer data to a satisfactory level, defined by an objective function. We 
employed as objective function the Kling-Gupta efficiency (KGE, Gupta et al., 2009), and once 
the criterion of KGE>=0.5 was satisfied, we defined a set of behavioral solutions for each model 
setup.  

Furthermore, we have included an explanation for our decision to maintain the definition of 
behavioral solution based on the top 5% of simulations in terms of KGE. This can be found 
in lines 169-177: 

However, since the aim of this study is to investigate the impact of various sources of uncertainty 
on simulated outputs, rather than to determine the best model setup based on the model 
efficiency, we decided to set a fixed sample size and narrow down those solutions generated by 
SUFI-2 in the previous step. Setting a fixed sample size ensures comparability of results across 
the twelve tested setups, as different sample sizes could influence the uncertainty analysis. For 



example, the greater the number of behavioral solutions, the wider the uncertainty band. At the 
same time, by fixing the sample size, we can still meet the requirement of a minimum acceptable 
KGE value (KGE≥0.5).  

In this study, we determined the final behavioral solutions by using a fixed sample size that 
corresponds to the best 5% parameter sets and modeled results in terms of KGE. … 
 
# Minor issues 

- Line 57: The gamma distribution has also seen some use 

We will add the gamma distribution to the list of commonly used parameterizations employed to 
approximate the SAS functions.  

We have added the gamma distribution and have written: Finally, SAS functions, employed 
to model TTDs, must be parameterized and commonly used parameterizations are the power law 
(Benettin et al., 2017; Asadollahi et al.,60 2020), beta (van der Velde et al., 2012; Drever and 
Hrachowitz, 2017) and gamma (Harman, 2015; Wilusz et al., 2017) distribution. This can be 
found at lines 65-66. 

- Line 64: I don't think that the statement that $F_{yw}$ is useful for short-term data is quite right, 
since the method does require data covering multiple cycles of sinusoidal variation to fit to reliably 

As we will remove the Fyw part in the revised manuscript, this phrase will not be part of the revised 
manuscript.  

We have excluded the section on Fyw from this manuscript. 

- Line 111: $S_{T_0}$ is a function of age: $S_{T_0}(T)$  

We will change $S_{T_0}$ to $S_{T_0}(T)$.  

We have written $S_{T_0}(T)$. This can be found at lines 111 and 114. 

- Line 130: $k_{Q1}$ and $k_{Q2}$  

Here we do not use the subscript Q referring to streamflow, because we describe the parameters of 
SAS functions in general, without referring to a specific flux. Therefore, we prefer to leave k rather 
than kQ in lines 127-131. However, in the rest of the text, we specify which parameterization (e.g. 
PLTI and PLTV) we apply to each flux (i.e. streamflow and evapotranspiration), so we write kQ, 
kQ1, kQ2 and kET.  

We have kept the k parameter rather than with the subscript Q or ET. This can be found at 
lines 129-131. 

- Table 2: Why are $k_{Q1}$ and $\alpha$ grouped together? Same with $k_{Q2}$ and $\beta$  



There is no specific reason: we simply decided to group kQ1 with alpha and kQ2 with beta because 
the two correspond to the shape parameters of PLTV and BETA, respectively. Upon the reviewer’s 
suggestion, we will disaggregate them into separate rows (in Table 1) in the revised manuscript.  

We have disaggregated $k_{Q1}$ and $\alpha$, as well as $k_{Q2}$ and $\beta$ from the 
same rows in Table 2. 

- Line 188: Is $TT_{50}$ is the median of the *backward* transit time distribution $p_Q(T,t)$ as 
defined in equation (5)? In that case this statement is incorrect, and should be "the maximum time 
elapsed *since* the youngest 50% of the water in outflow first entered the catchment", or perhaps 
"the age that half the outflow is older than, and half younger than, as measured from the time it fell 
as precipitation".  

Here we consider the backward formulation of the transit time distribution. We will clarify this in 
line 188 and modify the definition of median transit time accordingly.  

We have re written: …and backward median transit time (TT50 (days), i.e., the maximum time 
elapsed until the youngest 50% of the infiltrated water is transferred to the outflow). This can 
be found at lines 180-181. 

