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Abstract. Machine learning for hydrologic modeling has seen significant development and has been suggested as a valuable

augmentation to physical hydrological modeling, especially in data-scarce catchments. In Pakistan, surface water flows pre-

dominantly originate from the transboundary Upper Indus sub-catchments of Chenab, Jhelum, Indus, and Kabul rivers. These

are high elevation data scarce catchments and generated streamflows are highly seasonal and prone to climate change. Given

the catchment characteristics, there is an utmost need to develop machine learning models that are hydrologically robust. Thus,5

the current study besides evaluating the potential of three machine learning models for streamflow simulation also focused on

the hydrologic interpretation of machine learning models using SHapley Additive exPlananations(SHAP). XGBOOST, Ran-

domForest, and Classification and Regression Trees(CART) were evaluated. All of these models performed well and the range

of R 2 and Nasche-Efficiency for all three models lies between 0.61 to 0.90. Our study’s most crucial contribution is SHapley

Additive exPlananations(SHAP) method which gives extensive insights into the influence of each variable on simulated stream-10

flow. SHAP analysis highlighted the significance of minimum temperature in high elevation zones for both Indus and Chenab

catchments where streamflows are dominated by snow and glacier melt. We strongly believe that the findings of this study will

promote the use of SHAP analysis for streamflow forecasting in data scarce and high elevation catchments in Pakistan.

1 Introduction

Streamflow modeling is critical to nearly every element of water resource management, water quality, climate risk assessment,15

and advanced detection of hazardous hydrological events. However, due to the evolving and dynamic character of runoff in

response to stochastic precipitation, physical properties of the catchment, temporal and regional variability in temperature and

evapotranspiration, and climate change regime, forecasting remains a difficult job. (Adnan et al., 2019; Meng et al., 2019; jing

Niu et al., 2019). Hence, monthly and daily streamflow forecasting has received significant recognition in the past decades

(Wang et al. 2019;(Parisouj et al., 2020; Hadi and Tombul, 2018). Thus, in recent years, the development of efficient and well-20

performing streamflow models has become an intriguing idea in hydrology and other relevant engineering fields. (Pham et al.,

2020).

Since the nineteenth century, when the rational system was developed, water managers and hydrologists have utilized ob-

servable relationships between rains and runoff for streamflow modeling (Beven, 2011). Nevertheless, in the last decade, the
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emergence of highly complex machine learning algorithms, coupled with significant gains in processing power, has spurred25

considerable research into new approaches for data-driven streamflow forecasting (Shortridge et al., 2016). While distributed

physical models that precisely depict hydrologic processes can still be considered a holy grail for rainfall-runoff modeling,

empirical models can prove to be a beneficial tool for data-scarce physical watershed processes. Adequate streamflow and

climate data have been more readily accessible in data-poor places due to the creation of historic data centers and more recent

initiatives to blend satellite-generated information with in situ observations to track hydrologic and climatic conditions. Em-30

pirical models could be especially helpful in these situations because collecting measurement-based values of soil hydraulic

characteristics or details on hydrologically suitable land management operations might be challenging.

The tremendous advancements in machine learning (ML) are undoubtedly the most important contemporary development

in the subject of hydrology. Machine Learning is essential to deal with the issues posed by climate change and an ever-

increasing human effect on the natural world (Schmidt et al., 2020). Owing to the substantial economic and health-related35

implications of floods, streamflow forecasting is a pillar of operational hydrology and an essential study area. Forecasting has

also become a critical aspect of water resources planning in climate emergency times such as predicting summer low flows

(Godsey et al., 2014), anticipating drought conditions (Kapnick et al., 2018), or managing reservoir systems with changing

flow regimes(Tennant et al., 2020).

Despite the encouraging results reported in contemporary literature, the majority of ML streamflow forecast applications are40

restricted to watersheds where rainfall is the primary contributor. A blend of spring snowmelt and rainwater can boost stream-

flow in many areas, especially, non-alpine regions (Johnstone, 2011; Knowles et al., 2007). The amount of snow accumulation

and its proportion to runoff varies greatly among watersheds (Knowles et al., 2006). The utilization of Data-driven methods

has made it possible to construct implementable models with high predictive performance, using the available data, while re-

lying on limited domain knowledge. At the same time, data-driven models have become a matter of contention, particularly45

in scientific domains including hydrology. They are frequently described as "black box" models, where the user has restricted

information on the working of models that generate forecasts(Herath et al., 2020). However, failure to realize the potential of

ML models in hydrological modeling, on the other hand, is regarded as a threat to hydrological modeling (Nearing et al., 2021).

