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Abstract

Developing an ensemble hydrological prediction system is essential for reservoir operations and flood early
warning. However, efforts to build hydrological ensemble prediction systems considering the influence of
reservoirs have been lacking in India. We examine the potential of the Extended Range Forecast System (ERFS,
16 ensemble members) and Global Ensemble Forecast System (GEFS, 21 ensemble members) forecast for
streamflow prediction in India using the Narmada River basin as a testbed. We use the Variable Infiltration
Capacity (VIC) with reservoir operations (VIC-Res) scheme to simulate the daily river flow at four locations in
the Narmada basin. Streamflow prediction skills of the ERFS forecast were examined for the period 2003-2018 at
1-32 day lead. We compared the streamflow forecast skills of raw meteorological forecasts from ERFS and GEFS
at a 1-10 day lead for the summer monsoon (June-September) 2019-2020. The ERFS forecast underestimates
extreme precipitation against the observations compared to the GEFS forecast during the summer monsoon of
2019-2020. However, both the forecast products show better skills for minimum and maximum temperatures than
precipitation. Ensemble streamflow forecast from the GEFS performs better than the ERFS during 2019-2020.
The performance of GEFS based ensemble streamflow forecast declines after five days lead. Overall, the GEFS
ensemble streamflow forecast can provide reliable skills at a 1-5 day lead, which can be utilized in streamflow
prediction. Our findings provide directions for developing a flood early warning system based on ensemble

streamflow prediction considering the influence of reservoirs in India.
1. Introduction

Floods are one of India's most destructive and frequently occurring natural disasters. Floods accounted for about
47% of natural disasters in India during the last 100 years (Tripathi, 2016). Riverine floods occur during the
summer monsoon season affecting approximately five million people annually (Luo et al., 2015). Singh and Kumar
(2013) reported an increase in the frequency of floods in India. About 20% of the total flood-prone area gets

affected every year (Ray et al., 2019). Floods in 2018 caused an economic loss of more than twelve billion dollars



32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

(USD) and resulted in the loss of 1808 lives (Joshi, 2020). In addition, climate warming is projected to increase
the frequency and intensity of riverine floods (Field et al., 2011; Luo et al., 2015; Nanditha and Mishra, 2022; Ali
etal., 2019).

Preparedness for disasters like floods can help in mitigating economic loss and reducing flood mortality (Jain et
al., 2018). While losses due to floods are projected to rise under the warming climate, human mortality can be
reduced with flood early warning systems and effective communication (Dipti, 2017, Nanditha and Mishra, 2021).
Therefore, developing a robust flood prediction system is necessary for early warning and preparedness.
Streamflow prediction is an essential component of flood forecasting, which helps in planning and decision-
making (Georgakakos et al., 2012; Alfieri et al., 2013). Most of the streamflow prediction systems in India are
based on the deterministic approach (Harsha, 2020a; Todini, 2017, Nanditha and Mishra, 2021), which do not
account for perturbations in initial conditions to quantify the uncertainty (Bowler et al., 2008). Uncertainty
quantification in streamflow prediction can reduce the risk of false alarms based on deterministic forecast (Todini,
2017). In addition, ensemble streamflow prediction is essential for the probabilistic flood forecast. The
probabilistic approach performs better than the deterministic approach by quantifying uncertainties associated with
flood prediction and early warning system (Krzysztofowicz, 2001). Previous studies used ensemble streamflow
prediction in flood forecasting (Cloke and Pappenberger, 2009; Wu et al., 2020) using ensemble meteorological
forecast and hydrological models (Zhang et al., 2020). Ensemble weather forecast provides multiple members at
the same location and time that can be used for probabilistic hydrological prediction. However, several challenges
are associated with the operational ensemble streamflow forecast, including computational limitations, explanation
of ensemble forecasts to non-experts, and up-gradation in the policy to use the forecast for decision making
(Demeritt et al.,, 2010; Arnal et al., 2020). Despite these challenges, ensemble flood forecasts consider the
uncertainty that can be used for preparedness and planning compared to the deterministic forecast approach.

(Pappenberger et al., 2012; Cloke and Pappenberger, 2009).

Indian river basins are considerably affected by human interventions including presence of reservoirs, water
withdrawal for irrigation, and inter/intra basin water transfer (Nanditha and Mishra, 2021; Madhusoodhanan et al.,
2016; Gosain et al., 2006). India has more than 5000 large dams while about 450 are currently under construction
(NRLD, 2017). Reservoirs and irrigation can considerably modulate terrestrial water and energy budgets in India
(Shah et al., 2019). For instance, Shah et al. (2019) showed that evapotranspiration and latent heat flux are
increased under the presence of irrigation and reservoirs in Indian river basins compared to their natural conditions.
Dong et al. (2022) reported that reservoirs can significantly (~ 25%) contribute to the variation of terrestrial water
storage in China. In addition, the presence of reservoirs can considerably affect streamflow variability in the
downstream regions (Zajac et al., 2017; Yun et al., 2020; Chai et al., 2019). Reservoirs in India are multipurpose
as these store water for the dry season, generate hydropower, and attenuate floods in the downstream regions

