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Abstract. Actual evapotranspiration (ET) is the key link between water and energy cycles. However, accurate 

evaporation estimation in alpine barren areas remains understudied. In this study, we aimed to improve the satellite-

driven Process-based Land Surface ET/Heat fluxes algorithm (P-LSH) for better satellite retrieval of ET on the 15 

Tibetan Plateau by introducing two effective soil moisture constraint schemes, in which normalized surface soil 

moisture and the ratio of cumulative antecedent precipitation to cumulative antecedent equilibrium evaporation are 

used to represent soil water stress, respectively, based on the intercomparison and knowledge-learning of the 

existing schemes. We first conducted intercomparison of six existing soil evaporation algorithms and sorted out the 

two most effective soil moisture constraint schemes. We then introduced the modified versions of the two constraint 20 

schemes into the P-LSH algorithm and further optimized the parameters using the Differential Evolution method. As 

a result, it formed two improved P-LSH algorithms. We systematically assessed the performances of the two 

improved P-LSH algorithms and six existing remote sensing ET retrieval algorithms on two barren-dominated 

basins of the Tibetan Plateau using reconstructed ET estimates derived from the terrestrial water balance method as 

a benchmark. The two moisture constraint schemes largely improved the performance of the P-LSH algorithm and 25 

showed better performance in both basins (root mean square error (RMSE) = 7.36 and 7.76 mm month-1; R2 = 0.86 

and 0.87), resulting in a higher simulation accuracy than all six existing algorithms. We used five soil moisture 

datasets and five precipitation datasets to further investigate the impact of moisture constraint uncertainty on the 

improved P-LSH algorithm. The ET estimates of the improved P-LSH algorithm, driven by the GLDAS_Noah soil 

moisture, performed best compared with those driven by other soil moisture and precipitation datasets, while ET 30 

estimates driven by various precipitation datasets generally showed a high and stable accuracy. These results suggest 

that high-quality soil moisture can optimally express moisture supply to ET, and that more accessible precipitation 

data can serve as a substitute for soil moisture as an indicator of moisture status for its robust performance in barren 

evaporation. 
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1 Introduction 35 

As a key link between the water and energy cycles, actual evapotranspiration (ET) is critical for assessing regional 

water and energy balances (Zhang et al., 2011). Oki and Kanae (2006) reported that approximately 60% of 

precipitation returns to the atmosphere in the form of ET, whereas the proportion can reach more than 90% in arid 

and semi-arid regions (Glenn et al., 2007; Morillas et al., 2013). Hence, accurate ET estimation is extremely 

important for irrigation planning, watershed management, and meteorology and climate change studies in arid and 40 

semi-arid regions. 

Satellite remote sensing is an important means of estimating regional and global ET. A series of ET estimation 

algorithms have been developed over the past decade, including remote-sensing-based physical models, process-

based land surface models, and vegetation-index-based empirical algorithms. In remote-sensing-based physical 

models, the Penman-Monteith (PM) method (Monteith, 1965; Cleugh et al., 2007; Mu et al., 2011; Zhang et al., 45 

2010a) and Priestley-Taylor (PT) method (Fisher et al., 2008; Martens et al., 2017; Priestley and Taylor, 1972; Yao 

et al., 2013) are the main representative methods for estimating ET. Several studies have combined these two 

methods to calculate canopy transpiration and soil evaporation (Leuning et al., 2008; Wang et al., 2018; Zhang et al., 

2019b). The PT equation simplifies the PM equation and avoids the difficulty of quantifying aerodynamic and 

surface conductance. However, the PT equation simplifies the physical process, leading to a weaker physical basis 50 

than that of the PM equation. Land surface models reflect interactions and feedback between physical, biological, 

and biogeochemical processes in a predictive manner (Jiménez et al., 2011). These methods do not require remote 

sensing data; however, different parameterization schemes in land surface models for various physiological 

processes lead to considerable uncertainty in ET estimation (Famiglietti and Wood, 1991; Pan et al., 2020; Schwalm 

et al., 2013). In addition, ET has a close relationship with the ecophysiological processes that can be represented by 55 

satellite spectral products such as the normalized difference vegetation index (NDVI), leaf area index (LAI), and 

land surface temperature (LST); as a result, a number of vegetation-index-based empirical algorithms have been 

developed (Wang et al., 2006; Glenn et al., 2010). Subsequent developments in machine learning have attracted 

further attention in ET estimation because of their advantages in capturing the complex and nonlinear relationship 

between ET and its controlling environmental factors (Abdullah et al., 2015; Bai et al., 2021; Jung et al., 2010). 60 

Although considerable effort has been made to estimate ET using the above methods, there are still significant 

uncertainties in quantifying the temporal and spatial characteristics and components of regional ET, especially in 

arid and semi-arid regions (Miralles et al., 2016; Pan et al., 2020). ET in these regions is dominated by water supply 

and climatic water deficits, whereas in humid regions it is dominated by available energy (Vinukollu et al., 2011; 

Zhang et al., 2016; Ma and Zhang, 2022). It is worth studying how to accurately reflect the influences of water 65 

supply and climatic water deficits. In remote-sensing-based physical models, both the PM and PT equations use the 

moisture constraint f to downscale the equilibrium (i.e., potential) evaporation at the soil surface to actual soil 

evaporation. Based on the hypothesis that surface moisture status is related to the adjacent atmospheric humidity 