- Figure 3: A legend explaining the colors and a reference to Table 1 would aid interpretation here  

We will add a legend and a reference to Table 1 in Fig. 3.  

We have added a legend and a reference to Table 1 and Fig. 3. 

- Line 221: Parameters for the *SAS function* of $Q$...  

We will add ''SAS functions'' in the revised manuscript.  

We have re written: Parameters for the SAS functions of Q (i.e., kQ, kQ1, kQ2, α and β)… 
This can be found at line 213. 
 
Referee #2 

In this study, the authors studied the uncertainty in transit time estimation. Two sources of 
uncertainty were considered: the assumed shape of the StorAge Selection (SAS function (and the 
uncertainty in the associated parameters) and the interpolation scheme for the precipitation tracer 
data. The reported uncertainty is large, resulting in a 90% confidence interval between 286 – 895 
days for the median transit time. The uncertainty was greater in dry conditions than in wet 
conditions. The uncertainty depended more on the SAS function parameterization and the temporal 
interpolation of the precipitation tracer data than the spatial interpolation of the precipitation tracer 
data. Importantly, the authors argued that it could be useful to utilize the young water fraction, 
Fyw, in estimating the SAS function parameters, as it could constrain the SAS function and reduce 
uncertainty.  



Thank you for this summary. The main intent of this paper is to explore the uncertainty in the and 
simulated isotopes and median transit times arising from the differences in model inputs, structure, 
and parameters. In our case, we want to study the uncertainty when different interpolation 
techniques are used to construct the high-frequency behavior of tracer data, for the application of 
SAS-based modeling framework. The use of Fyw is a subordinate objective as an attempt to suggest 
a further metric that might be helpful in constraining the model simulations of an already calibrated 
SAS model. 

Though understanding the uncertainty in the SAS function and transit time is important, it is 
unclear what readers could learn from this manuscript in its present form other than the 
summarized results above for the specific catchment. As the results were not discussed enough in 
detail, it is not easy to think about their implications (see major comment 1). The suggestion of 
using the young water fraction in the SAS function estimation is interesting, but the authors’ 
argument regarding using it must be more convincing (see major comment 2). In addition, some 
additional potential sources of uncertainty should be considered or mentioned explicitly (see my 
major comment 3). Recent advances in estimating transit should be mentioned (see my major 
comment 4). Thus, I think a significant revision is required before this manuscript can be 
considered for publication in HESS again. 

Thank you for raising these issues. We agree with the reviewer that these issues were not addressed 
properly in the original manuscript; therefore, we will revise the manuscript accordingly. Please 
see below our detailed responses to these comments. 

• Discussion of the results 

I think it is necessary to discuss the results further to make the implications of this study clearer. 
The current manuscript focuses more on describing the results for the specific catchment and 
dataset than discussing the results, so it is not easy to think about those implications. For example, 
why is the uncertainty in the estimated TTD (or the median transit time) large? Why is the 
uncertainty greater under drier conditions? Why does the spatial interpolation method not 
substantially affect the water age simulation? Without discussing that type of question for each 
finding, it is not easy to truly understand the described results.  

Thanks for this comment. We would like to point out that the original manuscript has already an 
entire subsection (5.4) that discusses the implications of uncertainty in water transit times for water 
quantity and quality studies. However, we agree with the reviewer that further discussion, including 
the points mentioned above, should be included in the revised manuscript, and they are outlined in 
the following. 

Previous studies used only a specific SAS function and/or specific tracer data interpolation 
technique. Our work shows that there could be a wide range of different results (in terms of water 
age and instream isotopes, as well as model performances), and parameter uncertainties due to 
distinct model setups regarding SAS parameterization and tracer data interpolation technique, at 
least for our study area. With this, we want to encourage similar studies in other catchments to 



explore these uncertainties and examine whether or not they can influence their 
conclusions/implications for water quality and quantity management. 