(Tiwari and Mishra, 2022). Reservoirs store water during the summer monsoon season and release water during
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the dry season for irrigation. Similarly, based on the reservoir rule curve, a buffer storage is kept during the wet
season to accommodate high inflow so that flood risk can be minimized in the downstream region. Therefore,
there are several challenges associated with the streamflow forecast in the river basins that are affected by
reservoirs. Most often hydrological model-based flood/streamflow forecast does not consider the influence of
reservoirs that could lead to under or overestimation of flow depending on the season (Nanditha and Mishra, 2021;
Dang et al., 2019). Incorporating reservoir influence in hydrological models is essential as reservoirs significantly
affect the magnitude and timing of streamflow (Zajac et al., 2017; Yassin et al., 2019; Dang et al., 2019). Several
efforts have been made to incorporate the influence of reservoirs in the hydrological models (Boulange Julien and
Hanasaki Naota, 2013; Dang et al., 2019; Hanasaki et al., 2018). However, most of the previous studies on flood
forecasts and early warnings in India did not consider the influence of reservoirs (Goswami et al., 2018; Sikder

and Hossain, 2019).

The Central Water Commission (CWC) manages flood forecast systems in India. The flood forecast network
monitors 325 stations across India. CWC observes real-time water level and discharge along the major rivers of
India during the designated flood period. The flood forecast is performed using statistical correlation methods
from gauge to gauge. Moreover, Quantitative Precipitation Forecast (QPF) from the India Meteorological
Department (IMD) is used to forecast floods at a 3-day lead time (Teja and Umamahesh, 2020). The current model-
based flood forecast approach used by CWC is deterministic, which lacks incorporating uncertainties in the
forecast and early warning system. An ensemble forecast system can help in flood early warning and decision-
making (Harsha, 2020b; Nanditha and Mishra, 2021). Various ensemble forecast products are available from the
India Meteorological Department (IMD) and the Indian Institute of Tropical Meteorology (IITM). However, the
utility of these forecast products for streamflow prediction and flood early warning at the river basin scale has not
been examined. In addition, despite the advantages of ensemble hydrological prediction, India's current
hydrological forecast systems are mainly deterministic. Given the increasing flood damage in India, the
overarching aim of this work is to explore the utility of ensemble forecast products for streamflow prediction in
India. We considered the Narmada River basin as a testbed to examine the potential of ensemble hydrological
prediction. We used the Variable Infiltration Capacity (VIC) with reservoir operations (VIC-Res) scheme, which
incorporates the effect of reservoirs (Dang et al., 2019). Extended Range Forecast System (ERFS) and Global
Ensemble Forecast System (GEFS) ensemble forecasts developed by IITM are used to examine the hydrological

prediction skills at the selected gauge stations in the Narmada basin.

2. Data and methods
2.1 Study region and datasets

Narmada is the fifth biggest and the largest west-flowing river in India. The Narmada river basin falls in two states,

Gujarat and Madhya Pradesh. Many tributaries contribute to the river through its way to the Arabian Sea, with the
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Tawa river being its longest tributary. The catchment area of the river basin at the outlet is approximately 98,796
km?. The upper portion of the basin falls in Madhya Pradesh. The mean annual rainfall in the Narmada basin is
1064 mm. Most of the total annual precipitation occurs during the summer monsoon season (June-September).
We used observed daily streamflow at four stations: Sandia, Handia, Mandleshwar, and Garudeshwar (Fig. 1).
There are several ongoing hydropower and irrigation projects in the Narmada basin. Our hydrological modelling
framework has considered four dams: Bargi, Tawa, Indira Sagar, and Sardar Sarovar (Table 1). Bargi and Tawa
reservoirs were primarily constructed for irrigation purposes (Table 1). At the same time, Indira Sagar (0.975

Billion Cubic Meters (BCM)) and Sardar Sarovar (5.8 BCM) are the two largest reservoirs that are used for multi-

purpose.

Table 1. Parameters of reservoirs that were considered in hydrological simulations

SrNo | Name of dam Year of | Height Length of | Gross Effective
completion | above dam (m) storage storage

lower capacity capacity
foundation (BCM) (BCM)
(m)

1 Bargi 1988 69.8 5357 3.92 3.18

2 Tawa 1978 57.92 1944.92 2.312 1.94

3 Indira Sagar 2006 91.4 654 12.22 9.75

4 Sardar Sarovar | 2017 163 1210 9.5 5.8
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Figure 1. Basic information about (a) location in India, (b) topography, c) streamlines, location of streamflow gauge