Nearing et al. (2021) argue that machine learning models can find similarities between catchments by producing good results

even for watersheds that were not used to train the models. Thus, there is a potential for using a machine learning model to pro-50

vide basin-scale hypotheses that conventional models cannot. The question of whether machine learning models yield similar

outcomes in watersheds with a mix of rainfall and snowmelt contributions is a natural one. Snowpack management is critical,

and quick snowmelt plays a significant role in flood disasters, which merits further investigation. In the field of nonlinear hy-

drology number of ML models, such as support vector regression (SVR) (Liang et al., 2018), adaptive neuro-fuzzy inference

system (ANFIS) (Dehghani et al., 2019), artificial neural networks (ANN) (Wen et al., 2019), (Zhang et al., 2018), (Meng55

et al., 2019) and genetic programming (GP) (Ravansalar et al., 2017); (Yaseen et al., 2017) have been developed and shown

acceptable performance in modeling nonlinear hydrological processes. These non-linear processes include drought forecasting

(Rahmati et al., 2020), sediment transport modeling (Ebtehaj et al., 2016), and rainfall-runoff modeling. Deep learning (neural

networks) have been extensively used for streamflow modeling, however, neural networks generally need a lot of training data
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to yield accurate predictions, while, tree-based models have been shown to work well when provided with limited training60

data (Gauch et al., 2021). It is a tree-based method in which any route from the root to the leaf node is characterized by a

data separator sequence till a Boolean result at the leaf node is obtained. Furthermore, no assumptions about the predictor’s

distribution are required. DT is computationally less expensive than other ML models. It also has unique benefits, such as being

simple to understand and visualize (Ni et al., 2020).

When it comes to Pakistan, more than 60 % of the total population is rural and mostly resides in the semi-arid to hyper-65

arid plains of the lower Indus basin (Akhtar et al., 2020). Agricultural activities of these rural dwellers are heavily dependent

on streamflows originating from the Upper Indus catchments, that are diverted towards agricultural fields via the massive

Indus Basin Irrigation System Siddiqi et al. (2018). These streamflows are highly seasonal, variant, and prone to extreme

events and climate change Lutz et al. (2016); Wijngaard et al. (2017). This gives rise to the need for the development of a

robust hydrological model that can simulate streamflows. The use of Machine Learning methods for streamflow forecasting in70

Upper Indus Catchments is very limited. The literature we studied is quite limited, it compared and evaluated the performance

of machine learning models. ur Rauf et al. (2018) compared the performance of four SVR models and ANN to forecast

streamflows in the upper Indus. The authors observed the long-term predictions were best made by the ANN model. Hussain

(2020) compared the performance of multilayer perceptron (MLP), SVR, and random forest (RF) for streamflow forecasting in

the Hunza river basin(sub-catchment of Upper Indus Catchment). The findings suggest that the performance of RF was the best75

followed by MLP and SVR. According to (Hassan and Hassan, 2021)to increase the performance of ANN-based streamflow

forecasting, a pre-processing strategy can be used. Box-Cox transformation was used in the study and a comparison between

original and transformed data revealed better performance in both training and testing datasets. There is no prior literature

on the hydrological interpretation of Machine learning models. This, gives rise to a key research question, can ML Models

encapsulate hydrologic behaviors in data-scarce catchments of the Upper Indus?80

Another significant challenge in effectively using ML algorithms for hydrologic predictions in watersheds similar to the

Upper Indus Catchments is the limited availability of observed streamflow and climate stations. These catchments are large,

with high variability in elevation across each catchment, but have limited availability of streamflow and climate stations to ade-

quately represent their diverse topography, land-use dynamics, and associated hydrologic response. Hence, feature engineering

and selection, with due consideration of data scarcity challenges is critical for the development of data-driven hydrologic85

models.

To this end, we tend to evaluate the potential of three machine learning models namely Random Forest, XGBoost, and Clas-

sification And Regression Tree (CART) in making a short-term streamflow forecast at the 10-day lead time in four catchments

of upper Indus catchments in the Indus Basin. All three selected models fall under the category of decision tree algorithms.

Our selection of decision tree algorithms is based on the reason that tree-based models work well when provided with limited90

data set. To our knowledge, there are limited applications of classification and regression trees within hydrological forecasting.

Vezza et al. (2010) applied multiple regressions with morphoclimatic catchment characteristics in North-Western Italy obtained

through four classification methods: seasonality indices (SIs), classification and regression trees (CARTs), residual pattern ap-

proach (RPA), and weighted cluster analysis (WCA). Erdal and Karakurt (2013) found that the CART model outperforms
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SVR and the results from this study indicate that the classification and regression trees (CARTs) are a promising technique95

for monthly streamflow forecasting. Choubin et al. (2018) focused on the application of the classification and regression trees

(CART) model, for the prediction of the precipitation over a highly complex semiarid climate system of Kerman Province

Iran, and obtained satisfactory results. Our selection of RF for streamflow forecasting is based on its excellent track record

in short-term streamflow forecasting. Rasouli et al. (2012) forecasted streamflow at 1–7 d lead times using three ML models

and data from combinations of climate indices and local meteo-hydrologic observations in southern British Columbia, Canada.100