We would like to specifically address the questions posed in the comment in the revised manuscript 
as follows: 

1) Firstly, the uncertainty analysis is done among all 12 tested setups corresponding to different 
combinations of spatial/temporal data interpolation techniques and SAS functions. We found that 
the uncertainty in the median transit time is large (Fig. 4), which is mainly due to the temporal 
interpolation of isotopes, which resulted in very different reconstructed input data depending on 
whether the step function or sine interpolation is used (Fig. S2). This explains why the simulated 
water transit times are different between the two interpolations or, in other words, why the 
uncertainty in the water transit time is large. Then, the choice of which SAS function to use also 
leads to differences in the simulated water transit times (Fig. 4), thus large uncertainty associated 
with the model parameterization. For example, choosing a time-invariant function created a time 
series with more moderate fluctuations (Fig. 4a, c, d, f, g, i, j and l), while the choice of a time-
variant function led to more marked fluctuations (Fig. 4b, e, h, k), specifically between wet and 
dry conditions. 

Secondly, the uncertainty analysis is done among the behavioral solutions within each single model 
setup. Here, we also found a large uncertainty which might be due to the poor identifiability of 
some model parameters (Table S1), such as the evapotranspiration parameter and the storage 
parameter - the latter being a key factor that deserves further attention in the application of the SAS 
framework for modeling outflow isotope signals.  

2) We found greater uncertainty under drier conditions especially visible when using time-variant 
SAS functions (Fig. 4b, e, h, k), because the uncertainty increases along with the median transit 
time (Fig. 4), which is actually longer during drier periods. When the catchment is wetter nearly 
all flow paths are active and contribute to the streamflow. Thus, flows are generally "smoother" 
and water ages are easier to constrain. Conversely, under dry conditions only selected flow paths 
are active, usually those longer flow paths carrying older water to the stream partly through a drier 
soil zone, where the flow is more erratic as the conductivity is controlled by the soil moisture. 
Hence, the flows in the soil matrix are less uniform, which could make it more difficult to constrain 
these older water ages. We will further elaborate this part in the revised manuscript. 

3) The spatial interpolation method did not substantially affect the simulations (at least in our 
particular case) because there is no big difference between kriging and raw isotopes as it is possible 
to see in Figs. S1 and S2.  

Reference: 

Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo, A. (2017), Using SAS 
functions and high-resolution isotope data to unravel travel time distributions in headwater 
catchments, Water Resour. Res., 53, 1864– 1878, doi:10.1002/2016WR020117.  

https://doi.org/10.1002/2016WR020117


We have better discussed the implications of our work, and stated how there could be a range 
of possible outcomes in terms of water ages, instream isotopes, and model performance, as 
well as parameter uncertainties resulting from different model setups. We have encouraged 
similar studies in other catchments to investigate these uncertainties and their impact on 
water quality and quantity management recommendations. This can be found at lines 369-
375: 

While previous studies have used only a specific SAS function and/or specific data fitting 
technique, here we show that there could be a wide range of different results in terms of water 
ages, model performances and parameter uncertainty. This is due to the specific choice 
regarding SAS parameterization and tracer data interpolation. With this, we want to convey that 
uncertainty is omnipresent in TTD-based models, and we need to recognise it, especially when 
dealing with sparse tracer data and multiple choices for model parameterization. Therefore, we 
want to encourage future studies to explore these uncertainties in other catchments and different 
geophysical settings, with the final aim to investigate whether these uncertainties may affect the 
conclusions of water quantity and quality studies for management purposes. 

We also have thoroughly explained how we conducted the uncertainty analysis across the 12 
different tested setups. We have emphasized which aspects or conditions have a greater (e.g., 
choice in SAS function, temporal interpolation and dry conditions) or smaller (e.g., spatial 
interpolation) impact on the uncertainty of median transit times. This can be found at lines 
261-310. 

Overall, it needs to be clarified if the use of Fyw constrained the SAS function parameters in the 
right way.  

Thank you for this comment. We agree with the reviewer that, in general, the robustness in Fyw 
from the sine-wave fitting approach to constrain SAS function parameter should be checked, for 
example, by looking at the simulated isotopes and model efficiencies from the SAS framework 
after constraining with Fyw. This can allow us to know if Fyw reduces the model outputs towards 
the ‘right’ or ‘wrong’ values. However, developing this in a more elaborate approach, which also 
considers the uncertainties associated with Fyw and the young water threshold (τyw) would go 
beyond the scope of this paper. So, we do not intend to present the use of Fyw in the revised 
manuscript, but we plan to develop a more elaborate way to account for uncertainties in Fyw and 
τyw in another study. Please also refer to the more elaborate response in the other reviewer's 
comments document. 