stations and reservoirs

We used 0.25° (approximate spatial resolution; ~27.5 x 27.5 km) gridded daily precipitation from IMD for the
1951-2020 period (Pai et al., 2014). The daily gridded precipitation product is developed using observations from
6955 rain gauge stations (Pai et al., 2015). Pai et al. (2015) examined daily rainfall trends, long-term climatology,
and variability over the central Indian region. The high resolution (0.25°) gridded precipitation captures spatial
variability in better manner compared to previous coarse-gridded rainfall products. We obtained daily 1° gridded
maximum and minimum temperatures from IMD (Srivastava et al., 2009). Srivastava et al. (2009) developed the
gridded temperature dataset using observations from 395 stations. We used bilinear interpolation to convert the 1°
gridded temperature to 0.25° resolution to make it consistent with the gridded precipitation. The VIC model also
requires daily wind speed as an input. We obtained the wind speed from the National Centers for Environmental
Prediction (NCEP)-National Centers for Atmospheric Research (NCAR)
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html). The wind speed at a coarser (1.875° x
1.905°) resolution was interpolated using bilinear interpolation to 0.25° to make it consistent with the other
meteorological datasets. The VIC model's vegetation parameters were obtained from the Advanced Very High-
Resolution Radiometer (AVHRR) global land cover, which is available at 1-km spatial resolution (Sheffield and
Wood, 2007). Soil parameters at 0.25° were developed using the Harmonized World Soil Database (HWSD
version 1.2) [Gao et al., 2009]. We used digital elevation model data from Shuttle Radar Topography Mission
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(SRTM) at 90 m spatial resolution (Jarvis, 2008). The hydrological model considers sub-grid variability of
topography and vegetation (Gao et al. 2010). Therefore, the high-resolution vegetation and elevation datasets were

used to extract values for different tiles within a grid.

We obtained observed daily streamflow, reservoir water level, and reservoir live storage data from the India -

Water Resources Information System (IWRIS; http://www.indiawris.gov.in), which is a joint venture of the

Central Water Commission, the Ministry of Jal Shakti, and the Indian Space Research Organization (ISRO).
Streamflow and reservoir levels are monitored at various locations in the Narmada basin by CWC. We selected
the gauge stations (Sandia, Handia, Mandleshwar, and Garudeshwar) that have observed flow data for at least 15
years. The reservoir storage and water level data were obtained for different periods depending on the data

availability.

We obtained the Extended Range Forecast System (ERFS) meteorological forecast for the 2003-2020 period. In
addition, the Global Ensemble Forecast System (GEFS) meteorological forecast was obtained for the summer
monsoon season (July-September) of 2019-2020 from the IITM. Both the ERFS and GEFS forecast products are
developed at IITM and are currently being used for the operational weather forecast by the IMD. In June 2018,
the high-resolution GEFS forecast was developed and then transferred to the IMD for operational forecasting
(Mukhopadhyay et al., 2018). The GEFS dataset has a horizontal resolution of T1534 (~12.5 km) and consists of
21 ensemble members (one control and twenty perturbed). The dynamic core of the model is based on semi-
Lagrangian framework, which reduces considerable computational requirements. The initial conditions (ICs) for
meteorological forecasts are obtained from Global Data Assimilation System (GDAS). The GEFS is being run
operationally for the ten-day lead forecast using daily Initial Conditions (ICs) during the summer monsoon period.
The GEFS forecast successfully predicted the 2018 Kerala extreme rainfall at 2-3 days lead and showed reasonable
forecast skills at 5-7 days lead (Mukhopadhyay et al., 2018).

The ERFS multi-model system consists of four (CFSv2T382, CFSv2T126, GFSbcT382 and GFSbcT126) suites,
each having four ensemble members (one control and three perturbed). Therefore, sixteen ensemble members are
available for the ERFS forecast. The model is being run operationally for 32 days lead based on the initial
conditions of every Wednesday. Atmospheric and oceanic initial conditions from the National Center for Medium-
Range Weather Forecasting (NCMWRF) and Indian National Centre for Ocean Information Services (INCOSIS)
assimilation system are used by the models in ERFS. We used the sixteen ensemble meteorological forecasts to
simulate the daily streamflow at 1-32 days leads at selected stations in the Narmada river basin. Shah et al. (2017)
reported that ERFS performed better than the Global Ensemble Forecast System v2 (GEFSv2) and Climate

Forecast System v2 (CFSv2) in precipitation forecast during the summer monsoon season over India.

2.2 The VIC-Res hydrological model
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We used the VIC-Res hydrological model (Dang et al., 2019), a novel variant of the VIC model (Liang et al.,
1994), to simulate streamflow. A combination of the VIC model and the routing model developed by Dang et al.
(2019) was used to simulate streamflow at the selected locations in the basin. Dang et al. (2019) incorporated the
effect of reservoirs by considering the reservoir storage dynamics and operating rules within the streamflow
routing model in the VIC-Res model. The rainfall-runoff model generates water and energy fluxes within each
grid using climate forcing, soil parameters, land use/land cover, and the digital elevation model. The model uses
vegetation cover for each tile and three soil layers for each grid cell. The upper two soil layers control runoff,
infiltration, and evaporation, while the bottom layer governs baseflow. The routing model uses water fluxes (runoff
and baseflow) from each grid to simulate streamflow at selected gauge stations using the linearized Saint-Venant
equations. The routing model uses flow direction, fractional area within a grid, and station location as input to
generate streamflow. In addition, the VIC-Res model requires reservoir parameters and location as inputs. The
reservoir parameters include full reservoir level (FRL), dead water level, storage capacity, dead storage, rated
head, and the year when reservoir became operational. The VIC-Res considers a grid as a reservoir and the
incoming streamflow to that reservoir is considered as the inflow. In addition to the reservoir parameters, observed
seasonal cycle is also required as input to the routing scheme. The model implements mass balance equation at
each time step to calculate storage and outflow/release from the reservoir. The VIC-Res model simulates daily
reservoir inflow, outflow, live storage, and water level. Dang et al. (2019) reported that even the model without a
reservoir exhibits almost the same level of accuracy. However, as the parametrization is inappropriate when the
model is calibrated using the observed flow that is affected by reservoirs, hydrological processes simulated by the

model can be erroneous.