(Bouchet, 1963), Fisher et al. (2008) used relative humidity (RH) and vapor pressure deficit (VPD) to reflect soil 

moisture supply and atmospheric water deficit and applied this method to a wide variety of ecosystems, vegetation 70 

types, footprints, and climatic regimes.  Zhang et al. (2019b) selected the cumulative precipitation and cumulative 
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equilibrium evaporation rates over the past 32 days to estimate f, based on which a continuous ET dataset was 

generated. Morillas et al. (2013) improved the method proposed by Zhang et al. (2010b) by adding a soil drying 

simulation factor after rainfall events and compared the uncertainties between three different methods in semi-arid 

and sub-humid flux towers in the Mediterranean. Miralles et al. (2011) also identified environmental factors that 75 

constrain potential evaporation by the moisture constraint f, parameterized for tall canopies, short vegetation, and 

barren areas. For barrens with sparse vegetation, the f estimates are based only on surface soil moisture (θ) 

conditions (Miralles et al., 2011; Martens et al., 2017), and soil moisture is normalized by the wilting point and 

critical moisture level, with an exponential (subsequently simplified to linear) form to estimate f. However, this 

method relies heavily on soil properties. Yao et al. (2013) incorporated diurnal temperature changes into Apparent 80 

Thermal Inertia (ATI) estimation to calculate the moisture constraint f; this method was then compared with the 

relative extractable water (REW) of 16 flux towers in China and showed good agreement. García et al. (2013) also 

expressed the moisture constraint f using ATI, which was calculated using LST and albedo from the Meteosate 

Second Generation-Spinning Enhanced Visible and InfraRed Imager (MSG-SEVIRI) satellite. Their results showed 

that ET estimates derived from both towers and satellites performed better than the two-source model or the 85 

Penman-Monteith-Leuning model in the African Sahelian savanna and Mediterranean grasslands. However, this 

ATI-based method requires fine spatial and temporal resolutions of LST. Brust et al. (2021) calculated REW as 

moisture control directly, using soil moisture data from the NASA Soil Moisture Active Passive (SMAP) mission. 

Their results showed that the accuracy of the method with soil moisture control was better than that of the baseline 

MOD16. In summary, the f estimations proposed above performed well in their respective studies, but their 90 

applicability has not been sufficiently tested on barrens with sparse vegetation in arid or semi-arid basins, such as 

those found on the Tibetan Plateau. 

Known as the “Asian Water Tower”, the Tibetan Plateau (TP) is crucial to the development of the Asian monsoon 

and water and energy cycles (Yao et al., 2012). Although great efforts have been made to evaluate ET in the sub-

basin of the TP over the past few years (Xue et al., 2013; Hu et al., 2018; Wang et al., 2018; Li et al., 2019; Xu et 95 

al., 2018), most studies have focused on the headwaters of rivers in eastern or southern TP and have ignored the 

central and western inland arid and semi-arid regions. Ma et al. (2020) provided some hourly land-atmosphere 

interaction observations of inner regions with sparse vegetation; however, accurate soil evaporation estimates 

involving barrens remain a challenge. Li et al. (2014) reconstructed monthly ET estimates using the water balance 

method to evaluate five existing global ET products. They found that existing ET products were still not satisfactory 100 

for the Qaidam Basin and Qiangtang Plateau, two barrens-dominated sub-basins on the TP. In brief, the surface 

energy balance and land-atmosphere interaction mechanisms in alpine barren areas have not been explicitly 

revealed. 

Therefore, we aim to seek the best mathematical representation of water supply, namely soil moisture, constraint to 

soil evaporation by learning from the existing schemes and further improve the satellite retrieval of soil evaporation 105 

in arid and semi-arid regions, especially in these understudied barren areas of the Tibetan Plateau. The specific 

objectives are: (1) to investigate the differences between the six existing soil evaporation algorithms and their 

applicability to alpine barren areas, (2) to improve the P-LSH algorithm by introducing two schemes for quantifying 
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moisture constraints to ET in terms of surface soil moisture and precipitation, respectively, and (3) to test the 

applicability of satellite soil moisture and precipitation data for improving ET retrieval and analyze the influence of 110 

soil moisture and precipitation uncertainties on ET estimation on alpine barren areas. 

2 Materials and study area 

2.1 Study area 

The Qaidam Basin is located in the northeastern TP (35°55'–39°10'N, 90°00'–98°20'E) and occupies an area of 

257,768 km2. The elevation of the Qaidam Basin is between 2,676 and 6,860 m, and the annual average temperature 115 

ranges from -6.4 to 14.5 ℃. Saline lakes and deserts cover approximately one-quarter and one-third of the Qaidam 

Basin, respectively. The Qaidam Basin has a typical continental climate with an average annual precipitation 

ranging from 29 to 387 mm, with approximately 80% of the precipitation occurring in summer. Its drought 

conditions, high salinity, large diurnal and seasonal temperature ranges, and high ultraviolet radiation make the 

basin unsuitable for living. According to the MODIS IGBP classification (Friedl et al., 2010), 79.1% of the Qaidam 120 

Basin is barren, 20.2% is grassland, and other land uses/land cover types represent less than 1%. Grassland is 

concentrated at the edge of the eastern and southern basins, whereas barren land is widely distributed across the 

remaining basins (Fig. 1a).  