We have excluded the section on Fyw from this manuscript. 

The authors somehow decided to state that the estimated young water fraction indicates the fraction 
of water younger than τyw = 75 days (in L171). However, as the authors mentioned, for example 
in L171 and L256, the method of Kirchner (2016) does not provide a single value for τyw that can 
be utilized universally. Rather, it varies with the shape of TTD. While the authors argued that the 



arbitrary decision is okay since they considered the uncertainty in the estimated Fyw (in L 171-
172), that argument was made without clear reasonings that support it. 

Thank you for this observation. We acknowledge that the uncertainty in τyw was not properly 
addressed in the original manuscript. We agree with the reviewer that, in general, there is the need 
to consider the uncertainty in both Fyw (which we accounted for in the original manuscript) and 
τyw (which we did not) when fitting the sine function to the tracer data in inflow and outflow. 
However, as we have already said, there is need to develop this in a more elaborate way that would 
go beyond the scope of this paper, so we do not intend to present this in the revised manuscript. 
Please also refer to the more elaborate response in the other reviewer's comments document. 

We have excluded the section on Fyw from this manuscript. 

Also, it needs to be clarified if the estimated Fyw based on the method of Kirchner is a good 
estimate that can be used to constrain the SAS function. The method of Kirchner is based on a set 
of assumptions. It seems like the authors want to argue that it's okay to use the estimate regardless 
of all assumptions because the estimated uncertainty of Fyw is low, but I think it would be better 
if the authors could provide more concrete arguments to convince readers why it's okay. Why is 
the uncertainty low? And how does the low uncertainty support that the estimate is a good estimate 
regardless of all the assumptions? In addition, the method approximates the precipitation and 
outflow tracer signal using sinusoidal functions, which was shown to be not a good approximation 
for the precipitation tracer data by the authors in this manuscript (e.g., in L305-308).  

Thank you for this comment. As explained above, in the revised manuscript we do no longer 
present this approach. We agree with the reviewer that, in general, the assumptions of the sine-
wave fitting approach do not apply to SAS modelling. For example, the isotope signal in inflow 
and outflow might not perfectly follow the sinusoidal and the marginal transit time distribution 
might not perfectly follow a gamma distribution. Therefore, there is uncertainty in the use of Fyw 
from the sine-wave fitting approach. We partly accounted for it in the original manuscript, but there 
is need of a more elaborate method that would go beyond the scope of this paper. Please also refer 
to the more elaborated response in the comments document of the other reviewer. 

We have excluded the section on Fyw from this manuscript. 

It also seems that the uncertainty in Fyw could depend on the temporal resolution of data (if the 
finer resolution data shows more deviation from the sinusoidal signal) and other properties that the 
authors mentioned in L348-350. Overall, based on the limitation discussed by the authors (in L348-
350), I feel that the authors are unsure whether the utilization of Fyw will be useful for other 
datasets.  

Thank you for raising this point. It is true that collecting temporally refined tracer data could 
potentially help infer a more robust Fyw from the sine-wave fitting approach. However, it has been 
demonstrated that Fyw is the only approach that can robustly estimate some age statistics for 
discontinuous and low-frequency tracer time series for at least 2-3 years (Benettin et al., 2022). 
Low-frequency measurements are more readily available than high-frequency measurements, 



especially over a wide spatial domain. For this reason, Fyw has the advantage to be much more 
largely applicable, and its use from less temporally refined tracer data should be acknowledged and 
further explored. There is certainly a need to account for its uncertainties but, as we will no longer 
include Fyw, there is no need to make this clearer in the revised manuscript.  

Reference:  

Benettin, P., Rodriguez, N. B., Sprenger, M., Kim, M., Klaus, J., Harman, C. J., et al. (2022). 
Transit time estimation in catchments: Recent developments and future directions. Water Resour. 
Res., 58, e2022WR033096, https://doi.org/10.1029/2022WR033096. 

We have excluded the section on Fyw from this manuscript. 

• A minor comment related to Fyw 

L163-164: The method used to estimate Fyw was described too briefly. For example, L163-165 is 
not enough for readers to understand the method. 

Thank you for this observation. As we will remove the Fyw part, so there is no need to make this 
point clearer in the revised manuscript. 