Moreover, other studies also reported high performance of the random forest model in highly seasonal rivers in the highlands

of Ethiopia (Shortridge et al., 2016), in the Wei River Basin, China (Li et al., 2019), and Current River at Doniphan, Missouri

(Papacharalampous and Tyralis, 2018), and in the Pacific Northwest (Pham et al., 2021). In practice, RF can be trained to

forecast streamflow at various timescales depending on the input variables provided. The selection of XGBoost is based on its

success in ML challenges, which stems from the fact that it is a speedy, effective, and scalable approach that generates good105

results in a variety of domains. Unlike the "random forest" (RF) model, which uses a parallel ensemble, the XGBoost model

is built on the concept of "boosting," which involves combining all of the predictions of "weak" learners in order to produce a

"strong" learner using additive training procedures (Fan et al., 2019). Compared with other ensemble models, it can improve

the model’s robustness by introducing regular terms and column sampling; and when each tree selects the split point, a paral-

lelization strategy will be adopted to improve the model’s running speed. A few studies have investigated its performance in110

earth science fields and achieved state-of-art results. Fan et al. (2018a) compared the SVM and the XGBoost methods for daily

solar radiation prediction in humid subtropical China. They found that XGBoost outperformed the studied empirical models,

and recommended it as a promising model for solar radiation estimation due to better model stability, efficiency, and compa-

rable prediction accuracy. (Zhang et al., 2019) applied XGBoost to predict the Standardized Precipitation Evapotranspiration

Index (SPEI), meteorological measures, and climate signals from 32 stations. The results showed that the XGBoost predicted115

more accurately in 1–6 steps than ANN did. Despite its application in other fields (Le et al., 2019; Xia et al., 2017), the use of

XGBoost for streamflow modeling is yet to be explored further (Ni et al., 2020).

1.1 Hydrologic Interpretation

While ML models and data-driven methods have shown immense potential in adequately simulating streamflow (even for data-

scarce and ungauged catchments), detailed diagnosis and analysis of interpretation of the trends embedded within such models,120

is extremely important to create confidence in such models. Black-box use of such models, without intricate interpretation of

how they simulate streamflow can be extremely dangerous. However, the recent emergence of the SHAP method seems to have

reversed this situation. SHAP originates from "game theory" and constructs an additive interpretation model (Strumbelj and

Kononenko, 2014), and all features are regarded as "contributors". The response of the machine learning output to input can be

obtained through the calculated SHAP value (Lundberg and Lee, 2017). SHAP (Lundberg and Lee, 2017) is a game-theoretic125

approach to explain the performance of the machine learning model. It can quantify the contribution of the input feature to

the prediction for an individual sample. In the study of feature analysis, SHAP technology has achieved satisfactory results

in many fields, such as medicine (Lama et al., 2021), materials (Mangalathu et al., 2020), hydrology (Hu et al., 2021), water
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environment (Wang et al., 2021, 2022)l and confirmed its applicability in feature analysis. However, only a few studies have

applied interpretable machine learning methods to the attribution analysis of variables in hydrology (Wang et al., 2022).130

Applying SHAP analysis in data-scarce Upper Indus catchments and complex hydrologic dynamics helps in interpreting

ML model in terms of physical linkages between different hydrometeorological parameters. We intend to develop ML models

that are not only efficient in terms of evaluation metrics but also hydrologically robust.

Thus, the overall objective of our study is to determine a robust methodology for the interpretation of these models in the

large snowmelt and rainfall-fed watersheds. Therefore, our study has two distinct objectives (1) ML model development for135

large snow dominant catchments to compare the observed streamflow with Machine learning model generated streamflows and

2)SHAP analysis to interpret ML models and explain physical linkages between hydrometeorological parameters.

2 Study Area

In this study, we focus on watersheds in the upper Indus catchments, namely, Kabul, Jhelum, Chenab, and Indus Catchment.

This region covers a total area of 321,540 km2, while Kabul and Indus Catchment covers almost 82 % percent of the total140

area. Figure 1 delineates the four Indus basin catchments selected for employing machine learning algorithms for streamflow

simulation, i.e., Upper Chenab, Upper Jhelum, Upper Indus, and Kabul. As mentioned earlier, these catchments account for

more than 70 % (Karimi et al., 2013; Laghari et al., 2012; Yu et al., 2013) of Pakistan’s renewable freshwater availability.

2.1 Catchment Characteristics

For the analysis of this study, a Digital Elevation Model (DEM) was produced for all four basins (Terbela, Mangla, Chenab, and145

Kabul) using the Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 30 m. The watershed boundary was

delineated using SRTM DEM, which was acquired from the following web page; “http://www. srtm.csi.cgiar.org/”. Different

elevation zones for different catchments were then defined Table 1. Hypsometric elevation of each zone was plotted between

basin elevations and cumulative areas of the zones as shown in Figure 3. These elevation zones are made so that the gridded

data of all the parameters [precipitation, temperature (max and min), snow water equivalent, and potential evapotranspiration]150

should fall within each zone of the basins for analysis.Figure 2 represents the DEM for each catchment.