 
Figure 1. Locations and land cover/land use of (a) the Qaidam Basin and (b) the Qiangtang Plateau within China. 125 
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(OSH: open shrublands; GRA: grasslands; WET: wetlands; CRO: croplands; URB: urban and built-up lands; SNO: 
snow and ice; BAR: barren; WAT: water bodies). 
 

The Qiangtang Plateau is located in the central hinterland of the TP, close to the Qaidam Basin. It forms the main 

feature of the TP with an area of 700,000 km2. The average annual precipitation on the Qiangtang Plateau ranges 130 

from 50 to 300 mm in solid forms, such as snow, graupel, and hail, with precipitation being concentrated in the 

summer. The high altitude and inland surrounding high mountains make the Qiangtang Plateau a uniquely cold and 

arid region with widely distributed permafrost. Similar to the Qaidam Basin, barrens account for the largest 

proportion of the Qiangtang Plateau, reaching 55.7%, whereas grassland and open water account for the second and 

third proportions, with values reaching 39.7% and 3.0%, respectively (Fig. 1b). The lakes on the Qiangtang Plateau 135 

cover an area of 21,400 km2, accounting for approximately a quarter of all lake areas in China. The unique 

geographical structure makes the Qiangtang Plateau an endorheic area, which is also true of the Qaidam Basin, 

where water is retained and no outflow to other external rivers or oceans occurs. In an endorheic basin, drainage 

converges into inner lakes or swamps and equilibrates through evaporation. 

2.2 Satellite and meteorological inputs 140 

Table 1 summarizes the datasets used in this study. All input datasets were resampled from the original spatial 

resolution to a common 1/12° grid with a temporal resolution on a daily scale using the bilinear interpolation 

method. The daily meteorological inputs required by remote sensing algorithms are derived from the China 

Meteorological Forcing Dataset (CMFD) (He et al., 2020), including air temperature (T), specific humidity (q), air 

pressure (Pair), wind speed (um), and precipitation (P). The dataset incorporates existing reanalysis datasets and in 145 

situ observations, and shows better accuracy than existing reanalysis datasets (Yang et al., 2010; He et al., 2020). 

Radiation inputs come from the Clouds and the Earth’s Radiant Energy System (CERES) SYN1deg radiative fluxes 

(Wielicki et al., 1996), which have provided continuous products since March 2000 with a resolution of 1° globally. 

In this study, we used all-sky incoming shortwave radiation and net radiation. The NDVI product used in this study 

is from the MODIS MOD13Q1 Version 6 (https://lpdaac.usgs.gov).  150 

In our algorithm, the surface soil moisture and precipitation were used to restrain soil evaporation. We selected 

various surface soil moisture and precipitation datasets from satellites, microwave assimilation, machine-learning 

methods, and reanalysis. The surface soil moisture comes from five datasets including: (i) the soil moisture dataset 

of China based on microwave data assimilation (Yang et al., 2020) (denoted as θYang in this study); (ii) the land 

surface soil moisture dataset of SMAP time-expanded daily 0.25° × 0.25° over the Qinghai-Tibet Plateau Area (Qu 155 

et al., 2019) (denoted as θQu); (iii) the combined product from the European Space Agency’s Climate Change 

Initiative (ESA CCI) Soil Moisture Version 06.1 (Gruber et al., 2019) (denoted as θESA CCI); (iv) Global Land Data 

Assimilation System (GLDAS) Noah Land Surface Version 2.1 (Rodell et al., 2004) (denoted as θGLDAS Noah); and (v) 

the second Modern-Era Retrospective Analysis for Research and Applications (MERRA) Version 2 (Molod et al., 

2015) (denoted as θMERRA). The precipitation comes from five datasets including: (i) CMFD (denoted as PCMFD); (ii) 160 

Global Precipitation Measurement (GPM) IMERG Final Precipitation L3 Version 06 (Hou et al., 2014) (denoted as 

PGPM); (iii) Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version 2.8 (Beck et al., 2019) (denoted as 
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PMSWEP); (iv) GLDAS Noah (denoted as PGLDAS Noah); and (v) MERRA (denoted as PMERRA). All the above soil 

moisture and precipitation sequences were resampled to 1/12°. 

Our algorithm adopts different parameterization schemes according to pixelated land cover, which comes from the 165 

MODIS Land Cover Type Yearly L3 Global 500 m SIN Grid (MCD12Q1) (Friedl et al., 2010). The MCD12Q1 

product provides land cover properties, which come from observations spanning one year from the Terra and Aqua 

satellites. Here, we used data from 2003 and regarded them as static values. We calculated the percentage of various 

land covers for each pixel (1/12°), estimated the ET of various land covers, and then weighted each pixel by the 

percentage. Soil properties, including residual soil moisture and saturated water content, were obtained from the 170 

China Dataset of Soil Hydraulic Parameters Pedotransfer Functions for Land Surface Modeling (Dai et al., 2013). 

We aggregated the dataset from the original 30'' resolution to 1/12° using the arithmetic averaging method.  

To evaluate the robustness and uncertainty of various remote-sensing algorithms, this study used reconstructed ET 

estimates derived from the terrestrial water balance method (ETrecon) as a benchmark. For endorheic basins, river 

discharge is zero, and ET is equal to the residue between precipitation and change in terrestrial water storage (ΔS). 175 

Based on this method, Li et al. (2014) established a monthly ETrecon for the Qaidam Basin and Qiangtang Plateau 

from 2003 to 2012. The gridded precipitation data for this study were obtained from the National Meteorological 

Information Center of the China Meteorological Administration (CMA), and ΔS was obtained from Gravity 

Recovery and Climate Experiment (GRACE) land data. 