We have excluded the section on Fyw from this manuscript. 

• Other sources of uncertainty 

I believe that the uncertainty in precipitation, discharge, and evapotranspiration rates could 
propagate into the uncertainty in the estimated SAS function. The list of potential sources of 
uncertainty provided by the authors (L39-43) needs to include them. It would be helpful for readers 
if the authors provided a more concrete list of potential sources of uncertainty. Also, it would be 
essential to provide why this manuscript, where the authors consider only a few sources of 
uncertainty, is still useful.  

Thank you for mentioning this. We agree with the reviewer that the uncertainty in precipitation, 
discharge, and evapotranspiration rates could propagate into the uncertainty in the estimated SAS 
functions. However, in the current study, we do not consider these sources of uncertainty as we use 
the hydrologic simulations from the mesoscale Hydrologic Model (mHM, Samaniego et al. (2010); 
Kumar et al. (2013); Zink et al. (2017)), which is an established model to simulate daily discharge 
and evapotranspiration time series. However, we agree with the reviewer’s suggestion to include 
in the revised manuscript this type of uncertainty in the list of potential sources of uncertainty 
affecting transit time-based models.  

We have decided to focus on only a few sources of uncertainty that we think are the most significant 
and critical for SAS modelling, and also the most linked directly to the questions of data 
interpolation and SAS parameterization. Firstly, since there is no general agreement on which SAS 
function to use, we explored the uncertainty generated by the use of different SAS functions (i.e. 
model parameterization and parameters). Secondly, as SAS modelling requires continuous time 
series of input tracer data, we tested how different gap-filling techniques (i.e. temporal 

https://doi.org/10.1029/2022WR033096


interpolations) affect the model results. Finally, as the SAS models depend on the type of input 
data, we tested what happens when using regionalized or non-regionalized isotopic datasets (i.e. 
spatial interpolations). In the revised manuscript, we will make this part clearer in the Introduction 
and Discussion by emphasizing the reasons why we decided to explore these specific sources of 
uncertainty.  

Reference:  

Samaniego, L., Kumar, R., and Attinger, S. (2010) Multiscale parameter regionalization of a grid-
based hydrologic model at the mesoscale, Water Resour. Res., 46, W05 523, 
10.1029/2008WR007327, 2010. 

Kumar, R., Samaniego, L., and Attinger, S. (2013) Implications of distributed hydrologic model 
parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360–
379, 10.1029/2012WR012195. 

Zink, M., Kumar, R., Cuntz, M., and Samaniego, L. (2017) A high-resolution dataset of water 
fluxes and states for Germany accounting for parametric uncertainty, Hydrol. Earth Syst. Sci., 21, 
1769–1790, 10.5194/hess-21-1769-2017. 

We have included precipitation, discharge, and evapotranspiration rates as potential sources 
of uncertainty that can impact the results of transit time-based models. This can be found in 
lines 43-44: 

Additionally, uncertainty in the driving hydroclimatic fluxes such as precipitation, discharge, 
and evapotranspiration could propagate into the uncertainty of the modelling results. 

We have clarified the reasons behind our decision to focus on a limited number of sources of 
uncertainty in SAS modeling. This can be found in lines 55-71: 

… there are other aspects particularly significant for SAS modelling causing uncertainty in the 
simulated TTDs, which have not yet been thoroughly investigated. First, isotope data are 
generally sparse globally in space and time (von Freyberg et al., 2022), due to laborious and 
costly sampling campaigns limited to well-equipped areas (Tetzlaff et al., 2018). As SAS models 
require continuous time series of input tracer data, different methods for temporal interpolation 
could be used to fill gaps in isotope values in precipitation; consequently, the interpolated input 
data is subject to uncertainty. Furthermore, the input data of SAS models is influenced by 
whether the tracer data in precipitation are collected at a single location within the catchment, 
or at multiple locations. In the latter scenario, there is a need to account for the spatial variability 
of tracer composition in precipitation, which is commonly done via spatial interpolation. 
Choosing data from one approach (i.e., tracer data from a single location) over the other (i.e., 
multiple tracer data spatially interpolated) can potentially result in different resulting TTDs. 
Finally, SAS functions, employed to model TTDs, must be parameterized and their functional 
forms need to be specified a-priori. Commonly used forms are the power law (Benettin et al., 
2017; Asadollahi et al., 2020), beta (van der Velde et al., 2012; Drever and Hrachowitz, 2017) 