We used observed daily precipitation, maximum and minimum temperatures from IMD, and wind speed from
NCEP-NCAR reanalysis as meteorological forcing. We used reservoir storage observations to input the seasonal
cycle for each reservoir into the model. An autocalibration module developed by Dang et al. (2020) was used to
calibrate soil parameters of the VIC-Res model for the Narmada River basin. The autocalibration module uses the
e-NSGAII multi-objective evolutionary algorithm (Reed et al., 2013) to adjust the values of sensitive soil
parameters. The autocalibration module can be used to calibrate model parameters at the outlet of different sub-
basins within a river basin. First, we used autocalibration to calibrate parameters of upstream basins, then the
parameters for the downstream basins were calibrated for the grids that are not part of the upstream basins. We
used five soil parameters (Binf, Ds, Dsmax, W5, and depth of three soil layers) to calibrate daily streamflow at the
selected gauge stations in the basin as described in Mishra et al. (2010). Binr is the variable infiltration curve
parameter. Dsmax is the maximum velocity of baseflow. Ds is a fraction of Dsmax Where non-linear baseflow begins.
W is a fraction of maximum soil moisture non-linear baseflow occurs (Liang et al., 1994). Further details of the
calibration parameters can be obtained from Mishra et al. (2010). The autocalibration module optimizes the
model’s performance in simulating streamflow at selected stations considering reservoir dynamics. We set our
objective to maximize Nash-Sutcliffe Efficiency (NSE) [Dawson et al., 2007; Nash and Sutcliffe, 1970]. The

model performance was evaluated for daily streamflow, the water level of reservoirs, and the live storage of
7
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reservoirs using NSE and coefficient of determination (R?). Daily streamflow was calibrated and evaluated at
Sandia, Handia, Mandleshwar, and Garudeshwar. We selected different periods for the calibration and evaluation
of the VIC-Res model based on the availability of observed streamflow. For instance, we selected the years 1986-
2000, 1986-2000, 1998-2005, 1998-2005 as the calibration period, while the years 2001-2018, 2001-2018, 2015-
2018, 2015-2018 as the evaluation period for stations Sandia, Handia, Mandleshwar, and Garudeshwar,
respectively. The VIC-Res model performance was also evaluated against water level and live storage for Bargi,

Tawa, Indira Sagar, and Sardar Sarovar reservoirs.

We first generated daily meteorological forcing of both ERFS and GEFS forecasts. The ERFS forecast is available
for the extended range (1-32 day lead), while the GEFS forecast is available at 1-10 day lead. We developed
observed initial conditions for each forecast date by forcing the long-term (20 years) observed meteorological
forcing from IMD into the calibrated VIC-Res model. Therefore, the model spin-up is considered in the observed
initial state. We simulated a daily streamflow forecast at all the four selected gauge stations using the
meteorological forcing and initial conditions. The VIC-Res simulations were run for all the ensemble members
for ERFS and GEFS forecasts. The ensemble streamflow forecasts were simulated for 1-32 days lead and ten days
lead for ERFS and GEFS datasets. The ERFS forecast simulations were run for 1-32 days lead with the initial
conditions of every Wednesday generated from VIC-Res model using the observed forcings. Similarly, GEFS
streamflow forecast simulations were performed for 1-10 days lead with initial conditions one day before the

forecast.
2.3 Forecast skill evaluation

We evaluated the skills of the streamflow forecast generated using the ERFS and GEFS meteorological forecast
by comparing the simulated streamflow forecast to the observed daily streamflow at each of the four locations.
The model simulated streamflow forecast was evaluated against the VIC-Res model simulated daily streamflow
using the observed forcing due to the unavailability of the observed streamflow for the years 2019-2020. The
ERFS meteorological forcing was used to run the VIC-Res model for 1-32 days from each forecast date using the
initial condition generated using the observed forcing from IMD. Similarly, we ran the GEFS ensemble members
for a 1-10 days lead for each forecast date. We used bias and Normalized Root Mean Square Error (NRMSE) to

evaluate the performance of individual ensemble forecast members, which can be estimated as follows:

d m
Bias = ) (Qi = Qonss)
i=1

RMSE )
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where, 0 = mean of observations.

3)
?:1(Q,i - Qobs,i)2

n

RMSE =

where Qobs; and Qsimi are observed and simulated streamflow, respectively. Bias provides a measure of
correspondence between the mean of observations and the mean of the VIC-Res model simulations, while NRMSE
represents the relative magnitude of the squared error. We also evaluated the skills of ERFS forecast using
Continuous Ranked Probability Score (CRPS) [Hersbach, 2000], which measures the closeness between the

distributions of forecast and observations. The CPRS can be estimated as follows:

CRPS(F,x) = [“ (F(y) — H(y — x))"dy @)

where F(x) is the cumulative distribution function (CDF) associated with probabilistic forecast and H(x) is the
Heaviside function (H(x) = 1 for x > 0 and zero otherwise). The unit of CRPS is the same the of observations.
Gneiting and Raftery (2007) suggested CPRS as a direct measure to compare deterministic and probabilistic

forecasts.