 180 

Table 1. List of the forcing datasets used in this study with their original resolutions and references.  

Variable Datasets Temporal 
resolution 

Spatial 
resolution References 

Air temperature 

CMFD 3 hours 0.1° (He et al., 2020) 
Humidity 

Air pressure 
Wind speed 
Radiation CERES SYN1deg hourly 1° (Doelling et al., 2013) 

NDVI MOD13Q1 16-day 250m (Didan, 2015) 

Surface soil 
moisture 

The Soil Moisture Dataset of 
China Based on Microwave Data 

Assimilation (θYang) 
daily 0.25° (Yang et al., 2020) 

Land Surface Soil Moisture 
Dataset of SMAP Time-Expanded 
Daily 0.25°×0.25° over Qinghai-

Tibet Plateau Area (θQu) 

daily 0.25° (Qu et al., 2019) 

ESA CCI (θESA CCI) daily 0.25° (Gruber et al., 2019) 
GLDAS Noah (θGLDAS Noah) 3 hours 0.25° (Rodell et al., 2004) 

MERRA (θMERRA) hourly 0.5°×0.625° (Molod et al., 2015) 

Precipitation 

CMFD (PCMFD) 3 hours 0.1° (He et al., 2020) 
GPM (PGPM) half-hourly 0.1° (Hou et al., 2014) 

MSWEP (PMSWEP) 3 hours 0.1° (Beck et al., 2019) 
GLDAS Noah (PGLDAS Noah) 3 hours 0.25° (Rodell et al., 2004) 

MERRA (PMERRA) hourly 0.5°×0.625° (Molod et al., 2015) 
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Land cover MCD12Q1 yearly 500m (Friedl et al., 2010) 

Soil properties 
A China Dataset of Soil Hydraulic 
Parameters Pedotransfer Functions 

for Land Surface Modeling 
static 30'' (Dai et al., 2013) 

Reconstructed 
ET 

- monthly Basin-scale (Li et al., 2014) 

3 Methodology 

3.1 Description of the Baseline Algorithm: P-LSH 

The Process-based Land Surface Evapotranspiration/Heat Fluxes (P-LSH) algorithm (Zhang et al., 2010a; Zhang et 

al., 2015) is an ET algorithm evolved from the PM equation, in which canopy conductance comes from the Jarvis-185 

Stewart formula (Jarvis, 1976; Stewart, 1988) and an empirical g0-NDVI equation (Zhang et al., 2010a; Zhang et al., 

2009). The P-LSH algorithm distinguishes between open water and vegetation pixels using land cover classification. 

Vegetation pixels include canopy transpiration and soil evaporation, whereas open water pixels only contain water 

evaporation. 

(1) Canopy transpiration 190 

The P-LSH algorithm calculates canopy transpiration (Ec: mm) by a modified PM equation: 

𝜆𝐸! =  !!!!!!!!"#!!_!
!!!(!!!!_!/!!)

, (1) 

where λ (J kg-1) is the latent heat of vaporization, Δ (Pa K-1) is the slope of the curve relating saturated water vapor 

pressure to air temperature, VPD (Pa) is the vapor pressure deficit, ρ (kg m-3) is the air density, Cp (J kg-1 K-1) is the 

specific heat capacity of air, γ (-) is the psychrometric constant, Ac (W m-2) is the available energy component 195 

allocated to the canopy based on fractional vegetation cover, and ga_c (m s-1) is the aerodynamic conductance of the 

canopy. Based on various vegetation types, Zhang et al. (2010a) established an empirical relationship between the 

maximum canopy conductance (g0: m s-1) and NDVI based on observations from flux towers and reduced 

conductance from the maximum (g0: m s-1) to the actual value (gc: m s-1) through restraints from T (℃), VPD (Pa), 

and CO2 (ppm).  Feng et al. (2022) added incoming shortwave radiation and surface soil moisture to strengthen 200 

restraints on gc over three TP grasslands. More details regarding canopy transpiration are available in  Feng et al. 

(2022) and Zhang et al. (2015). 

(2) Soil evaporation 

The P-LSH algorithm combines the modified PM equation and complementary relationship hypothesis to quantify 

soil evaporation (Es: mm) (Bouchet, 1963; Fisher et al., 2008), which can be expressed as: 205 

𝐸! = 𝑓𝐸!"#, (2) 

𝜆𝐸!"# =
!!!!!!!!"#!!_!
!!!!!_!/!!"!#

, (3) 

𝑓 = 𝑅𝐻
!"#
! , (4) 
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where f(-) is the moisture constraint, RH (-) is the relative humidity, k (Pa) is a parameter to fit the complementary 

relationship, Eeqs (mm) is the equilibrium (i.e., potential) evaporation, As (W m-2) is the available energy component 210 

allocated to the soil surface, and gtotc (m s-1) is the corrected value of gtot (m s-1) based on the standard temperature 

and pressure. In this study, the gtot term was expressed in the form of resistance rtot (rtot = 1/gtot: s m-1) and ga_s (m s-1) 

is the aerodynamic conductance of the soil surface. More details regarding soil evaporation are available in Mu et al. 

(2007) and Zhang et al. (2010a). 