and gamma (Harman, 2015; Wilusz et al., 2017) distributions. However, there is no general 
agreement on which SAS function should be used since the hydrological processes that control 
the patterns and dynamics of the subsurface vary across catchments. Therefore, the most 
convenient approach is to simply rely on a specific parameterization over another, and estimate 
its parameters (Harman, 2015). All of these aspects, related to model input, structure and 
parameter, induce uncertainty in the simulated TTDs. To date, the role of these individual 
uncertainty sources and their combined effect on the modeled TTDs have not been adequately 
discussed. 

Also, at lines 259-260: 

In this study, we characterized the TTD uncertainty arising from some significant and critical 
aspects for the SAS modelling. These aspects are also the most directly linked to data 
interpolation and SAS parameterization that we explored in this work. 

• Missing new methods of estimating TTDs 

There have been some recent advances in the estimation of TTDs that are not discussed in this 
manuscript. The method of Kirchner (2019) and the method of Kim and Troch (2020) can estimate 
time-variable (or state-dependent) TTDs without assuming their form a priori. The estimated TTDs 
can be converted to the SAS functions. Thus, some descriptions of the motivation of this study, 
such as what is in L55-59, need to be revised. useful.  

Thank you for noting this. In the revised manuscript we will integrate the motivation of our study 
with the suggested literature. 

The suggested literature on recent advances in estimating TTDs has been added to the 
introduction at lines 38-39: 

Recent research has introduced new models for representing time-variant TTDs, for example 
allowing for the estimation of TTDs without making prior assumptions about their shape 
(Kirchner, 2019; Kim and Troch, 2022), ... 

• Minor comments 

fSAS/rSAS: I think the authors should make it clear that they are discussing only the fSAS 
(fractional SAS) function. Another form of the SAS function, the rank SAS (rSAS) function, may 
have different uncertainty characteristics, especially because of the difference in how the storage 
is considered  

In our study SAS functions are expressed as function of the normalized age-ranked storage (i.e., 
fractional SAS functions). We will clarify this in both Methods and Discussions.  

We have clearly explained that we used the fractional SAS functions in our study. This can 
be found at lines 123-124 and 278-282, respectively: 

Here, they are expressed as probability density functions in terms of the normalized age-ranked 
storage PS(T,t) (-), also known as fractional SAS functions (fSAS): … 



However, in this study we discussed the fractional (fSAS) functions, while another form of the 
SAS functions, such as the rank SAS (rSAS) functions, may have different uncertainty 
characteristics. This is mainly due to the difference in how the storage is considered, because 
fSAS functions are expressed as function of the normalized age-ranked storage, which is equal 
to the cumulative residence time, while rSAS functions depend on the age-ranked storage, which 
is the volume of water in storage ranked from youngest to oldest (Harman, 2015). 

Naming of the “BETA” case: Better to name the case more clearly. While the beta distribution is 
used without any state dependency or time-variability in this study, several studies utilized state-
dependent beta distribution that can consider the time-variable flow pathways (e.g., Van der Velde 
et al., 2015). Thus, it could confuse readers when the authors state something like “BETA could 
be appropriate where the catchment release scheme is expected to be relatively constant” (in L290-
291). In this manuscript, the time variability is mentioned explicitly in the case names only for the 
power law cases (PLTI and PLTV). 

We will say explicitly that we tested this study for a time-invariant beta distribution, and will re 
name the BETA parameterization as BETATI (i.e. time-invariant beta). 

In our study, we have renamed the BETA parameterization as BETATI to explicitly state 
that it has been utilized without any time-variability, in order to avoid any potential confusion 
and accurately reflects our methodology. 

L11-12: Make it clear that this confidence interval is for the median transit time. 

We will clarify this.  

We have specified that the number of days presented as uncertainty for the median transit 
times refers to the confidence interval. This can be found in lines 10-11.  

We found a large uncertainty in the simulated TTDs, represented by a large range of variability 
in the 95% confidence interval of the median transit time varying between …  

L113: V(t) (mm) “is”  

We will correct it.  

