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Abstract 9 

Developing an ensemble hydrological prediction system is essential for reservoir operations and flood early 10 
warning. However, efforts to build hydrological ensemble prediction systems considering the influence of 11 
reservoirs have been lacking in India. We examine the potential of the Extended Range Forecast System (ERFS, 12 
16 ensemble members) and Global Ensemble Forecast System (GEFS, 21 ensemble members) forecast for 13 
streamflow prediction in India using the Narmada River basin as a testbed. We use the Variable Infiltration 14 
Capacity (VIC) with reservoir operations (VIC-Res) scheme to simulate the daily river flow at four locations in 15 
the Narmada basin. Streamflow prediction skills of the ERFS forecast were examined for the period 2003-2018 at 16 
1-32 day lead. We compared the streamflow forecast skills of raw meteorological forecasts from ERFS and GEFS 17 
at a 1-10 day lead for the summer monsoon (June-September) 2019-2020. The ERFS forecast underestimates 18 
extreme precipitation against the observations compared to the GEFS forecast during the summer monsoon of 19 
2019-2020. However, both the forecast products show better skills for minimum and maximum temperatures than 20 
precipitation. Ensemble streamflow forecast from the GEFS performs better than the ERFS during 2019-2020. 21 
The performance of GEFS based ensemble streamflow forecast declines after five days lead. Overall, the GEFS 22 
ensemble streamflow forecast can provide reliable skills at a 1-5 day lead, which can be utilized in streamflow 23 
prediction. Our findings provide directions for developing a flood early warning system based on ensemble 24 
streamflow prediction considering the influence of reservoirs in India. 25 

1. Introduction 26 

Floods are one of India's most destructive and frequently occurring natural disasters. Floods accounted for about 27 
47% of natural disasters in India during the last 100 years (Tripathi, 2016). Riverine floods occur during the 28 
summer monsoon season affecting approximately five million people annually (Luo et al., 2015). Singh and Kumar 29 
(2013) reported an increase in the frequency of floods in India. About 20% of the total flood-prone area gets 30 
affected every year (Ray et al., 2019). Floods in 2018 caused an economic loss of more than twelve billion dollars 31 
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(USD) and resulted in the loss of 1808 lives (Joshi, 2020). In addition, climate warming is projected to increase 32 
the frequency and intensity of riverine floods (Field et al., 2011; Luo et al., 2015; Nanditha and Mishra, 2022; Ali 33 
et al., 2019).  34 
 35 
Preparedness for disasters like floods can help in mitigating economic loss and reducing flood mortality (Jain et 36 
al., 2018). While losses due to floods are projected to rise under the warming climate, human mortality can be 37 
reduced with flood early warning systems and effective communication (Dipti, 2017, Nanditha and Mishra, 2021). 38 
Therefore, developing a robust flood prediction system is necessary for early warning and preparedness. 39 
Streamflow prediction is an essential component of flood forecasting, which helps in planning and decision-40 
making (Georgakakos et al., 2012; Alfieri et al., 2013). Most of the streamflow prediction systems in India are 41 
based on the deterministic approach (Harsha, 2020a; Todini, 2017, Nanditha and Mishra, 2021), which do not 42 
account for perturbations in initial conditions to quantify the uncertainty (Bowler et al., 2008). Uncertainty 43 
quantification in streamflow prediction can reduce the risk of false alarms based on deterministic forecast (Todini, 44 
2017). In addition, ensemble streamflow prediction is essential for the probabilistic flood forecast. The 45 
probabilistic approach performs better than the deterministic approach by quantifying uncertainties associated with 46 
flood prediction and early warning system (Krzysztofowicz, 2001). Previous studies used ensemble streamflow 47 
prediction in flood forecasting (Cloke and Pappenberger, 2009; Wu et al., 2020) using ensemble meteorological 48 
forecast and hydrological models (Zhang et al., 2020). Ensemble weather forecast provides multiple members at 49 
the same location and time that can be used for probabilistic hydrological prediction. However, several challenges 50 
are associated with the operational ensemble streamflow forecast, including computational limitations, explanation 51 
of ensemble forecasts to non-experts, and up-gradation in the policy to use the forecast for decision making 52 
(Demeritt et al., 2010; Arnal et al., 2020). Despite these challenges, ensemble flood forecasts consider the 53 
uncertainty that can be used for preparedness and planning compared to the deterministic forecast approach. 54 
(Pappenberger et al., 2012; Cloke and Pappenberger, 2009).  55 
 56 
Indian river basins are considerably affected by human interventions including presence of reservoirs, water 57 
withdrawal for irrigation, and inter/intra basin water transfer (Nanditha and Mishra, 2021; Madhusoodhanan et al., 58 
2016; Gosain et al., 2006). India has more than 5000 large dams while about 450 are currently under construction 59 
(NRLD, 2017). Reservoirs and irrigation can considerably modulate terrestrial water and energy budgets in India 60 
(Shah et al., 2019). For instance, Shah et al. (2019) showed that evapotranspiration and latent heat flux are 61 
increased under the presence of irrigation and reservoirs in Indian river basins compared to their natural conditions. 62 
Dong et al. (2022) reported that reservoirs can significantly (~ 25%) contribute to the variation of terrestrial water 63 
storage in China. In addition, the presence of reservoirs can considerably affect streamflow variability in the 64 
downstream regions (Zajac et al., 2017; Yun et al., 2020; Chai et al., 2019). Reservoirs in India are multipurpose 65 
as these store water for the dry season, generate hydropower, and attenuate floods in the downstream regions 66 
(Tiwari and Mishra, 2022). Reservoirs store water during the summer monsoon season and release water during 67 
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the dry season for irrigation. Similarly, based on the reservoir rule curve, a buffer storage is kept during the wet 68 
season to accommodate high inflow so that flood risk can be minimized in the downstream region. Therefore, 69 
there are several challenges associated with the streamflow forecast in the river basins that are affected by 70 
reservoirs. Most often hydrological model-based flood/streamflow forecast does not consider the influence of 71 
reservoirs that could lead to under or overestimation of flow depending on the season (Nanditha and Mishra, 2021; 72 
Dang et al., 2019). Incorporating reservoir influence in hydrological models is essential as reservoirs significantly 73 
affect the magnitude and timing of streamflow (Zajac et al., 2017; Yassin et al., 2019; Dang et al., 2019). Several 74 
efforts have been made to incorporate the influence of reservoirs in the hydrological models (Boulange Julien and 75 
Hanasaki Naota, 2013; Dang et al., 2019; Hanasaki et al., 2018). However, most of the previous studies on flood 76 
forecasts and early warnings in India did not consider the influence of reservoirs (Goswami et al., 2018; Sikder 77 
and Hossain, 2019).  78 
 79 
The Central Water Commission (CWC) manages flood forecast systems in India. The flood forecast network 80 
monitors 325 stations across India. CWC observes real-time water level and discharge along the major rivers of 81 
India during the designated flood period. The flood forecast is performed using statistical correlation methods 82 
from gauge to gauge. Moreover, Quantitative Precipitation Forecast (QPF) from the India Meteorological 83 
Department (IMD) is used to forecast floods at a 3-day lead time (Teja and Umamahesh, 2020). The current model-84 
based flood forecast approach used by CWC is deterministic, which lacks incorporating uncertainties in the 85 
forecast and early warning system. An ensemble forecast system can help in flood early warning and decision-86 
making (Harsha, 2020b; Nanditha and Mishra, 2021). Various ensemble forecast products are available from the 87 
India Meteorological Department (IMD) and the Indian Institute of Tropical Meteorology (IITM). However, the 88 
utility of these forecast products for streamflow prediction and flood early warning at the river basin scale has not 89 
been examined. In addition, despite the advantages of ensemble hydrological prediction, India's current 90 
hydrological forecast systems are mainly deterministic. Given the increasing flood damage in India, the 91 
overarching aim of this work is to explore the utility of ensemble forecast products for streamflow prediction in 92 
India. We considered the Narmada River basin as a testbed to examine the potential of ensemble hydrological 93 
prediction. We used the Variable Infiltration Capacity (VIC) with reservoir operations (VIC-Res) scheme, which 94 
incorporates the effect of reservoirs (Dang et al., 2019). Extended Range Forecast System (ERFS) and Global 95 
Ensemble Forecast System (GEFS) ensemble forecasts developed by IITM are used to examine the hydrological 96 
prediction skills at the selected gauge stations in the Narmada basin.  97 
 98 
2. Data and methods 99 