(3) Open water 215 

For open water pixels, the P-LSH algorithm uses the Penman equation rewritten by Shuttleworth (1993) to quantify 

the effects of the surface wind speed on open water evaporation (Ew: mm). The surface resistance rs (s m-1) is 

assumed to be zero on the open water surface; therefore, the PM equation is revised as: 

𝜆𝐸! =  !"!!!!!"#!!_!
!!!

, (5) 

where A (W m-2) is the available energy component for open water, following Zhang et al. (2010a). The ga_w (m s-1) 220 

term is the aerodynamic conductance of the open water and is estimated by the wind speed: 

𝑔!_! =
!!!.!"#!!

!.!" !"(!!/!!) !
, (6) 

where U2 (m s-1) is the 2 m height wind speed calculated from the reanalysis data and the vertical wind speed 

function, zm (m) is the wind measurement height, and z0 (m) is the aerodynamic roughness of the water surface, 

which is set to 0.00137. 225 

3.2 Five existing soil evaporation algorithms 

In this study, we further selected the soil evaporation schemes from five existing ET algorithms, including the 

Penman-Monteith-Leuning (PML) algorithm (Zhang et al., 2010b; Zhang et al., 2019b), Global Land Evaporation 

Amsterdam Model (GLEAM) algorithm (Martens et al., 2017), the Priestley Taylor-Jet Propulsion Laboratory (PT-

JPL) algorithm (Fisher et al., 2008), the Priestley Taylor-Yao (PT-Yao) algorithm (Yao et al., 2013), and the 230 

Penman-Monteith-Brust (PM-Brust) algorithm (Brust et al., 2021).  

(1) PML soil evaporation algorithm 

The PML algorithm quantifies soil evaporation using the modified PT equation, which avoids the difficulty of 

parameterizing the resistances in the PM equation (Zhang et al., 2010b; Zhang et al., 2019b): 

 𝐸! = 𝑓𝐸!"#,!, (7) 235 

𝜆𝐸!"#,! =
!!!
!!!

, (8) 

where As (W m-2), Δ (Pa K-1), and γ (-) represent the same physical meanings as in Eq. (3). The moisture constraint f 

(-) is estimated by the cumulative precipitation and equilibrium evaporation in the previous periods, without any 

observation of soil moisture as input: 

𝑓 = 𝑚𝑖𝑛 !!!
!!!
!!"#,!!

!!!
, 1 , (9) 240 
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where Pn (mm) and Eeqs,n (mm) are the cumulative precipitation and equilibrium evaporation of the surface in the nth 

period, respectively, and N is the number of periods.  

(2) GLEAM soil evaporation algorithm 

Similar to the PML algorithm, GLEAM takes the PT equation as the equilibrium soil evaporation and reduces it to 

actual soil evaporation through the moisture constraint f (Martens et al., 2017). The difference is that the GLEAM 245 

algorithm estimates f for tall canopies, short vegetation, and barren areas. For barren areas with sparse vegetation, 

the surface soil moisture is linearized by the critical moisture level and residual soil moisture, and is then used to 

estimate soil evaporation, which is expressed as: 

𝐸! = 𝑓𝐸!, (10) 

𝜆𝐸! = 𝛼 !
!!!

𝐴!, (11) 250 

𝑓 = 1 − !!!!
!!!!!

, (12) 

where f (-) is the same as that in Eq. (9) to explain the restraints of the suboptimal environment on soil evaporation; 

Ep (mm) is the potential soil evaporation; α (-) is the PT dimensionless coefficient, and 1.26 for barrens; θ (cm3 cm-3) 

is the actual surface soil moisture; θc (cm3 cm-3) is the critical moisture level and is set as θc = 0.75θs following Zhu 

et al. (2013), where θs (cm3 cm-3) is the saturated water content and θr (cm3 cm-3) is the residual soil moisture.  255 

(3) PT-JPL soil evaporation algorithm  

The PT-JPL algorithm uses the same equilibrium soil evaporation as the GLEAM algorithm, with the difference 

being in the f estimation (Fisher et al., 2008). In the PT-JPL algorithm, f is constituted by fSM (-) and fwet (-), where 

fSM comes from RH and VPD (the same as in the P-LSH algorithm), whereas fwet is only determined by RH: 

𝑓!" = 𝑅𝐻
!"#
! , (13) 260 

𝑓!"# = 𝑅𝐻!, (14) 

𝐸! = 𝑓!"# + 𝑓!" 1 − 𝑓!"# 𝐸!, (15) 

where k (Pa) is a parameter to fit the complementary relationship, which is calibrated using the bisection method in 

this study since it is the only parameter in the algorithm and lacks prior values for barren. The Ep (mm) is the 

equilibrium soil evaporation calculated using Eq. (11). 265 

(4) PT-Yao soil evaporation algorithm 

Yao et al. (2013) used the diurnal land surface temperature range (DTsR: ℃) and air temperature range (DTaR:℃) 

to simplify the calculation of the Apparent Thermal Inertia (ATI: ℃!!) for fSM (-) estimation with equilibrium soil 

evaporation using the PT equation, same as the GLEAM and PT-JPL algorithms: 

𝑓!" = 𝐴𝑇𝐼! = !
!"