3 Data

3.1 Streamflow

We used 10-Daily streamflow data of outlets of the four catchments discussed in the previous section and delineated in Fig. 2

for the Streamflow prediction. Daily streamflow records from 1979-2014 for the relevant flow stations,i.e., Chenab at Marala155

Barrage, Jhelum at Mangla Reservoir (upstream), Indus at Tarbela Reservoir (upstream), and Kabul at Nowshera gage (see Fig.

2) are used in our analysis.
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3.2 Climate Data

3.2.1 Precipitation

As we are using the 10-Daily streamflow dataset, the subsequent dataset has also been transformed into 10-Daily time series.160

In this study (Yatagai et al., 2012) APHRODITE’s (Asian Precipitation - Highly-Resolved Observational Data Integration

Towards Evaluation) gridded precipitation was used. The dataset has a resolution of 0.25 degrees in space and one day in

time. The temporal range of the data set is from January 1979 to December 2014. Figure 4 shows the correlations between

APHRODITE and observed precipitation (mm) at six meteorological stations in the study area and their respective catchments,

with R squared values ranging from 0.5-0.75. The stations that were looked at and their catchments are Jhelum (Jhelum), Gilgit165

(Indus), Kotli (Jhelum), and Muzaffarabad (Jhelum), Balakot (Jhelum).

3.2.2 Snow Water Equivalent(SWE)

Global Land Data Assimilation System (GLDAS) was used to collect the Snow Water Equivalent data set. The dataset spans

the years January 1948 to December 2014 and has a resolution of 0.25 degrees. The dataset further includes various current

and prospective weather and climate prediction, water resource applications, and water cycle studies. Princeton University’s170

worldwide meteorological forcing data were used to constrain the simulations (Sheffield et al., 2006).

3.2.3 Temperature

A shift in temperature is deemed as the key trigger for snowmelt, daily minimum (Tmin), and maximum temperature (Tmax)

from CPC Global Temperature data products. The spatial Resolution of a dataset is 0.50 Degrees while the temporal resolution

is daily. The dataset covers from January 1979 to December 2014.175

3.2.4 Potential Evaptranspiration (PET)

For Potential Evaptranspiration (PET), PyETo package was used. PyETo is a Python package for calculating Potential Evapo-

transpiration (PET). There are various features in the package for predicting missing meteorological data.

The package provides three methods for estimating ETo/PET namely; FAO-56 Penman-Monteith (Allen, R. G. et al.,

1998),Hargreaves (Hargreaves and Samani, 1985) and Thornthwaite (THORNTHWAITE, 1948).180

Hargreaves method (Hargreaves and Samani, 1985) was used in our study to derive the Potential Evapotranspiration. It is a

simple evapotranspiration equation that only involves only a few easily obtainable metrics i-e: minimum, maximum and mean

temperature, and extraterrestrial radiation.

If the available meteorological statistics for the Penman-Monteith approach are inadequate, the FAO recommends the Harg-

reaves equation (Allen, R. G. et al., 1998) as an alternative way for determining ETo.185

6

https://doi.org/10.5194/hess-2022-213
Preprint. Discussion started: 2 September 2022
c© Author(s) 2022. CC BY 4.0 License.



4 Methodology

Methodology of the study, presented in Figure 5, and discussed in forthcoming sections:

4.1 Predictor Selection

The response variable in our study is 10-daily mean streamflow. We used five predictors to try to elaborate on the variability

in streamflow. The predictors were chosen after a thorough review of the literature along with our knowledge of the region’s190

hydrology. Precipitation (PRECIP), in particular, is a fundamental source of streamflow. Temperature changes, and change

in minimum and maximum temperature impacts the "Snow Water Equivalent" (SWE), which provides storage data on the

quantity of stored snow accessible for runoff.(Table 2).

The gridded data sets were compared with the nearest grid point of the global elevation shapefile to sort out the data based

on the elevation zones discussed in Section 2.1. The number of features corresponding to the elevation zones of each catchment195

is presented in Table 3.

Two categorical features were also incorporated into the models to understand the impact of seasonality on streamflow

prediction. To this end, Months and Seasons (Early Kharif, Late Kharif, and Rabi) were included as categorical features.

Values assigned to three seasons were; zero for Early Kharif (April to June), 1 for Late Kharif (June to September), and 2 for

Rabi Season (October to March), while Months range from 1 to 12.200

4.2 Models

4.2.1 Classification And Regression Trees (CART)

Breiman et al. (1984) introduced Classification and regression trees (CARTs), which gained popularity in recent years. It is a

regression and classification algorithm that works with both numerical and categorical predictors. Every node of the tree has

a splitting rule. The splitting rule is calculated by minimizing the "relative error" (RE) (Hancock et al., 2005).CART, on the205

other hand, has an increased likelihood of overfitting, due to its sensitivity to even minor changes in the training data (Erdal and

Karakurt, 2013). While creating a CART model, hyper-parameters must be decided to direct the establishment of correlation.