3 Results
3.1 Skill evaluation of ERFS and GEFS meteorological forecasts

First, we evaluated ERFS precipitation and temperature forecast skills for 1-, 7-, 15-, and 31-day leads. We used
bias, NRMSE, and correlation coefficient (r) to estimate the forecast skills. The forecast skill was evaluated for
the period 2003-2018. We estimated the forecast skill for each ensemble member and then calculated the median
of the forecast skill of all the sixteen members for each grid in the Narmada river basin. Precipitation forecast from
ERFS shows a negative bias indicating an underestimation compared to observed rainfall. The dry bias in
precipitation forecast increases with the lead time (Fig. 2). For the 1-day lead, precipitation forecast from ERFS
showed a moderate positive correlation (median ~0.49), which declines with the lead time. Similarly, NRMSE in
precipitation forecast is large (>2.0) over the river basin. We also estimated bias in the precipitation forecast
exceeding the 90" percentile (Fig. 3). The extreme rainfall in the raw ERFS forecast dataset exhibited a weaker
correlation with the observed extreme precipitation. Moreover, a considerable dry bias in the extreme precipitation
forecast was found. We also evaluated forecast skills for maximum and minimum temperature against the observed
temperatures from IMD for the 2003-2018 period (Fig. SI and S2). The daily temperature forecast showed a

relatively higher positive correlation with the observed temperatures from IMD. Moreover, lower NRMSE was

9
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noted for the temperature forecast than the observed maximum and minimum temperatures. However, a positive

bias of ~1.5 °C (median of all grids in the basin) was found in minimum temperature forecast at all the lead times.
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Figure 2. Evaluation of ERFS precipitation forecast against observations for the 2003-2018 period. Forecast skills

were evaluated using bias, NRMSE, and correlation for each ensemble member and the median skill is presented.
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Figure 3, Evaluation of extreme precipitation (>90th percentile) forecast skill from ERFS for the 2003-2018 period.
Forecast skills were evaluated using bias, NRMSE, and correlation for each ensemble member and the median skill is

presented.

Next, we compared the ERFS and GEFS ensemble forecast skills for the summer monsoon (June-September) of
the 2019-2020 period. We limit the comparison to the two years as the GEFS ensemble forecast is available only
for 2019-2020. We evaluated forecast skills for 1-, 5-, and 10-day leads (Fig. 4). Our results show that the ERFS
precipitation forecast has a dry bias across the river basin and all the leads (Fig 4). The GEFS precipitation forecast
showed a positive (wet) bias in the majority of the Narmada river basin. The forecast products (ERFS and GEFS)
underestimate extreme rainfall in the Narmada basin (Fig 5). The dry bias in extreme rainfall increases with lead
time in the ERFS and GEFS forecasts (Fig. 5). The forecast products showed a poor correlation with the observed
extreme precipitation in the Narmada river basin (Fig. 5). However, both the forecast products demonstrated

relatively better skills for maximum and minimum temperatures than precipitation (Fig. S3 and S4).
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Figure 4. Comparison of the precipitation forecast skills from ERFS and GEFS for the summer monsoon period

during 2019-2020. Forecast skills were evaluated using bias, NRMSE, and correlation for each ensemble member of
ERFS and GEFS and the median skill is presented.
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277  Figure 5. Comparison of the extreme precipitation (exceeding 75" percentile) forecast skills from ERFS and GEFS for
278  the summer monsoon period during 2019-2020. Forecast skills were evaluated using bias, NRMSE, and correlation

279  for each ensemble member of ERFS and GEFS and the median skill is presented.
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3.2 Calibration and evaluation of the VIC-Res model

We performed calibration of reservoir level and storage and calibration of daily streamflow. Daily storage and
water level calibrated the VIC-Res model for four major reservoirs (Bargi, Tawa, Indira Sagar and Sardar Sarovar)
in the Narmada basin. The upstream catchment area of all the gauge locations and calibration parameters are shown
in supplementary Figure S5. We evaluated the VIC-Res model’s performance using the coefficient of
determination (R?) and Nash Sutcliffe Efficiency (NSE) (Fig. 6). The VIC-Res model simulates daily streamflow
at the selected stations in the basin. R? and NSE values were above 0.65 at Sandia, Handia, and Mandleshwar
stations for the calibration period. While at Garudeshwar, the VIC-Res model performed comparatively weaker

(R?2=0.55 & NSE = 0.53) for the calibration period.
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Figure 6. Calibration and evaluation of the VIC-Res model against observed daily streamflow at gauge stations at
Sandia, Handia, Mandleshwar and Garudeshwar. The performance of the VIC-Res model in simulating daily

streamflow was evaluated using the R? and NSE.