We have adjusted the verb to be singular or plural as needed to match the subject. This can 
be found at line 113: 

…. V(t) (mm) are the storage variations … 

L185: When using GLUE, the authors determined the behavioral parameters using an arbitrary 
criterion. The top 5% of the parameters, in terms of KGE, were selected as the behavioral 
parameters. However, there is no statement to support the decision regarding the criterion. It may 
be better for readers if the authors could explain why the criterion was chosen and whether this 
seemingly arbitrary choice is okay.  

Thank you for pointing this out. We acknowledge that we have not supported the reasons why we 
chose to define a behavioral solution based on the top 5% of the parameters in terms of KGE. As 



also said in the response to the other reviewer, in this work we explore the impact of different 
model setups by checking the uncertainties in the simulated outputs. The goal is not to identify the 
best model efficiency or setup. Given this objective, and considering the large number of model 
setups used, we find it appropriate to define a behavioral solution based on a fixed sample size 
identified with the lower bound dependent on the maximum KGE for each model setup, in our case 
5%. In the revised manuscript we will make it clear the reasons regarding the chosen criterion by 
providing the supporting motivation described above. However, in the revised manuscript we will 
apply the SUFI-2 approach rather than the GLUE approach, as in the former the uncertainty of 
parameters is described by a uniform distribution and not by a formal likelihood (see answer to 
other reviewer for further explanations).  

We have modified our approach for identifying the behavioral solution from the GLUE 
methodology to the SUFI-2 approach. A description of the new method can be found in lines 
164-170: 

The informal likelihood of the Sequential Uncertainty Fitting Procedure (SUFI-2, Abbaspour 
et al., 2004) was applied to account for uncertainty in the SAS parameter sets and resulting 
modeled estimates. In SUFI-2, the uncertainty in model parameters and simulated results is 
represented by a uniform distribution, which is gradually reduced until a specific criterion is 
reached. In our study, we calibrated the values of model parameters until the predicted output 
matched the measured tracer data to a satisfactory level, defined by an objective function. We 
employed as objective function the Kling-Gupta efficiency (KGE, Gupta et al., 2009), and once 
the criterion of KGE>=0.5 was satisfied, we defined a set of behavioral solutions for each model 
setup.  

Furthermore, we have included an explanation for our decision to maintain the definition of 
behavioral solution based on the top 5% of simulations in terms of KGE. This can be found 
in lines 169-177: 

However, since the aim of this study is to investigate the impact of various sources of uncertainty 
on simulated outputs, rather than to determine the best model setup based on the model 
efficiency, we decided to set a fixed sample size and narrow down those solutions generated by 
SUFI-2 in the previous step. Setting a fixed sample size ensures comparability of results across 
the twelve tested setups, as different sample sizes could influence the uncertainty analysis. For 
example, the greater the number of behavioral solutions, the wider the uncertainty band. At the 
same time, by fixing the sample size, we can still meet the requirement of a minimum acceptable 
KGE value (KGE≥0.5).  

In this study, we determined the final behavioral solutions by using a fixed sample size that 
corresponds to the best 5% parameter sets and modeled results in terms of KGE. … 
L198: “more positive”: I am not sure if “more positive” is the right expression here. The isotope 
ratios are always negative in the data.  

We will replace ‘’more positive’’ with ‘’less negative’’.  



We have updated the phrasing in our manuscript to use "less negative" instead of "more 
positive" at lines 188-189 when referring to isotope ratios: 

The results reveal how the predicted 𝜹𝜹¹⁸𝑶𝑶𝑸𝑸  values enveloped the measured isotopic signature 
by reproducing its seasonal fluctuations, with depleted (i.e., more negative) values in winter and 
enriched (i.e., less negative) values in summer. 

L188-190 I believe that the authors in general talked about the “backward” transit time distribution 
throughout this manuscript. However, the sentence in L188-190 is not clearly written if they talked 
about “forward” TTDs or the “backward” TTDs. Please revise. 

Here, we consider the backward formulation of the transit time distribution. We will make it clear 
in the revised manuscript. 

We have re written: …and backward median transit time (TT50 (days), i.e., the maximum time 
elapsed until the youngest 50% of the infiltrated water is transferred to the outflow). This can 
be found at lines 180-181. 