Key parameters used were: maximum depth, minimum samples, and minimum samples leaf.

4.2.2 Random Forest

It is a fairly new concept that was created as an extension of CART to boost prediction accuracy (Liaw and Wiener, 2002). Pro-210

posed by Breiman,(2001), RF is a non-parametric, quasi-unsupervised algorithm within the decision tree family that comprises

a combination of statistically independent trees to forecast regression and classification tasks. Using the algorithm. various

decision trees are combined and their forecasts are aggregated. The algorithm performs well when the number of observations

is greater than the number of variables. Moreover, it is considered dynamic due to being easily adaptable to various ad-hoc

learning tasks and effectively providing rankings of variable significance. Since even the slightest change in the dataset used for215
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training causes a decision tree to bring a significant difference in output, several decision trees with bootstrap aggregation are

utilized to counter this statistical instability. Breiman, (2001) thoroughly elaborated on the Random Forest and its significance.

In our research, the randomForest Python has been used for training and testing the model.

Since hyperparameter tuning is based more on experimental data rather than theory, the ideal method to determine the

optimal values is to try different combinations and assess each precision. However, assessing every model based solely on the220

training data can lead to overfitting (which is regarded as one of the most common problems in ML). Although the model

will score well on the training data set for which it was optimized, it will fail to generalize its performance on the test dataset.

Overfitting happens when a model performs well on the training data but poorly on the test data, resulting in a model that is well-

versed in the training data but unable to solve new tasks. Cross-validation is used to account for overfitting in hyperparameter

optimization.225

K-fold cross-validation (CV) is a common way to choose which model to use. Folds are used to build models, and the hold-

out fold is used to validate the models. This indicates that model development takes precedence over model validation (Jung,

2018). In our model, K = 10 was used to fit the model.

Because we usually only have a vague understanding of what the ideal hyperparameters are, examining a wide variety of

values for each hyperparameter is the most effective technique to narrow down our search. Using Scikit-RandomizedSearchCV230

Learn’s method, we set up a grid of hyperparameter ranges, took random samples from the grid, ran K-Fold CV with each set

of values, and obtained the best parameter values.

4.2.3 XGBoost

Extreme Gradient Boosting (Fan et al., 2018b)is a quicker and more efficient version of gradient boosted decision trees (see for

example (Natekin and Knoll, 2013)). It is an approach that predicts the errors of prior models by creating new models (in this235

instance decision trees). All fitting models are combined in the final model. When adding new decision trees, to make the loss

function as small as possible, a gradient descent algorithm is used. To avoid overfitting, XGBoost employs a more regularized

model formalization. This approach improves the accuracy of XGBoost over gradient boosting. The XGBoost package in

Python was used for model training and validation in our study.

Using the selected predictors, the training dataset described in Section 3.1 has been used to develop the XGBoost model for240

predicting 10-daily stream flow. Hyper-parameters must be selected while creating an XGBoost model to promote correlation

formation. Important parameters used were: maximum depth, n estimators, and gamma.

4.2.4 Model Development

The stream flow data has a temporal resolution of 35 years (1979-2014). Daily streamflow records were then converted into

10-daily averages i-e 36 values for each year and 1296 values for the complete dataset. Subsequent datasets are also converted245

into 10-daily timesteps. The reason for using 10-daily timesteps is based on the fact that operational management of Indus

River Basin is based on 10 daily timesteps. The observed stream flow data is divided into two parts: namely training/model
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development and testing/model evaluation. The first 75 percent of the dataset is utilized for training, while the remaining 25

percent is used for testing.

4.3 SHAP Analysis250

Louppe et al. (2013) found that the importance of variables is a useful tool for understanding both the underlying process

of the current model as well as offering useful information for the selection of predictor variables in future research. The

SHapley Additive exPlanations (SHAP) method proposed by Lundberg and Lee (2017) is used in this study to explain the

feature importance in the predictions .In machine learning, a feature’s SHAP value for a particular prediction describes its

contribution to that prediction compared to the average prediction for the dataset (Molnar, 2020). The SHAP values, however,255

can be extremely computationally expensive to calculate (Lundberg et al., 2019b). The TreeExplainer algorithms developed

in Lundberg et al. (2019a) are efficient in calculating the SHAP values for tree-based models. TreeExplainer is designed such

that the unique structures of trees are utilized to simultaneously account for all possible subsets, allowing the SHAP values

to be computed in polynomial time. More details on TreeExplainer can be found in Lundberg et al. (2019a).TreeExplainer

is employed in this study to calculate the SHAP values for the XGBoost, RandomForest, and CART models to assess the260

contribution of hydro-environmental features to the prediction.