We considered the influence of major reservoirs on the simulated daily streamflow. Therefore, the VIC-Res
model's performance in simulating daily reservoir storage and the water level was evaluated against the streamflow
observations. We selected 2000-2016, 2000-2016, 2007-2016, and 2008-2013 as evaluation periods for Bargi,
Tawa, Indira Sagar, and Sardar Sarovar reservoirs, respectively, based on the availability of observations. We
estimated R? and NSE to evaluate the model's performance (Fig. 7). The model performed well in simulating all
the reservoirs' water levels and storage (R>>0.78 and NSE>0.62). We also compared the seasonal cycle of the
observed and simulated reservoir storage for all the four major reservoirs (Fig. 8). The model simulated monthly
seasonal cycle of reservoir storage compares well with the observed storage for all the dams with R? of more than

0.77. We find that the model underestimates storage for Bargi reservoir, which can be due to relatively smaller
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304  upstream catchment area that may not capture the spatial variability of rainfall. Overall, we find that the VIC-Res

305 model can evaluate the ensemble streamflow forecast in the Narmada river basin.
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307 Figure 7. Evaluation of the VIC-Res model in simulating daily water level and daily live storage at four major

308 reservoirs Bargi, Tawa, Indira Sagar and Sardar Sarovar.

16



309

310
311

312

313
314
315
316
317
318
319
320
321
322

424 L L Il L L L | L L L 358 L L L L L Il L L L L
492 | a)Reservoir Bargi(2000-2016) 7 B 356 b)Reservoir Tawa(2000-2016) |
T4 4181 - T 3524 R2 =0.89 .
Q5 416 B @3 ] B
f‘g 414 - fé SO
22 a12- - 2081 I
== 410 - L =< 346 -
i B 344 B
408 Observed i ——— Observed |
406 — VICRes | 342 ——— VICRes
404 Q ‘V I‘ I‘ I% IQ \\ I% | I\ IA < 340 | !‘ I‘ I% I I\ \% | I\ ‘A <
FEF I F AR FEFIFE S TS S
onths onths
262 | | | | | | | | | | 1 23 | | | | | | | | | |
560 - c¢)Reservoir Indira Sagar(2007-20’, 6) | 122 d)Reservoir Sardar Sarovar(2008-2013) |
258 ~N 121 - — B
o 256 - T B
85 2541 - 35 :
58 2521 L i
=g 250 B S E B
B 248 - BT -
246 ~ B 115 B
244 - — gl e N =%t
242 Q ‘V I‘ I‘ I% IQ \\ I% 1 I\ I‘A 3 113 Q Iv \‘ I‘ I% I0 I\ \% IQ I(}' ‘A <
FTEF I T TR T PEF TP TS T
Months Months

Figure 8. Comparison of observed and the VIC-Res model simulated reservoir water levels for four reservoirs in

Narmada River basin.
3.3 Evaluation of ensemble streamflow forecast skills of ERFS

We estimated forecast skills of daily streamflow for 2003-2018 generated from each ensemble member of ERFS
for the twelve lead times (1-day to 10-day, 15-day, and 31-day). We selected a 1-10 day lead as GEFS forecast is
also available with the same lead. In addition, two other lead times (15 and 31 days) were selected to evaluate the
forecast skill of streamflow forecast from all the sixteen members of ERFS (Fig. 9). Both bias and NRMSE showed
a relatively lesser spread for the shorter lead (1-3 day) streamflow forecast from all the ensemble members of
ERFS (Fig. 9). However, uncertainty in streamflow forecast due to different ensemble members increases with the
lead time. NRMSE of streamflow forecast from ERFS also rises with the lead at all the stations. Ensemble
streamflow forecast from ERFS showed a positive bias for Sandia, Handia, and Garudeshwar, while a negative
bias was found for Mandleshwar station (Fig. 9). We estimated the CRPS, which is higher for 1-day lead compared
to 3-day leads and increases with the lead time (Figure S6).
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Figure 9. Ensemble streamflow forecast skill based on the ERFS forecast for 2003-2018. The forecast was evaluated
using bias (%) and NRMSE. Box and whisker plots show the skill for all 16 ensemble members at lead 1-10 day, 15
day and 31 days at four gauge stations.

We estimated the forecast skill in streamflow exceeding certain thresholds (50,70,80,90, and 95" percentiles) [Fig.
10]. We find less spread in bias among different ensemble members for 1-day lead streamflow forecast from ERFS.

However, the spread of bias in streamflow forecast due to different ensemble members increases with the lead
18



331
332
333
334
335
336

337

338
339
340

341

342
343
344
345
346
347

time (Fig. 10). Moreover, bias in streamflow forecast remains stable for all the selected percentile thresholds at a
1-day lead at all the four-gauge stations. On the other hand, bias in streamflow forecast increases for higher
percentiles at longer lead times. For instance, dry bias in streamflow forecast in all the ensemble members is higher
for the 95% percentile than for the 50% percentile. Therefore, our results show that regardless of the spread among
the ensemble members from ERFS, almost all the ensemble members underestimate the high flow at all the gauge

stations in the Narmada river basin (Fig. 10).
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Figure 10. Bias in ensemble streamflow forecast estimated using ERFS for 2003-2018 for streamflow percentiles
exceeding 50, 70, 80, 90", and 95t thresholds. Bias in ensemble streamflow forecast was evaluated at 1, 7, 15, and
31 day lead.