2.1 Study region and datasets 100 

Narmada is the fifth biggest and the largest west-flowing river in India. The Narmada river basin falls in two states, 101 
Gujarat and Madhya Pradesh. Many tributaries contribute to the river through its way to the Arabian Sea, with the 102 
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Tawa river being its longest tributary. The catchment area of the river basin at the outlet is approximately 98,796 103 
km2. The upper portion of the basin falls in Madhya Pradesh. The mean annual rainfall in the Narmada basin is 104 
1064 mm. Most of the total annual precipitation occurs during the summer monsoon season (June-September). 105 
We used observed daily streamflow at four stations: Sandia, Handia, Mandleshwar, and Garudeshwar (Fig. 1). 106 
There are several ongoing hydropower and irrigation projects in the Narmada basin. Our hydrological modelling 107 
framework has considered four dams: Bargi, Tawa, Indira Sagar, and Sardar Sarovar (Table 1). Bargi and Tawa 108 
reservoirs were primarily constructed for irrigation purposes (Table 1). At the same time, Indira Sagar (0.975 109 
Billion Cubic Meters (BCM)) and Sardar Sarovar (5.8 BCM) are the two largest reservoirs that are used for multi-110 
purpose.  111 

Table 1. Parameters of reservoirs that were considered in hydrological simulations 112 

Sr No Name of dam Year of 

completion 

Height 

above 

lower 

foundation 

(m) 

Length of 

dam (m) 

Gross 

storage 

capacity 

(BCM) 

Effective 

storage 

capacity 

(BCM) 

1 Bargi 1988 69.8 5357 3.92 3.18 

2 Tawa 1978 57.92 1944.92 2.312 1.94 

3 Indira Sagar 2006 91.4 654 12.22 9.75 

4 Sardar Sarovar 2017 163 1210 9.5 5.8 

 113 
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 114 

Figure 1. Basic information about (a) location in India, (b) topography, c) streamlines, location of streamflow gauge 115 
stations and reservoirs 116 