!"/!"!"#
, (16) 270 

where DTmax (℃) is defined as the maximum daily temperature range (DT:℃), which reflects the relative sensitivity 

to changes in the daily temperature range and is set as a constant (DTaRmax = 40℃, DTsRmax = 60℃). Yao et al. 
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(2013) showed that the performances of soil evaporation from DTaR and DTsR are similar; therefore, in this study, 

we only used DTaR for fSM estimation. 

(5) PM-Brust soil evaporation algorithm  275 

The PM-Brust algorithm (Brust et al., 2021) originated from the MOD16 algorithm that is based on the PM equation 

(Mu et al., 2011). The equilibrium soil evaporation in the PM-Brust algorithm is similar to Eq. (3), with the 

resistance estimations slightly different from those of the P-LSH algorithm. The PM-Brust algorithm assumes that 

the boundary layer resistance is equal to the total aerodynamic resistance (rtot: s m-1), which is determined by VPD 

and four biome-specific constants, including maximum resistance (rblmax: s m-1), minimum resistance (rblmin: s m-1), 280 

VPD at which canopy stomata are completely open (VPDopen: Pa), and VPD at which canopy stomata are completely 

close (VPDclose: Pa). In contrast, the P-LSH algorithm assumes that the boundary layer resistance and total 

aerodynamic resistance are biome-specific constants. Brust et al. (2021) estimated fSM with a more direct soil 

moisture control outline (i.e., REW): 

𝑓!" = 𝑅𝐸𝑊 = !!!!"#
!!"#!!!"#

, (17) 285 

𝜆𝐸!"# =
!!!!!!!(!!!!)!"#!!_!

!!!×!!_!/!!"!#
, (18) 

𝑔!"!# =
!

!!"!×!!"##
, (19) 

𝑟!"! =

𝑟𝑏𝑙!"#                               𝑉𝑃𝐷 ≤ 𝑉𝑃𝐷!"#$
𝑟𝑏𝑙!"# −

(!"#!"#!!"#!"#)×(!"#!"#$%!!"#)
!"#!"#$%!!"#!"#$

𝑟𝑏𝑙!"#                               𝑉𝑃𝐷 ≥ 𝑉𝑃𝐷!"#$%

    𝑉𝑃𝐷!"#$ < 𝑉𝑃𝐷 < 𝑉𝑃𝐷!"#$%, (20) 

𝐸! = 𝑓!"# + 𝑓!" 1 − 𝑓!"# 𝐸!"#, (21) 

where REW (-) is the relative extractable water, θ (cm3 cm-3) is the surface soil moisture, θmin (cm3 cm-3) and θmax 290 

(cm3 cm-3) are the minimum and maximum values of θ for the period of record, respectively, and fc(-) is the 

vegetation cover fraction. The ga_s (m s-1) is the aerodynamic conductance of the soil surface and is the sum of the 

conductance to radiative heat transfer, which is calculated using the same method prosposed by Choudhury and 

Digirolamo (1998), and the conductance to convective heat transfer, which is set equal to rtot following Mu et al. 

(2011). The rcorr (-) is the correction coefficient of rtot following Mu et al. (2011). In this study, the parameters rblmax 295 

and rblmin are calibrated uisng the Differential Evolution method (Storn and Price, 1997), while the parameters 

VPDopen and VPDclose are set to 650 Pa and 4200 Pa following Mu et al. (2011) because they are relatively 

insensitive parameters (Zhang et al., 2019a; Feng et al., 2022). 

3.3 Improvements of the P-LSH soil evaporation algorithm 

We attempted two strategies to improve soil evaporation in the P-LSH algorithm. One strategy was to directly 300 

control f through the surface soil moisture as follows: 

𝜆𝐸! = [𝑓!"# +
!!!!"#

!!"#!!!"#
1 − 𝑓!"# ]

!!!!!!!!"#!!_!
!!!!!_!/!!"!#

, (22) 

where each item has the same meaning as that in Eq.(3) and Eq.(17). The only parameter rtot is calibrated using the 
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bisection method. 

The second strategy was to use the ratio of cumulative precipitation to equilibrium evaporation in the previous 305 

periods to quantify moisture constraint, with equilibrium evaporation estimated by the modified PM equation as 

follows:  

𝜆𝐸! = 𝑚𝑖𝑛 !!!
!!!

!!!!!!!!"#!!_!
!!!!!_!/!!"!#

!
!!!

, 1 !!!!!!!!"#!!_!
!!!!!_!/!!"!#

, (23) 

where each item has the same meaning as that in Eq.(3) and Eq.(9).  

We combined the vegetation evapotranspiration (i.e., vegetation transpiration and vegetation surface evaporation) 310 

and open water evaporation components with the new soil evaporation component based on the first strategy to form 

an improved P-LSH algorithm, which is called P-LSHθ. Similarly, we built the second improved P-LSH algorithm 

based on the second strategy (hereafter it is called P-LSHP). By contrast, the original P-LSH soil evaporation 

algorithm is called P-LSHori in this study.  