"Connection weight" (Garson, 1991), Partial derivative (Dimopoulos et al., 1995), or input variable disturbance (Qi et al.,

2016) are some more approaches for analyzing the feature sensitivity of neural network models. These approaches are, nev-

ertheless, "local sensitivity analysis" methods, which only assess the impact of one input variable on the outcome. In reality,

when constructing a sensitivity analysis experiment, it is crucial to evaluate the interactions between different variables (Gevrey265

et al., 2006). SHAP can be used to quantify the impact of each model input on the model’s final output. It is more accurate

because it considers the impact of the interactions between the input variables on the result. The findings of SHAP are thus

regarded as more accurate and credible owing to its robust theoretical underpinning. The contribution of an input parameter is

determined by SHAP and it is centered on the marginal contribution:

∅i =
∑

S⊆N(i)

|S|!(n− |S| − 1)!
n!

[v(S ∪ i)− v(S)] (1)270

where ∅i represents the impact of input factor i to the model output, n represents exactly how many input variables were

involved, N denotes the entire set of inputs, S denotes the set of elements preceding I in the sequence, which is a subset of N,

and v (S) denotes the value created by the interaction of the elements included in the S subset. By comparing the corresponding

SHAP readings, the impact of every input variable on the model output could be readily seen.

4.4 Evaluation Metrics275

Various model performance measures exist, and each one offers a specific understanding of the relationship between simulated

and observed values of streamflow. Although the "Pearson correlation coefficient" (r) and its square, the "coefficient of deter-

mination" (R 2), are frequently employed, Legates and McCabe (1999) discussed the limitation of these two measures. The

authors suggested that a measure of goodness-of-fit, such as the Nash-Sutcliffe efficiency (NSE), could provide a more credible
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assessment of the models. Due to these factors, we decided to use the following three measures for model assessment:R2 ,NSE,280

and hydrologic signatures. Insight into the streamflow model can be obtained by evaluating both error statistics and signatures

of observed and simulated hydrologic time-series (Addor et al., 2018). While statistical error metrics typically focus on ana-

lyzing the agreement between observed and simulated time series, hydrologic signatures (e.g., bias, flow duration curve (FDC)

slope etc.) are metrics that define the characteristics of a hydrologic time series. Consequently, it is imperative that signatures of

streamflows simulated via ML methods closely resemble observed streamflow signatures. Moreover, incorporating hydrologic285

signatures in the assessment of ML algorithms is important in ascertaining if simulated streamflows adequately mimic observed

streamflow characteristics or not. Typically 5-10 signatures are selected to summarize the flow regime(Euser et al., 2013). In

this study, Relative Bias, Discharge peak, Auto-Correlation, Logarithmic Bias, and Variance were selected to obtain in-depth

details of discharge at selected watersheds. These parameters cover a variety of characteristics of the model’s performance and

are easy to understand.290

5 Results and Discussion

5.1 Hydrologic Signatures

The comparison of hydrological signatures for observed and simulated streamflows over the four catchments is presented in

Figure 6. The 10-daily discharge data are used to calculate these signatures. The relative bias is used as an indicator to describe

the error between actual and simulated discharge from the model. The values of relative bias help us to assess the change295

of total error of predicted discharge. The variance percentage indicates how well the model represents baseflow statistics

like mean baseflow volume, median and mean daily flow, and index. In the same way, the model shows high-spell and low-

spell statistics with a reasonable amount of variation in each sub-basin. The selected models are effective at reflecting local

conditions, according to the assessment of performance evaluation parameters and hydrological signatures. Hence, the selected

models can be suggested for streamflow projections for river basin-scale studies depending on the accuracy of climate datasets.300

5.2 Variable importance using SHapley Additive exPlanations (SHAP)

We analyzed the variable importances and their interactions using SHAP analysis across each of the four catchments. Figures

10 11 and 12 represents SHAP summary plots for top 10 variables. It is comprised of colored dots, each observation in the

dataset generates a dot for each variable for the test period 2006-2014. Note that the order of the variables is the same as the

Feature Importance order, it is formed by summing all the weights of the color chart. The second dimension is the shape of305

the distribution, when you have a large mass of dots, it piles the dots in the format of a lying violin. The third dimension is

the position of the points, note that there is a vertical axis at zero, dots on this axis indicate that the variable is not positively

or negatively impacting, if the dot is to the right of this line, it positively impacts the target, and left, negatively, the farther

from the axis, the greater the impact. The fourth and last dimension is the color of the balls, blue indicates low values and red

indicates the high value this is done for each of the variables.310
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In all three models Tmin in the elevation zone 7 (5400-7103m) of Chenab and Tmin in the elevation zone 5 (3801-4600m),

elevation zone 6 (4601-5400m), and elevation zone 7 (5400-8578m) of Indus has the most impact on streamflow prediction.