We used 0.25° (approximate spatial resolution; ~27.5 x 27.5 km) gridded daily precipitation from IMD for the 117 
1951-2020 period (Pai et al., 2014). The daily gridded precipitation product is developed using observations from 118 
6955 rain gauge stations (Pai et al., 2015). Pai et al. (2015) examined daily rainfall trends, long-term climatology, 119 
and variability over the central Indian region. The high resolution (0.25°) gridded precipitation captures spatial 120 
variability in better manner compared to previous coarse-gridded rainfall products. We obtained daily 1° gridded 121 
maximum and minimum temperatures from IMD (Srivastava et al., 2009). Srivastava et al. (2009) developed the 122 
gridded temperature dataset using observations from 395 stations. We used bilinear interpolation to convert the 1° 123 
gridded temperature to 0.25° resolution to make it consistent with the gridded precipitation. The VIC model also 124 
requires daily wind speed as an input. We obtained the wind speed from the National Centers for Environmental 125 
Prediction (NCEP)-National Centers for Atmospheric Research (NCAR) 126 
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html). The wind speed at a coarser (1.875° x 127 
1.905°) resolution was interpolated using bilinear interpolation to 0.25° to make it consistent with the other 128 
meteorological datasets. The VIC model's vegetation parameters were obtained from the Advanced Very High-129 
Resolution Radiometer (AVHRR) global land cover, which is available at 1-km spatial resolution (Sheffield and 130 
Wood, 2007). Soil parameters at 0.25° were developed using the Harmonized World Soil Database (HWSD 131 
version 1.2) [Gao et al., 2009]. We used digital elevation model data from Shuttle Radar Topography Mission 132 
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(SRTM) at 90 m spatial resolution (Jarvis, 2008). The hydrological model considers sub-grid variability of 133 
topography and vegetation (Gao et al. 2010). Therefore, the high-resolution vegetation and elevation datasets were 134 
used to extract values for different tiles within a grid. 135 

We obtained observed daily streamflow, reservoir water level, and reservoir live storage data from the India -136 
Water Resources Information System (IWRIS; http://www.indiawris.gov.in), which is a joint venture of the 137 
Central Water Commission, the Ministry of Jal Shakti, and the Indian Space Research Organization (ISRO). 138 
Streamflow and reservoir levels are monitored at various locations in the Narmada basin by CWC. We selected 139 
the gauge stations (Sandia, Handia, Mandleshwar, and Garudeshwar) that have observed flow data for at least 15 140 
years. The reservoir storage and water level data were obtained for different periods depending on the data 141 
availability. 142 

We obtained the Extended Range Forecast System (ERFS) meteorological forecast for the 2003-2020 period. In 143 
addition, the Global Ensemble Forecast System (GEFS) meteorological forecast was obtained for the summer 144 
monsoon season (July-September) of 2019-2020 from the IITM. Both the ERFS and GEFS forecast products are 145 
developed at IITM and are currently being used for the operational weather forecast by the IMD. In June 2018, 146 
the high-resolution GEFS forecast was developed and then transferred to the IMD for operational forecasting 147 
(Mukhopadhyay et al., 2018). The GEFS dataset has a horizontal resolution of T1534 (~12.5 km) and consists of 148 
21 ensemble members (one control and twenty perturbed). The dynamic core of the model is based on semi-149 
Lagrangian framework, which reduces considerable computational requirements. The initial conditions (ICs) for 150 
meteorological forecasts are obtained from Global Data Assimilation System (GDAS). The GEFS is being run 151 
operationally for the ten-day lead forecast using daily Initial Conditions (ICs) during the summer monsoon period. 152 
The GEFS forecast successfully predicted the 2018 Kerala extreme rainfall at 2-3 days lead and showed reasonable 153 
forecast skills at 5-7 days lead (Mukhopadhyay et al., 2018).  154 

The ERFS multi-model system consists of four (CFSv2T382, CFSv2T126, GFSbcT382 and GFSbcT126) suites, 155 
each having four ensemble members (one control and three perturbed). Therefore, sixteen ensemble members are 156 
available for the ERFS forecast. The model is being run operationally for 32 days lead based on the initial 157 
conditions of every Wednesday. Atmospheric and oceanic initial conditions from the National Center for Medium-158 
Range Weather Forecasting (NCMWRF) and Indian National Centre for Ocean Information Services (INCOSIS) 159 
assimilation system are used by the models in ERFS. We used the sixteen ensemble meteorological forecasts to 160 
simulate the daily streamflow at 1-32 days leads at selected stations in the Narmada river basin. Shah et al. (2017) 161 
reported that ERFS performed better than the Global Ensemble Forecast System v2 (GEFSv2) and Climate 162 
Forecast System v2 (CFSv2) in precipitation forecast during the summer monsoon season over India. 163 

2.2 The VIC-Res hydrological model 164 
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We used the VIC-Res hydrological model (Dang et al., 2019), a novel variant of the VIC model (Liang et al., 165 
1994), to simulate streamflow. A combination of the VIC model and the routing model developed by Dang et al. 166 
(2019) was used to simulate streamflow at the selected locations in the basin. Dang et al. (2019) incorporated the 167 
effect of reservoirs by considering the reservoir storage dynamics and operating rules within the streamflow 168 
routing model in the VIC-Res model. The rainfall-runoff model generates water and energy fluxes within each 169 
grid using climate forcing, soil parameters, land use/land cover, and the digital elevation model. The model uses 170 
vegetation cover for each tile and three soil layers for each grid cell. The upper two soil layers control runoff, 171 
infiltration, and evaporation, while the bottom layer governs baseflow. The routing model uses water fluxes (runoff 172 
and baseflow) from each grid to simulate streamflow at selected gauge stations using the linearized Saint-Venant 173 
equations. The routing model uses flow direction, fractional area within a grid, and station location as input to 174 
generate streamflow. In addition, the VIC-Res model requires reservoir parameters and location as inputs. The 175 
reservoir parameters include full reservoir level (FRL), dead water level, storage capacity, dead storage, rated 176 
head, and the year when reservoir became operational. The VIC-Res considers a grid as a reservoir and the 177 
incoming streamflow to that reservoir is considered as the inflow. In addition to the reservoir parameters, observed 178 
seasonal cycle is also required as input to the routing scheme. The model implements mass balance equation at 179 
each time step to calculate storage and outflow/release from the reservoir. The VIC-Res model simulates daily 180 
reservoir inflow, outflow, live storage, and water level. Dang et al. (2019) reported that even the model without a 181 
reservoir exhibits almost the same level of accuracy. However, as the parametrization is inappropriate when the 182 
model is calibrated using the observed flow that is affected by reservoirs, hydrological processes simulated by the 183 
model can be erroneous.  184 