3.4 Evaluation of algorithm performance 315 

Because we do not have direct observation of soil evaporation, we have to rely on the ETrecon as the benchmark to 

assess our improved soil evaporation algorithms and their associated ET retrieval algorithms. Therefore, we need to 

assemble the soil evaporation algorithm with the vegetation evapotranspiration and water evaporation algorithms to 

form a complete ET retrieval algorithm to estimate ET. To this end, we coupled the vegetation evapotranspiration 

scheme and water evaporation scheme of the P-LSH algorithm with the six existing soil evaporation algorithms 320 

(namely, the soil evaporation algorithms of the PML, GLEAM, PT-JPL, PT-Yao, PM-Brust, and P-LSHori) to 

produce six ET retrieval algorithms (i.e., A1 to A6 of Table 2 and Fig. 2). Therefore, A1, A2, A3, A4, A5, and A6 

are comparable to P-LSHθ, and P-LSHP because the only difference between these algorithms is their soil 

evaporation component. We then compared the performances of A1, A2, A3, A4, A5, A6, P-LSHθ, and P-LSHP for 

barren areas from January 2003 to August 2011 using ETrecon as the benchmark. 325 

 

Table 2. Combinations of the six existing soil evaporation algorithms with the P-LSH vegetation evapotranspiration 
and water evaporation schemes. 

Vegetation evapotranspiration and 
water evaporation algorithm 

Barren evaporation 
algorithm 

Coupling 
algorithm 

ET 
estimation 

P-LSH 

PML A1 ETA1 
GLEAM A2 ETA2 
PT-JPL A3 ETA3 
PT-Yao A4 ETA4 

PM-Brust A5 ETA5 
P-LSH A6 ETA6 

 

The total ET in a pixel is expressed as: 330 

𝐸 = 𝐸!𝑎!! , (24) 

where i represents the ith land cover in the basin. We ignored land cover that accounted for less than 1%, so there 

were grasslands, barrens, and open water for the Qaidam Basin and open shrublands, grasslands, barrens, and open 
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water for the Qiangtang Plateau. The Ei (mm) is the evapotranspiration estimated from the ith land cover, and ai (-) is 

the proportion of the ith land cover in a pixel. The open shrubland and open water pixels take the vegetation 335 

evapotranspiration scheme and water evaporation scheme from the P-LSH algorithm following Zhang et al. (2010a) 

and Zhang et al. (2015), and the grassland pixels take the vegetation evapotranspiration scheme from the revised P-

LSH algorithm following Feng et al. (2022). For barrens, we took the assumption that there was no canopy 

transpiration, and the performance of the six existing and two improved soil evaporation algorithms were compared. 

A flowchart of the total ET estimation for the basin is shown in Fig. 2. 340 

 
Figure 2. Flowchart of the gridded evapotranspiration estimation for a basin used in this study. 

 

We chose the root mean square error (RMSE), coefficient of determination (R2), deviation (bias), and Nash-Sutcliffe 

efficiency coefficient (NSE) to quantify the performances of remote sensing algorithms compared with the ETrecon: 345 

𝑅𝑀𝑆𝐸 =  !
!

𝑂! − 𝑆! !!
!!! , (25) 

𝑅! =  (!!!!)(!!!!)
!
!!!

(!!!!)!!
!!! (!!!!)!!

!!!

!

, (26) 

𝐵𝑖𝑎𝑠 =  !
!

𝑂! − 𝑆!!
!!! , (27) 

𝑁𝑆𝐸 = 1 − !!!!! !
!
!!!

!!!! !!
!!!

, (28) 

where T is the number of months in the period of record, O is the reconstructed ET, S is the simulated ET, O is the 350 

average of all reconstructed values O!, and S is the average of all simulated S!. 
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4 Results 

4.1 Performance of existing soil evaporation algorithms 

We estimated the daily and 1/12° pixel ET in the Qaidam Basin and Qiangtang Plateau from January 2003 to August 

2011 using the six coupling algorithms listed in Table 2. All daily and gridded estimates were aggregated to monthly 355 

and basin scales to match ETrecon. Generally, the ET estimates derived from the six coupling algorithms showed 

large differences. In the Qaidam Basin, the ET estimates of the A1 algorithm (ETA1) and the A5 algorithm (ETA5) 

demonstrated good consistency with the ETrecon, while the ET estimates of the A3 algorithm (ETA3) and the A6 

algorithm (ETA6) matched the worst. The ETA1 estimates performed best among all the existing algorithms (Fig. 3a), 

with an RMSE of 4.06 mm month-1, an NSE of 0.88, and an R2 of 0.92. The ET estimates of the A2 algorithm (ETA2) 360 

with a linear formula for f were well-simulated for low intervals and were always underestimated for the middle and 

high intervals (Figs. 3b and 4a). Parameter k in the PT-JPL algorithm was a biome-specific constant and took the 

same value for all barren pixels, set to 926 Pa, which was calibrated by the ETrecon. Although the parameter k has 

been calibrated, ETA3 still could not accurately describe the seasonal variability of ET (Figs. 3c and 4a), mainly 

because of errors involving f estimates derived by RH and VPD. The medium ET estimates of the A4 algorithm 365 

(ETA4) were always overestimated for the Qaidam Basin (Fig. 3d), which specifically occurred in spring (Fig. 4a). In 

the PM-Brust method, the biome-specific constants rblmax and rblmin for the rtot estimation were calibrated as 500 s 

m-1 and 200 s m-1, respectively, for the Qaidam Basin. The ETA5 presented good performance (Fig. 3e), with an 

RMSE of 4.36 mm month-1, an NSE of 0.87, and an R2 of 0.88. The ETA6 estimates used RH and VPD to estimate f, 

with parameter k of 359.1 Pa and rtot of 462.4 s m-1 following Feng et al. (2022). However, ETA6 could not 370 

adequately describe seasonal variability (Figs. 3f and 4a) in the Qaidam Basin, and seasonal mean values also varied 

by a large margin compared with ETrecon (Fig. 4a). 