As the values of Tmin increase higher will the predicted streamflow. The variable importance for Indus and Chenab captured

in our SHAP analysis is logical considering the fact that, snowmelt is the most important contributor to flow in the upper

Indus catchments, followed by glacier melt, with 80 % of the flow occurring between June and September. Two processes,315

namely, accumulation of snow, which is governed by winter precipitation and temperature, and meltwater generation, which

is determined by summer temperatures, control interannual flow variability (Charles et al., 2018).In Karakoram, the highest

point where meltwater can come from is between 5400 m and 6200 m. In the Western Greater Himalayas, meltwater comes

from much higher elevations, between 4250 or 4750 m and 5500 or 5750 m. (Mukhopadhyay and Khan, 2015). So, the flow

caused by snowmelt is a function of winter precipitation and temperature as well as summer temperature. On the other hand,320

glacier melt is a function of summer temperature, moreover snow cover also affects glacier melt (Charles, 2016). Thus this

makes minimum Temperature a key driver for predicted streamflow. In Chenab Catchment Season and Precipitation also plays

a significant role owing to the fact the streamflow in Chenab catchment is influenced by the monsoon, which becomes evident

from the results the early Kharif and late Kharif season and precipitation play a significant role. This is further complemented

by Shap dependence plots in Figure 13. For the Indus catchment, we can interpret this to say, in general, the higher value of325

Tmin in the highest elevation zone increases the streamflow Similarly, as Tmax increases Tmin also increases which in turn

increases the predicted streamflow. The same is the case for the Chenab catchment.

When it comes to Kabul Catchment, it is a semi-arid catchment, which means higher evaporation rates than annual total

precipitation. In line with Kabul catchment hydrology, our analysis presented in Figures 10 and 11 indicate Potential Evap-

otranspiration as the most significant variable in the prediction of streamflow. Although determining the causes of runoff330

generation has proven to be a difficult task, in semi-arid catchments highly variable rainfall and streamflow, high evaporation

rates, and deep groundwater reservoirs may result in a highly complex hydrological process dynamics (Camacho Suarez et al.,

2015). Our analysis does depict that Higher Potential Evapotranspiration means higher Temperature which in turn results in

increased snow melt. This is further explained through the relation of PET and Months, where higher PET values correspond

to a higher temperature which in turn reflects summer months in Figure 13.335

The hydro-climatic nature of Jhelum Watershed is eccentric due to transboundary data scarcity issues and heavily impacted

by two distinct climate trends (monsoon and westerlies circulation). Moreover, under the influence of the westerlies circulation

pattern, this watershed receives significant runoff contributions from early summer (April to mid-June) snow- and glacier-melt

that builds over the winter season, as well as heavy summer monsoon rains (end of June to August) (Azmat et al., 2018). Shap

analysis rightly captures the bird-eye view of the catchment, where Early Kharif, Late Kharif seasons, and snow-melt from340

the highest elevation zone 5 of the catchment play a vital role in streamflow prediction. Figure 13 further illustrates a logical

interaction of Snow water equivalent with Months for the Jhelum catchment.

The aforementioned analysis depicts that all the tree-based algorithms are hydrologically robust and capture the physical

linkages among the hydrometeorological parameters logically. Thus, consistency of SHAP identification results with hydrology

theory further supports the reliability of the results.345
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5.3 Model Performance

Except for 2 cases, Kabul and Jhelum Catchment, all algorithms produced adequate prediction accuracy on the test data

across the selected study area (Figure 2). The models performed exceptionally well for Indus and Chenab Catchments. The

range of R2 and NSE for all three models lies between 0.61 to 0.90 for four catchments represented through Table 4. Among

XGBoost and RandomForest, Random Forest performs relatively better which indicates its suitability for snow-dominated350

catchments.Figures 7 8 and 9 represents the simulated and actual hydrographs of the XGBoost, RandomForest and CART

models.

6 Conclusion

We examined 3 models for data-driven rainfall-runoff modeling for their capacity for streamflow simulation in 4 highly seasonal

and data-scarce catchments. Our research has primarily focused on demonstrating the difficulties of using data-driven models355

in large watersheds (with limited spatial coverage of streamflow observational data), where both rainfall and snowmelt are the

sources of streamflow, and observational streamflow data is only accessible at catchment outlets. Our study presents a complete

machine learning framework for catchments with a mix of snowmelt and rainfall, which includes hyperparameter optimization

methods, performance evaluation methods, and model interpretation methods. The framework is particularly beneficial for high

elevation large data scarce catchments where the information for setting up process-based models is insufficient. Further, it is360

recommended to use the SHAP method in more case studies and compare the representations learned by different models. Using

model explanation methods, such as SHAP, provides guiding information in the process of predictor selection for data-scarce

catchments by enabling visualization of the contribution of individual variables in a prediction. Moreover, SHAP analysis

allows reasons for making each prediction to be explained and the learned representations to be analyzed, which increases the

transparency of machine learning, and may eventually promote the application of machine learning methods in hydrological365

studies.
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Table 1. Elevation bands information for the watershed model of this study