We used observed daily precipitation, maximum and minimum temperatures from IMD, and wind speed from 185 
NCEP-NCAR reanalysis as meteorological forcing. We used reservoir storage observations to input the seasonal 186 
cycle for each reservoir into the model. An autocalibration module developed by Dang et al. (2020) was used to 187 
calibrate soil parameters of the VIC-Res model for the Narmada River basin. The autocalibration module uses the 188 
ε-NSGAII multi-objective evolutionary algorithm (Reed et al., 2013) to adjust the values of sensitive soil 189 
parameters. The autocalibration module can be used to calibrate model parameters at the outlet of different sub-190 
basins within a river basin. First, we used autocalibration to calibrate parameters of upstream basins, then the 191 
parameters for the downstream basins were calibrated for the grids that are not part of the upstream basins. We 192 
used five soil parameters (Binf, Ds, Dsmax, Ws, and depth of three soil layers) to calibrate daily streamflow at the 193 
selected gauge stations in the basin as described in Mishra et al. (2010). Binf is the variable infiltration curve 194 
parameter. Dsmax is the maximum velocity of baseflow. Ds is a fraction of Dsmax where non-linear baseflow begins. 195 
Ws is a fraction of maximum soil moisture non-linear baseflow occurs (Liang et al., 1994). Further details of the 196 
calibration parameters can be obtained from Mishra et al. (2010). The autocalibration module optimizes the 197 
model’s performance in simulating streamflow at selected stations considering reservoir dynamics. We set our 198 
objective to maximize Nash-Sutcliffe Efficiency (NSE) [Dawson et al., 2007; Nash and Sutcliffe, 1970]. The 199 
model performance was evaluated for daily streamflow, the water level of reservoirs, and the live storage of 200 
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reservoirs using NSE and coefficient of determination (R2). Daily streamflow was calibrated and evaluated at 201 
Sandia, Handia, Mandleshwar, and Garudeshwar. We selected different periods for the calibration and evaluation 202 
of the VIC-Res model based on the availability of observed streamflow. For instance, we selected the years 1986-203 
2000, 1986-2000, 1998-2005, 1998-2005 as the calibration period, while the years 2001-2018, 2001-2018, 2015-204 
2018, 2015-2018 as the evaluation period for stations Sandia, Handia, Mandleshwar, and Garudeshwar, 205 
respectively. The VIC-Res model performance was also evaluated against water level and live storage for Bargi, 206 
Tawa, Indira Sagar, and Sardar Sarovar reservoirs. 207 

We first generated daily meteorological forcing of both ERFS and GEFS forecasts. The ERFS forecast is available 208 
for the extended range (1-32 day lead), while the GEFS forecast is available at 1-10 day lead. We developed 209 
observed initial conditions for each forecast date by forcing the long-term (20 years) observed meteorological 210 
forcing from IMD into the calibrated VIC-Res model. Therefore, the model spin-up is considered in the observed 211 
initial state. We simulated a daily streamflow forecast at all the four selected gauge stations using the 212 
meteorological forcing and initial conditions. The VIC-Res simulations were run for all the ensemble members 213 
for ERFS and GEFS forecasts. The ensemble streamflow forecasts were simulated for 1-32 days lead and ten days 214 
lead for ERFS and GEFS datasets. The ERFS forecast simulations were run for 1-32 days lead with the initial 215 
conditions of every Wednesday generated from VIC-Res model using the observed forcings. Similarly, GEFS 216 
streamflow forecast simulations were performed for 1-10 days lead with initial conditions one day before the 217 
forecast. 218 

2.3 Forecast skill evaluation 219 

We evaluated the skills of the streamflow forecast generated using the ERFS and GEFS meteorological forecast 220 
by comparing the simulated streamflow forecast to the observed daily streamflow at each of the four locations. 221 
The model simulated streamflow forecast was evaluated against the VIC-Res model simulated daily streamflow 222 
using the observed forcing due to the unavailability of the observed streamflow for the years 2019-2020. The 223 
ERFS meteorological forcing was used to run the VIC-Res model for 1-32 days from each forecast date using the 224 
initial condition generated using the observed forcing from IMD. Similarly, we ran the GEFS ensemble members 225 
for a 1-10 days lead for each forecast date. We used bias and Normalized Root Mean Square Error (NRMSE) to 226 
evaluate the performance of individual ensemble forecast members, which can be estimated as follows:  227 
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 where,  𝑂 = 𝑚𝑒𝑎𝑛	𝑜𝑓𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠.  
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(3) 

   

where Qobs,i and Qsim,i  are observed and simulated streamflow, respectively. Bias provides a measure of 228 
correspondence between the mean of observations and the mean of the VIC-Res model simulations, while NRMSE 229 
represents the relative magnitude of the squared error. We also evaluated the skills of ERFS forecast using 230 
Continuous Ranked Probability Score (CRPS) [Hersbach, 2000], which measures the closeness between the 231 
distributions of  forecast and observations. The CPRS can be estimated as follows: 232 