3.4 Comparison of ensemble streamflow forecast skills ERFS and GEFS

We compared the streamflow forecast skills of 16 ensemble members from ERFS and 21 ensemble members from
GEFS. Since GEFS meteorological forecast is available only for 2019-2020, we compared the summer monsoon
season of these two years. ERFS forecast is available weekly for 1-32 days, while the GEFS forecast is generated
every day. Therefore, we compared the daily streamflow forecast from both the products for the weeks for which
the ERFS forecast was available for the summer monsoon of the 2019-2020 period. We compared the streamflow

forecast skills for all the ensemble members at 1 to 10 day leads at Sandia, Handia, Mandleshwar, and Garudeshwar
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(Fig. 11). We find that the GEFS forecast has a better skill for the short lead time (~1-5 days) with less bias and
NRMSE. On the other hand, the ERFS ensemble forecast showed higher bias and NRMSE at shorter leads for

most of the selected locations in the Narmada basin. Streamflow forecast skill of GEFS declines rapidly after the

3-4 day lead time for most of the locations in the Narmada basin. The forecast products showed a larger spread

among the streamflow forecast ensemble members after five days lead. For short to medium range (~1 to 5 days),

the streamflow forecast from GEFS performed better with low NRMSE and bias for streamflow exceeding the

75" percentile of the summer monsoon period (Fig. S7). Moreover, streamflow forecast skill from the ERFS was

considerably lower than the GEFS at most of the locations for flow exceeding 75% percentiles (Fig. S7).
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Figure 11. Comparison of ensemble streamflow forecast skills from ERFS and GEFS for 2019-2020. The forecast skill
was evaluated considering the VIC-Res simulated streamflow with the observed forcing from IMD due to

unavailability of observed flow.

We examined the daily streamflow forecast skill at 3-day, 5-day, and 10-leads from ERFS and GEFS forecasts for
the summer monsoon season of 2019 & 2020 against VIC-Res simulated streamflow using the observed
meteorological forcing at all the four gauge stations (Fig. 12 and Fig. S8). Since observed daily streamflow was
unavailable for skill assessment, the comparison was made against the VIC model simulated flow with the
observed meteorological forcing (Fig. 12 and Fig. S8). The GEFS forecast successfully captured streamflow peaks
in both 2019 and 2020 at a 3-day lead. In 2019, GEFS forecasts overestimated streamflow peaks at 3-day and 5-
day leads during the summer monsoon. On the other hand, the ensemble streamflow forecast developed using the
ERFS meteorological forecast showed a higher spread than GEFS (Fig. 12, Fig. S8). The spread in ensemble
streamflow forecast increases for both ERFS and GEFS forecast at a 10-day lead. However, the ERFS's streamflow
forecast showed a better skill at the 10-day lead. Despite having fewer ensemble members than the GEFS, the
ERFS forecast showed a broader spread in streamflow prediction, highlighting a higher uncertainty in prediction.

We find that GEFS overestimate streamflow the ERFS underestimates most of the locations and lead times.
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Figure 12. Comparison of ensemble streamflow simulated using the VIC-Res model with ERFS and GEFS forecast
products during the summer monsoon of 2019. The forecast skill was evaluated considering the VIC-Res simulated

streamflow with the observed forcing from IMD due to unavailability of observed flow.

We examined the streamflow forecast generated by all the ensemble members of ERFS and GEFS for a few events

using the VIC-Res model (Fig. 13). The ensemble streamflow prediction was compared considering the model

simulated streamflow with the observed forcing from IMD. In 2019, the ensemble mean streamflow from all the

ensemble members of ERFS considerably underestimated the peak flow (Fig. 13). However, a few ensemble

members of the ERFS forecast captured the peak flow at the four locations of the Narmada river basin (Fig. 13).

At Handia station, 1 out of 16 ensemble members exceeds the observed streamflow. Moreover, GEFS forecasts at

short leads (3-5 days) performed well in capturing peaks (Fig. 13). However, GEFS forecasts showed a smaller

spread in ensemble streamflow at the short lead time (1-5 days). Overall, we find that ensemble forecasts can be

used for probabilistic streamflow prediction.
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Figure 13. Ensemble streamflow simulations using the ERFS forecast at 5-11 day lead and GEFS forecast at 3-5 day

lead against the VIC-Res simulated streamflow with the observed meteorological forcing for 2019 and 2020.
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4 Discussion and conclusions

Streamflow forecast plays an essential role in efficient reservoir operations and flood mitigation (Chen et al., 2016;
Mediero et al., 2007). A reliable streamflow forecast can reduce uncertainty in reservoir operations and enhance
the development of a flood early warning system. Notwithstanding the considerable progress in an operational
meteorological forecast from different agencies, efforts to establish an ensemble streamflow forecast system at
river basin scales have been limited for India. Moreover, it remains unclear if other meteorological forecast
products have different streamflow forecast skills. We used the two meteorological ensemble forecast products
from IMD to examine streamflow forecast skills in the Narmada river basin. The presence of reservoirs influence
the water budget and streamflow (Shah et al., 2019 Zajac et al., 2017; Yun et al., 2020; Chai et al., 2019).
Hydrological model parameters calibrated without considering the role of reservoirs can be erroneous and leading
to errors and uncertainty in simulated hydrological processes (Dang et al., 2019). Therefore, we used the ensemble
streamflow prediction approach to generate the daily streamflow simulations considering the influence of
reservoirs in the Narmada river basin. We compared the performance of ERFS and GEFS ensembles for the
summer monsoon period of 2019-20. We also assessed the skills of the ERFS dataset solely for a more extended

period from 2003 to 2018.