Figure 2: I think it would be better to enumerate the subfigures using numbers (based on Table 1) 
instead of alphabets.  

As we understand it, the HESS guidelines for language and typesetting for submission state that 
subfigures labels should be enclosed in parentheses around lowercase letters (e.g. (a), (b), etc.). 
Therefore, we would like to keep the enumeration of subfigures using letters. To be consistent 
between subfigures and model setups we will enumerate the setups displayed in Table 1 using 
letters instead of numbers. Figure 3 will be changed accordingly.  

We have re-enumerated the different configurations using letters instead of numbers to 
maintain consistency with the setup settings between Table 1 and Fig. 3. 

L290-291: Not clear if this trivial sentence is necessary.  

We would like to keep this sentence as it is relevant to this study in order to inform when specific 
SAS parameterization should be used. For clarity, we mean that the catchment preference to 
discharge water of a certain age is time-invariant with time-invariant SAS functions (PLTI and 
BETA) as these functions do not consider time variability as a function of the catchment wetness 
(such as PLTV does). Therefore, their use might be more appropriate for catchments experiencing 
relatively constant hydrologic conditions without highly pronounced seasonality. 

L298-303: This paragraph is also trivial and not necessary for the manuscript.  

We will delete this paragraph.  

We have deleted the paragraph about the inverse storage effect. 

L305: I think the figure illustrating the interpolation results is more important for this manuscript 
than some unnecessary paragraphs mentioned above.  



We will put more focus on this part by addressing the temporal interpolation of stable water 
isotopes in precipitation.  

We have expanded our discussion on the impact of tracer data interpolation techniques on 
the uncertainty of simulated median transit times. This can be found in lines 283-298: 

Likewise, the high-frequency reconstruction of δ18OP estimates from monthly values via 
interpolation created further uncertainty that would not arise when using real high-frequency 
data. The sine interpolation poorly reproduced flashy rainfall events and only captured the 
average damped trend of the observed 𝜹𝜹¹⁸𝑶𝑶𝑷𝑷 samples (Fig. S2 in the Supplement). Hence, 
related results must be interpreted with caution as tracer data uncertainty may conceal a more 
pronounced hydrological response (Dunn et al., 2008; Birkel et al., 2010; Hrachowitz et al., 
2011). Contrarily, the step function interpolation preserved the maxima in the monthly observed 
𝜹𝜹¹⁸𝑶𝑶𝑷𝑷 values, and reproduced their variation correctly. Nonetheless, the results obtained in this 
study are based on this particular isotope dataset, while the sine interpolation may be better 
applicable in other circumstances. Overall, the temporal interpolation of tracers resulted in 
largely differing reconstructed input data depending on whether the step function or sine 
interpolation were used (Fig. S2 in the Supplement). This explains why the simulated TT₅₀ is 
different between the two interpolations or, in other words, why the uncertainty in TT₅₀ is large. 
On the contrary, the spatial interpolation method did not strongly affect the simulated TT₅₀ as 
the trend in the time series was similar when using kriged (Fig. 4a-c and g-i) or raw (Fig. 4d-f 
and j-l) 𝜹𝜹¹⁸𝑶𝑶𝑷𝑷. This could be attributed to minor differences between kriged and raw isotopes 
(Figs. S1 and S2 in the Supplement). Nonetheless, there was a larger 95% CI of TT₅₀ when 
using raw rather than kriged 𝜹𝜹¹⁸𝑶𝑶𝑷𝑷, and this was particularly visible when the step function 
interpolation was used (Fig. 4a-f). Therefore, the spatial interpolation of δ18O in precipitation 
from different locations resulted in an apparent reduction of uncertainty in TT₅₀. 

L345: Typo: “ETET”  

We will change this to “ET”.  

We have corrected this at line 332. 

L360: Typo: “te modern”  

We will change this to “the”.  

We have corrected this at line 345. 

L395: “smooth changes” are unclear.  

We will replace it with ‘’little seasonality in the hydrological conditions’’.  

We have replaced ‘’smooth changes’’ with ‘’little seasonality in the hydrological conditions’’ 
in referring to the use of a time-invariant SAS function. This can be found at lines 383-384: 

These functions may be more appropriate for those catchments experiencing relatively little 
seasonality in the hydrological conditions. 

 