𝐶𝑅𝑃𝑆(𝐹, 𝑥) = ∫ '𝐹(𝑦) − 𝐻(𝑦 − 𝑥)*)𝑑𝑦*
+*          (4) 233 

where F(x) is the cumulative distribution function (CDF) associated with probabilistic forecast and H(x) is the 234 
Heaviside function (H(x) = 1 for x ≥ 0 and zero otherwise). The unit of CRPS is the same the of observations. 235 
Gneiting and Raftery (2007) suggested CPRS as a direct measure to compare deterministic and probabilistic 236 
forecasts. 237 

3    Results  238 

3.1 Skill evaluation of ERFS and GEFS meteorological forecasts 239 

First, we evaluated ERFS precipitation and temperature forecast skills for 1-, 7-, 15-, and 31-day leads. We used 240 
bias, NRMSE, and correlation coefficient (r) to estimate the forecast skills. The forecast skill was evaluated for 241 
the period 2003-2018. We estimated the forecast skill for each ensemble member and then calculated the median 242 
of the forecast skill of all the sixteen members for each grid in the Narmada river basin. Precipitation forecast from 243 
ERFS shows a negative bias indicating an underestimation compared to observed rainfall. The dry bias in 244 
precipitation forecast increases with the lead time (Fig. 2). For the 1-day lead, precipitation forecast from ERFS 245 
showed a moderate positive correlation (median ~0.49), which declines with the lead time. Similarly, NRMSE in 246 
precipitation forecast is large (>2.0) over the river basin. We also estimated bias in the precipitation forecast 247 
exceeding the 90th percentile (Fig. 3). The extreme rainfall in the raw ERFS forecast dataset exhibited a weaker 248 
correlation with the observed extreme precipitation. Moreover, a considerable dry bias in the extreme precipitation 249 
forecast was found. We also evaluated forecast skills for maximum and minimum temperature against the observed 250 
temperatures from IMD for the 2003-2018 period (Fig. S1 and S2). The daily temperature forecast showed a 251 
relatively higher positive correlation with the observed temperatures from IMD. Moreover, lower NRMSE was 252 
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noted for the temperature forecast than the observed maximum and minimum temperatures. However, a positive 253 
bias of ~1.5 °C (median of all grids in the basin) was found in minimum temperature forecast at all the lead times.  254 

 255 

Figure 2. Evaluation of ERFS precipitation forecast against observations for the 2003-2018 period. Forecast skills 256 
were evaluated using bias, NRMSE, and correlation for each ensemble member and the median skill is presented.  257 

 258 



 
 

11 
 
 

 259 

Figure 3, Evaluation of extreme precipitation (>90th percentile) forecast skill from ERFS for the 2003-2018 period. 260 
Forecast skills were evaluated using bias, NRMSE, and correlation for each ensemble member and the median skill is 261 
presented. 262 

Next, we compared the ERFS and GEFS ensemble forecast skills for the summer monsoon (June-September) of 263 
the 2019-2020 period. We limit the comparison to the two years as the GEFS ensemble forecast is available only 264 
for 2019-2020. We evaluated forecast skills for 1-, 5-, and 10-day leads (Fig. 4). Our results show that the ERFS 265 
precipitation forecast has a dry bias across the river basin and all the leads (Fig 4). The GEFS precipitation forecast 266 
showed a positive (wet) bias in the majority of the Narmada river basin. The forecast products (ERFS and GEFS) 267 
underestimate extreme rainfall in the Narmada basin (Fig 5). The dry bias in extreme rainfall increases with lead 268 
time in the ERFS and GEFS forecasts (Fig. 5). The forecast products showed a poor correlation with the observed 269 
extreme precipitation in the Narmada river basin (Fig. 5). However, both the forecast products demonstrated 270 
relatively better skills for maximum and minimum temperatures than precipitation (Fig. S3 and S4). 271 
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 272 

Figure 4. Comparison of the precipitation forecast skills from ERFS and GEFS for the summer monsoon period 273 
during 2019-2020. Forecast skills were evaluated using bias, NRMSE, and correlation for each ensemble member of 274 
ERFS and GEFS and the median skill is presented.  275 
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 276 

Figure 5. Comparison of the extreme precipitation (exceeding 75th percentile) forecast skills from ERFS and GEFS for 277 
the summer monsoon period during 2019-2020. Forecast skills were evaluated using bias, NRMSE, and correlation 278 
for each ensemble member of ERFS and GEFS and the median skill is presented.  279 
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 280 

3.2 Calibration and evaluation of the VIC-Res model  281 

We performed calibration of reservoir level and storage and calibration of daily streamflow. Daily storage and 282 
water level calibrated the VIC-Res model for four major reservoirs (Bargi, Tawa, Indira Sagar and Sardar Sarovar) 283 
in the Narmada basin. The upstream catchment area of all the gauge locations and calibration parameters are shown 284 
in supplementary Figure S5. We evaluated the VIC-Res model’s performance using the coefficient of 285 
determination (R2) and Nash Sutcliffe Efficiency (NSE) (Fig. 6). The VIC-Res model simulates daily streamflow 286 
at the selected stations in the basin. R2 and NSE values were above 0.65 at Sandia, Handia, and Mandleshwar 287 
stations for the calibration period. While at Garudeshwar, the VIC-Res model performed comparatively weaker 288 
(R2 = 0.55 & NSE = 0.53) for the calibration period. 289 
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 290 