Basin Name Bands Elevation Zones(meters) Area(Km2) Zone Area %

Indus

1 0-1400 5097.04 6.90

2 1401-2200 5675.26 7.68

3 2201-3000 8342.17 11.29

4 3001-3800 12922.16 17.49

5 3801-4600 21446.88 29.03

6 4601-5400 15685.52 21.23

7 5401-8578 4721.55 6.39

Jhelum

1 0-1000 4490.99 13.39

2 1001-2000 10062.41 30.01

3 2001-3000 8329.57 24.84

4 3001-4000 7491.24 22.34

5 4001-6121 3157.10 9.42

Chenab

1 0-1300 1954.54 8.06

2 1301-2100 2702.91 11.15

3 2101-3000 3772.52 15.56

4 3001-3900 4510.45 18.60

5 3901-4800 6516.03 26.87

6 4801-5400 3803.26 15.68

7 5401-7103 988.22 4.08

Kabul

1 0-1000 12016.92 13.16

2 1001-1667 12277.93 13.45

3 1668-2335 15268.77 16.72

4 2336-3002 16246.39 17.80

5 3003-3669 15337.44 16.81

6 3670-4337 10665.69 11.68

7 4338-5003 7260.94 7.95

8 5003-7701 2212.35 2.42
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Table 2. List of Primary Predictor variables

No. Predictors Index Unit Source

1 Precipitation PRECIP mm APHRODITE

2 Maximum Temerature Tmax degree C CPC

3 Minimum Temperature Tmin degree C CPC

4 Snow Water Equivalent SWE mm GLDAS

5 Potential Evapotranspiration PET mm Hargreaves Equation

Table 3. List of predictor variables corresponding to elevation zones of Upper Indus catchments of Pakistan: a) Indus at Tarbela b)Chenab at

Marala c) Kabul at Nowshera and d) Jhelum at Mangla

Catchments. Features Elevation Zones Categorical Features

Indus 35 7 2

Jhelum 25 5 2

Chenab 35 7 2

Kabul 40 8 2

Table 4. Performance Matrix of Machine learning models

Model Type Catcment Efficiencies (NSE/R2)

Chenab Jhelum Indus Kabul

CART 0.77/0.70 0.64/0.61 0.81/0.78 0.70/0.66

XGBOOST 0.85/0.87 0.63/0.66 0.9/0.9 0.6/0.67

RandomForest 0.83/0.78 0.69/0.63 0.89/0.89 0.72/0.67
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Figure 1. Overview of study area for meteorological and hydrological analysis, that includes the four western river catchments of the Upper

Indus Basin, i.e., Upper Indus, Kabul Upper Chenab and Upper Jhelum, and the studied streamflow stations at respective catchment outlets,

i.e., Nowshera, Tarbela, Mangla and Marala (Akhtar et al., 2020)
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a) b)

c) d)

Figure 2. Elevation zones based Digital Elevation Model at outlets of Upper Indus catchments of Pakistan: a) Indus at Tarbela b)Chenab at

Marala c) Kabul at Nowshera and d) Jhelum at Mangla
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Figure 3. Hypsometric curve of the study watershed at four catchments namely: Indus at Tarbela, Jhelum at Mangla, Chenab at Marala and

Kabul at Nowshera
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Figure 4. Comparison of daily APHRODITE precipitation with station observations
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Figure 5. Flow chart of development of ML models for streamflow simulating and interpretation of ML models using SHAP analysis
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Figure 6. Deviation score of hydrologic signature for each ML algorithm for four catchments: Indus at Tarbela, Jhelum at Mangla, Chenab

at Marala and Kabul at Nowshera
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Figure 7. Simulated and observed hydrographs of XGBoost model at outlets of Upper Indus catchments of Pakistan: a) Indus at Tarbela

b)Jhelum at Mangla c)Chenab at Marala and d)Kabul at Nowshera
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Figure 8. Simulated and observed hydrographs of Random Forest model at outlets of Upper Indus catchments of Pakistan: a) Indus at Tarbela

b)Jhelum at Mangla c)Chenab at Marala and d)Kabul at Nowshera
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Figure 9. Simulated and observed hydrographs of CART model at outlets of Upper Indus catchments of Pakistan: a) Indus at Tarbela

b)Jhelum at Mangla c)Chenab at Marala and d)Kabul at Nowshera
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Figure 10. SHAP summary plot. Each dot corresponds to a sample, and its x position shows the impact a predictor variable has on the

simulated streamflow for Random Forest Model testing period 2005-2014
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Figure 11. SHAP summary plot. Each dot corresponds to a sample, and its x position shows the impact a predictor variable has on simulated

streamflow for XGBoost Model testing period 2005-2014
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Figure 12. SHAP summary plot. Each dot corresponds to a sample, and its x position shows the impact a predictor variable has on simulated

streamflow for CART Model testing period 2005-2014
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Figure 13. SHAP dependence plots for XGBoost (First Row), RandomForest(Second Row) and CART (Third Row). The variables are

plotted against the SHAP values. Each dot corresponds to a sample
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