The ERFS ensemble forecast is available once a week at 1-32 days lead time. On the other hand, GEFS ensemble
forecasts are available daily at 1-10 days lead for the summer monsoon period of 2019-2020. Hagedorn et al.
(2005) reported that bias-correction of the raw forecast does not necessarily increase the forecast skill. Moreover,
statistical correction of the raw forecast is inappropriate, which can lose its effect propagating through the
hydrological model (Zalachori et al., 2012; Crochemore et al., 2016; Benninga et al., 2017; Hagedorn et al., 2005).
Therefore, we did not bias-correct the raw meteorological ensemble forecasts from ERFS and GEFS. The skills of
ERFS and GEFS precipitation and temperature (minimum and maximum) forecasts were estimated for 1-, 5- and
10-day lead. The GEFS raw forecast showed better skills than the ERFS forecast for mean and extreme
precipitation. As precipitation plays a vital role in streamflow forecast (Meaurio et al., 2017; Demargne et al.,
2014; Pappenberger et al., 2005), our results show that GEFS forecast provides better skills for streamflow
prediction in the Narmada River basin. The post-processing of streamflow data can significantly improve
performance (Tiwari et al., 2021; Muhammad et al., 2018), which can be used in the future to examine the
improvements in streamflow prediction. Moreover, a multi-model approach can be used to reduce the errors and
uncertainty in streamflow forecasts that could arise due to the parameterization of hydrological models (Velazquez

et al., 2011; Zarzar et al., 2018; Muhammad et al., 2018).

The skills of ERFS and GEFS ensemble forecasts were estimated for 1, 5 and 10-day leads. GEFS raw forecasts
illustrated better skills than ERFS forecasts for overall rainfall and extreme precipitation. As studies show that rain

plays a vital role in streamflow forecast (Demargne et al., 2014; Meaurio et al., 2017; Pappenberger et al., 2005),
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we also observed the same results. The ensemble forecast with better skills performed well in predicting daily
streamflow. Correcting the bias of the input forecast may shrink the variability range of the result. However,
ensemble forecasts aim to capture uncertainties. Studies suggest that the post-processing of streamflow data can
significantly improve performance (Muhammad et al., 2018; Tiwari et al., 2021). A multi-model approach, where
more than one hydrological model is used, can generalize the uncertainty introduced by the hydrological model.
Various studies have reported improved forecast skills using the multi-model approach (Muhammad et al., 2018;
Velazquez et al., 2011; Zarzar et al., 2018). Also, our analysis is based on just for the 2019-2020 as the GEFS
hindcast is available only for this period. Availability of longer hindcast from the GEFS can help to understand
the forecast skills for hydrological extremes (drought and floods). Moreover, we did not examine the forecast skill

of reservoir storage, which can provide a better understanding of the impacts of storage during the floods.

Flood forecasting using the available meteorological forecast products can help in mitigating the losses through
early warnings. To account for the uncertainty arising from initial state and model parameterization, the individual
members of the ensemble weather forecast can provide better information than their ensemble mean (Saleh et al.,
2019). The probabilistic approach over the deterministic method provides the range of variability, which can help
determine the probability of exceeding a specific threshold of streamflow (Hsiao et al., 2013). The shift from the
existing 'flood forecast system' to the 'ensemble-based probabilistic forecast' requires modifications in the current
flood forecast practice. The transition is expected to change various aspects of the existing decision-making
process. The forecasters need to train the on-duty officers adequately and the authorities on probabilistic forecasts.
We evaluated the streamflow forecast skills at 1-32 day lead in the Narmada river basin. The increased lead time
in streamflow forecast can assist in developing efficient communication methods of information (Arnal et al.,
2020; Ramos et al., 2010). Moreover, ensemble streamflow forecast at longer leads can be effectively used in
optimizing reservoir operations (Alemu et al., 2011). Our results show that, while the mean of the ensemble
members failed to capture the high flows, a few individual ensemble members performed better in capturing peak

flow, which can be used to develop probabilistic early warnings.
Based on our findings, the following conclusions can be made:

1) The raw precipitation forecast from both GEFS and ERFS datasets showed moderate skills (bias, NRMSE
and correlation) against observations from IMD at 1-day, 5-day and 10-day lead times. While both (ERFS
and GEFS) forecast products underestimated extreme precipitation, dry bias in the ERFS forecast was
more prominent than the GEFS forecast. For instance, raw precipitation forecast from ERFS showed
negative bias across the Narmada river basin. On the other hand, the raw precipitation forecast from GEFS
exhibited both negative and positive bias. Both the forecast products showed better skills for maximum
and minimum temperatures than precipitation.

2) We calibrated and evaluated the VIC-Res model to simulate streamflow, considering the influence of
reservoirs at four gauge stations in the Narmada River Basin. The model reproduced daily streamflow,

reservoir water level, and storage reasonably well against the observations.
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3) Comparing the streamflow forecast skills of both the ensemble forecasts showed that GEFS forecasts
performed better than the ERFS at all the locations in the basin. However, both the forecast products
underestimated the extremes, which can be due to dry bias in extreme precipitation. The spread in
streamflow due to different ensemble members increased with the forecast lead time. Overall, an

ensemble forecast can be used to develop a probabilistic forecast based flood early warning system.
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