Figure 6. Calibration and evaluation of the VIC-Res model against observed daily streamflow at gauge stations at 291 
Sandia, Handia, Mandleshwar and Garudeshwar. The performance of the VIC-Res model in simulating daily 292 
streamflow was evaluated using the R2 and NSE. 293 

 294 

We considered the influence of major reservoirs on the simulated daily streamflow. Therefore, the VIC-Res 295 
model's performance in simulating daily reservoir storage and the water level was evaluated against the streamflow 296 
observations. We selected 2000-2016, 2000-2016, 2007-2016, and 2008-2013 as evaluation periods for Bargi, 297 
Tawa, Indira Sagar, and Sardar Sarovar reservoirs, respectively, based on the availability of observations. We 298 
estimated R2 and NSE to evaluate the model's performance (Fig. 7). The model performed well in simulating all 299 
the reservoirs' water levels and storage (R2>0.78 and NSE>0.62). We also compared the seasonal cycle of the 300 
observed and simulated reservoir storage for all the four major reservoirs (Fig. 8). The model simulated monthly 301 
seasonal cycle of reservoir storage compares well with the observed storage for all the dams with R2 of more than 302 
0.77. We find that the model underestimates storage for Bargi reservoir, which can be due to relatively smaller 303 
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upstream catchment area that may not capture the spatial variability of rainfall. Overall, we find that the VIC-Res 304 
model can evaluate the ensemble streamflow forecast in the Narmada river basin. 305 

 306 

Figure 7.  Evaluation of the VIC-Res model in simulating daily water level and daily live storage at four major 307 
reservoirs Bargi, Tawa, Indira Sagar and Sardar Sarovar.  308 



 
 

17 
 
 

 309 

Figure 8. Comparison of observed and the VIC-Res model simulated reservoir water levels for four reservoirs in 310 
Narmada River basin. 311 

3.3 Evaluation of ensemble streamflow forecast skills of ERFS 312 

We estimated forecast skills of daily streamflow for 2003-2018 generated from each ensemble member of ERFS 313 
for the twelve lead times (1-day to 10-day, 15-day, and 31-day). We selected a 1-10 day lead as GEFS forecast is 314 
also available with the same lead. In addition, two other lead times (15 and 31 days) were selected to evaluate the 315 
forecast skill of streamflow forecast from all the sixteen members of ERFS (Fig. 9). Both bias and NRMSE showed 316 
a relatively lesser spread for the shorter lead (1-3 day) streamflow forecast from all the ensemble members of 317 
ERFS (Fig. 9). However, uncertainty in streamflow forecast due to different ensemble members increases with the 318 
lead time. NRMSE of streamflow forecast from ERFS also rises with the lead at all the stations. Ensemble 319 
streamflow forecast from ERFS showed a positive bias for Sandia, Handia, and Garudeshwar, while a negative 320 
bias was found for Mandleshwar station (Fig. 9). We estimated the CRPS, which is higher for 1-day lead compared 321 
to 3-day leads and increases with the lead time (Figure S6).  322 
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 323 

Figure 9. Ensemble streamflow forecast skill based on the ERFS forecast for 2003-2018.  The forecast was evaluated 324 
using bias (%) and NRMSE. Box and whisker plots show the skill for all 16 ensemble members at lead 1-10 day, 15 325 
day and 31 days at four gauge stations. 326 

 327 

We estimated the forecast skill in streamflow exceeding certain thresholds (50,70,80,90, and 95th percentiles) [Fig. 328 
10]. We find less spread in bias among different ensemble members for 1-day lead streamflow forecast from ERFS. 329 
However, the spread of bias in streamflow forecast due to different ensemble members increases with the lead 330 
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time (Fig. 10). Moreover, bias in streamflow forecast remains stable for all the selected percentile thresholds at a 331 
1-day lead at all the four-gauge stations. On the other hand, bias in streamflow forecast increases for higher 332 
percentiles at longer lead times. For instance, dry bias in streamflow forecast in all the ensemble members is higher 333 
for the 95th percentile than for the 50th percentile. Therefore, our results show that regardless of the spread among 334 
the ensemble members from ERFS, almost all the ensemble members underestimate the high flow at all the gauge 335 
stations in the Narmada river basin (Fig. 10).  336 

 337 

Figure 10. Bias in ensemble streamflow forecast estimated using ERFS for 2003-2018 for streamflow percentiles 338 
exceeding 50th, 70th, 80th, 90th, and 95th thresholds. Bias in ensemble streamflow forecast was evaluated at 1, 7, 15, and 339 
31 day lead. 340 

3.4 Comparison of ensemble streamflow forecast skills ERFS and GEFS 341 

We compared the streamflow forecast skills of 16 ensemble members from ERFS and 21 ensemble members from 342 
GEFS. Since GEFS meteorological forecast is available only for 2019-2020, we compared the summer monsoon 343 
season of these two years. ERFS forecast is available weekly for 1-32 days, while the GEFS forecast is generated 344 
every day. Therefore, we compared the daily streamflow forecast from both the products for the weeks for which 345 
the ERFS forecast was available for the summer monsoon of the 2019-2020 period. We compared the streamflow 346 
forecast skills for all the ensemble members at 1 to 10 day leads at Sandia, Handia, Mandleshwar, and Garudeshwar 347 
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(Fig. 11). We find that the GEFS forecast has a better skill for the short lead time (~1-5 days) with less bias and 348 
NRMSE. On the other hand, the ERFS ensemble forecast showed higher bias and NRMSE at shorter leads for 349 
most of the selected locations in the Narmada basin. Streamflow forecast skill of GEFS declines rapidly after the 350 
3-4 day lead time for most of the locations in the Narmada basin. The forecast products showed a larger spread 351 
among the streamflow forecast ensemble members after five days lead. For short to medium range (~1 to 5 days), 352 
the streamflow forecast from GEFS performed better with low NRMSE and bias for streamflow exceeding the 353 
75th percentile of the summer monsoon period (Fig. S7). Moreover, streamflow forecast skill from the ERFS was 354 
considerably lower than the GEFS at most of the locations for flow exceeding 75th percentiles (Fig. S7). 355 

 356 
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Figure 11. Comparison of ensemble streamflow forecast skills from ERFS and GEFS for 2019-2020. The forecast skill 357 
was evaluated considering the VIC-Res simulated streamflow with the observed forcing from IMD due to 358 
unavailability of observed flow. 359 

We examined the daily streamflow forecast skill at 3-day, 5-day, and 10-leads from ERFS and GEFS forecasts for 360 
the summer monsoon season of 2019 & 2020 against VIC-Res simulated streamflow using the observed 361 
meteorological forcing at all the four gauge stations (Fig. 12 and Fig. S8). Since observed daily streamflow was 362 
unavailable for skill assessment, the comparison was made against the VIC model simulated flow with the 363 
observed meteorological forcing (Fig. 12 and Fig. S8). The GEFS forecast successfully captured streamflow peaks 364 
in both 2019 and 2020 at a 3-day lead. In 2019, GEFS forecasts overestimated streamflow peaks at 3-day and 5-365 
day leads during the summer monsoon. On the other hand, the ensemble streamflow forecast developed using the 366 
ERFS meteorological forecast showed a higher spread than GEFS (Fig. 12, Fig. S8). The spread in ensemble 367 
streamflow forecast increases for both ERFS and GEFS forecast at a 10-day lead. However, the ERFS's streamflow 368 
forecast showed a better skill at the 10-day lead. Despite having fewer ensemble members than the GEFS, the 369 
ERFS forecast showed a broader spread in streamflow prediction, highlighting a higher uncertainty in prediction. 370 
We find that GEFS overestimate streamflow the ERFS underestimates most of the locations and lead times. 371 

 372 

 373 
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Figure 12. Comparison of ensemble streamflow simulated using the VIC-Res model with ERFS and GEFS forecast 374 
products during the summer monsoon of 2019.  The forecast skill was evaluated considering the VIC-Res simulated 375 
streamflow with the observed forcing from IMD due to unavailability of observed flow. 376 

 377 

We examined the streamflow forecast generated by all the ensemble members of ERFS and GEFS for a few events 378 
using the VIC-Res model (Fig. 13). The ensemble streamflow prediction was compared considering the model 379 
simulated streamflow with the observed forcing from IMD. In 2019, the ensemble mean streamflow from all the 380 
ensemble members of ERFS considerably underestimated the peak flow (Fig. 13). However, a few ensemble 381 
members of the ERFS forecast captured the peak flow at the four locations of the Narmada river basin (Fig. 13). 382 
At Handia station, 1 out of 16 ensemble members exceeds the observed streamflow. Moreover, GEFS forecasts at 383 
short leads (3-5 days) performed well in capturing peaks (Fig. 13). However, GEFS forecasts showed a smaller 384 
spread in ensemble streamflow at the short lead time (1-5 days). Overall, we find that ensemble forecasts can be 385 
used for probabilistic streamflow prediction.  386 

 387 

Figure 13. Ensemble streamflow simulations using the ERFS forecast at 5-11 day lead and GEFS forecast at 3-5 day 388 
lead against the VIC-Res simulated streamflow with the observed meteorological forcing for 2019 and 2020.  389 



 
 

23 
 
 

 390 

4   Discussion and conclusions 391 

Streamflow forecast plays an essential role in efficient reservoir operations and flood mitigation (Chen et al., 2016; 392 
Mediero et al., 2007). A reliable streamflow forecast can reduce uncertainty in reservoir operations and enhance 393 
the development of a flood early warning system. Notwithstanding the considerable progress in an operational 394 
meteorological forecast from different agencies, efforts to establish an ensemble streamflow forecast system at 395 
river basin scales have been limited for India. Moreover, it remains unclear if other meteorological forecast 396 
products have different streamflow forecast skills. We used the two meteorological ensemble forecast products 397 
from IMD to examine streamflow forecast skills in the Narmada river basin. The presence of reservoirs influence 398 
the water budget and streamflow (Shah et al., 2019 Zajac et al., 2017; Yun et al., 2020; Chai et al., 2019). 399 
Hydrological model parameters calibrated without considering the role of reservoirs can be erroneous and leading 400 
to errors and uncertainty in simulated hydrological processes (Dang et al., 2019). Therefore, we used the ensemble 401 
streamflow prediction approach to generate the daily streamflow simulations considering the influence of 402 
reservoirs in the Narmada river basin. We compared the performance of ERFS and GEFS ensembles for the 403 
summer monsoon period of 2019-20. We also assessed the skills of the ERFS dataset solely for a more extended 404 
period from 2003 to 2018. 405 

The ERFS ensemble forecast is available once a week at 1-32 days lead time. On the other hand, GEFS ensemble 406 
forecasts are available daily at 1-10 days lead for the summer monsoon period of 2019-2020. Hagedorn et al. 407 
(2005) reported that bias-correction of the raw forecast does not necessarily increase the forecast skill. Moreover, 408 
statistical correction of the raw forecast is inappropriate, which can lose its effect propagating through the 409 
hydrological model (Zalachori et al., 2012; Crochemore et al., 2016; Benninga et al., 2017; Hagedorn et al., 2005). 410 
Therefore, we did not bias-correct the raw meteorological ensemble forecasts from ERFS and GEFS. The skills of 411 
ERFS and GEFS precipitation and temperature (minimum and maximum) forecasts were estimated for 1-, 5- and 412 
10-day lead. The GEFS raw forecast showed better skills than the ERFS forecast for mean and extreme 413 
precipitation. As precipitation plays a vital role in streamflow forecast (Meaurio et al., 2017; Demargne et al., 414 
2014; Pappenberger et al., 2005), our results show that GEFS forecast provides better skills for streamflow 415 
prediction in the Narmada River basin. The post-processing of streamflow data can significantly improve 416 
performance (Tiwari et al., 2021; Muhammad et al., 2018), which can be used in the future to examine the 417 
improvements in streamflow prediction. Moreover, a multi-model approach can be used to reduce the errors and 418 
uncertainty in streamflow forecasts that could arise due to the parameterization of hydrological models (Velázquez 419 
et al., 2011; Zarzar et al., 2018; Muhammad et al., 2018).  420 

The skills of ERFS and GEFS ensemble forecasts were estimated for 1, 5 and 10-day leads. GEFS raw forecasts 421 
illustrated better skills than ERFS forecasts for overall rainfall and extreme precipitation. As studies show that rain 422 
plays a vital role in streamflow forecast (Demargne et al., 2014; Meaurio et al., 2017; Pappenberger et al., 2005), 423 
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we also observed the same results. The ensemble forecast with better skills performed well in predicting daily 424 
streamflow. Correcting the bias of the input forecast may shrink the variability range of the result. However, 425 
ensemble forecasts aim to capture uncertainties. Studies suggest that the post-processing of streamflow data can 426 
significantly improve performance (Muhammad et al., 2018; Tiwari et al., 2021). A multi-model approach, where 427 
more than one hydrological model is used, can generalize the uncertainty introduced by the hydrological model. 428 
Various studies have reported improved forecast skills using the multi-model approach (Muhammad et al., 2018; 429 
Velázquez et al., 2011; Zarzar et al., 2018). Also, our analysis is based on just for the 2019-2020 as the GEFS 430 
hindcast is available only for this period. Availability of longer hindcast from the GEFS can help to understand 431 
the forecast skills for hydrological extremes (drought and floods). Moreover, we did not examine the forecast skill 432 
of reservoir storage, which can provide a better understanding of the impacts of storage during the floods.  433 

Flood forecasting using the available meteorological forecast products can help in mitigating the losses through 434 
early warnings. To account for the uncertainty arising from initial state and model parameterization, the individual 435 
members of the ensemble weather forecast can provide better information than their ensemble mean (Saleh et al., 436 
2019). The probabilistic approach over the deterministic method provides the range of variability, which can help 437 
determine the probability of exceeding a specific threshold of streamflow (Hsiao et al., 2013). The shift from the 438 
existing 'flood forecast system' to the 'ensemble-based probabilistic forecast' requires modifications in the current 439 
flood forecast practice. The transition is expected to change various aspects of the existing decision-making 440 
process. The forecasters need to train the on-duty officers adequately and the authorities on probabilistic forecasts. 441 
We evaluated the streamflow forecast skills at 1-32 day lead in the Narmada river basin. The increased lead time 442 
in streamflow forecast can assist in developing efficient communication methods of information (Arnal et al., 443 
2020; Ramos et al., 2010). Moreover, ensemble streamflow forecast at longer leads can be effectively used in 444 
optimizing reservoir operations (Alemu et al., 2011). Our results show that, while the mean of the ensemble 445 
members failed to capture the high flows, a few individual ensemble members performed better in capturing peak 446 
flow, which can be used to develop probabilistic early warnings. 447 

Based on our findings, the following conclusions can be made: 448 

1) The raw precipitation forecast from both GEFS and ERFS datasets showed moderate skills (bias, NRMSE 449 
and correlation) against observations from IMD at 1-day, 5-day and 10-day lead times. While both (ERFS 450 
and GEFS) forecast products underestimated extreme precipitation, dry bias in the ERFS forecast was 451 
more prominent than the GEFS forecast. For instance, raw precipitation forecast from ERFS showed 452 
negative bias across the Narmada river basin. On the other hand, the raw precipitation forecast from GEFS 453 
exhibited both negative and positive bias. Both the forecast products showed better skills for maximum 454 
and minimum temperatures than precipitation. 455 

2) We calibrated and evaluated the VIC-Res model to simulate streamflow, considering the influence of 456 
reservoirs at four gauge stations in the Narmada River Basin. The model reproduced daily streamflow, 457 
reservoir water level, and storage reasonably well against the observations.  458 
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3) Comparing the streamflow forecast skills of both the ensemble forecasts showed that GEFS forecasts 459 
performed better than the ERFS at all the locations in the basin. However, both the forecast products 460 
underestimated the extremes, which can be due to dry bias in extreme precipitation. The spread in 461 
streamflow due to different ensemble members increased with the forecast lead time. Overall, an 462 
ensemble forecast can be used to develop a probabilistic forecast based flood early warning system. 463 
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