 
Figure 3. Simulated ET derived from the six existing coupling algorithms and the two improved algorithms versus 

the reconstructed ET (ETrecon). The A1, A2, A3, A4, A5, A6, P-LSHθ, and P-LSHP are the coupling algorithms listed 375 
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in Table 2. The blue dots represent results for Qaidam Basin and the red for Qiangtang Plateau. 

 

On the Qiangtang Plateau, almost all algorithms overestimated ET for barren areas in spring and winter and 

underestimated ET in summer and autumn (Fig. 4b). The multi-year average ETrecon in spring and winter was 6.3 

mm month-1, while the multi-year average ET derived from six coupling remote sensing algorithms was 14.4 ± 380 

6.8 mm month-1. The multi-year average ETrecon in summer and autumn was 38.3 mm month-1, and it was 28.2 ± 

12.1 mm month-1 from six remote sensing algorithms. In the comparison of the six algorithms, the ETA1 estimates 

still performed best among all algorithms, with an RMSE of 11.14 mm month-1, and ETA2 estimates performed the 

worst, with an RMSE of 14.46 mm month-1. The biome-specific constant, k, in the PT-JPL algorithm was 

recalibrated to 566 Pa using ETrecon for the Qiangtang Plateau. In the PT-JPL and P-LSHori algorithms, unreasonable 385 

f estimates also led to the homogenization of strong seasonal variability (Figs. 3c, 3f, and 4b). Similar to the Qaidam 

Basin, the ETA4 estimates showed moderate performance for the Qiangtang Plateau (Fig. 3d), and the ETA5 estimates 

showed good performance next to ETA1, with an RMSE of 11.42 mm month-1, an NSE of 0.72, and an R2 of 0.85. 

 
Figure 4. Seasonal average reconstructed ET (ETrecon) and ET estimates derived from six existing coupling 390 
algorithms and the two improved algorithms for (a) the Qaidam Basin and (b) the Qiangtang Plateau. The A1, A2, 
A3, A4, A5, A6, P-LSHθ, and P-LSHP  are the coupling algorithms listed in Table 2. 
 

We calculated the moisture constraint f in the soil evaporation of each pixel and used the same method as ET to 

aggregate f at the monthly and basin scales. The f estimates derived from various algorithms are shown in Fig. 5. 395 

The f estimates of the PML algorithm (fPML) were high in summer and low in winter, with distinct seasonality in both 

basins, with small peaks occasionally appearing in winter. The f estimates of the GLEAM algorithm (fGLEAM) hardly 

showed seasonality and were always low in both basins, which was the main reason for the poor performance of 
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ETA2. Compared with fPML and fGLEAM estimates, the f estimates of the PT-Yao algorithm (fPT-Yao) were overestimated 

in spring and winter, partly causing the overestimation of ETA4, and this overestimation was larger than that of fPML 400 

(Figs. 3d and 4). Considering the positive relationship between precipitation and soil moisture, the f estimates of the 

PM-Brust algorithm (fPM-Brust) from soil moisture and the fPML estimates from precipitation showed great consistency, 

with correlation coefficients of 0.86 and 0.85 (p < 0.001) for the Qaidam Basin and Qiangtang Plateau, respectively. 

However, the fPM-Brust estimates were higher overall than fPML in spring and winter and hardly ever close to zero, 

indicating that the soil moisture sequences over basins seldom reached their minimum at the same time. In addition, 405 

compared with fPML, the overestimation of fPM-Brust was also a reason for the overestimation of ETA5 in spring and 

winter (Figs. 4a and 5). The PT-JPL and P-LSHori algorithms shared a similar f estimation and had the same 

temporal characteristics, with high values in winter and low values in summer, which showed the opposite seasonal 

variability to soil moisture (expressed in the form of fPM-Brust). Therefore, the performances of ETA3 and ETA6 were 

unsatisfactory. This is because the VPD sequence for both basins on the TP had stronger seasonality (high in 410 

summer and low in winter) compared to the milder RH. Although ET estimates derived from the PT-JPL and P-

LSHori algorithms have been well-validated in some flux towers (Fisher et al., 2008; Zhang et al., 2010a; Mu et al., 

2011), this method is no longer applicable because of the unique meteorology of the TP (mainly manifested in the 

seasonality of RH and VPD) and the possibly decoupling of VPD and soil moisture on a daily scale. 

 415 
Figure 5. The monthly average f derived from the six existing soil evaporation algorithms for the Qaidam Basin and 

the Qiangtang Plateau 

4.2 Performance of the two improved P-LSH algorithms 

Because of the good performance of surface soil moisture and precipitation in moisture constraints of the land 
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surface, both were used to improve the P-LSH algorithm, called P-LSHθ and P-LSHP. The soil moisture sequence 420 

was obtained from the assimilation-based θYang, and the precipitation sequence was obtained from the satellite-based 

PGPM. In the original P-LSH algorithm, rtot was a biome-specific constant sensitive to soil evaporation (Feng et al., 

2022). Therefore, we separately calibrated rtot for both basins in the P-LSHθ algorithm using the bisection method, 

with the RMSE as the objective function. The calibrated rtot values were 575 and 290 sm-1 for the Qaidam Basin and 

the Qiangtang Plateau, respectively. The ET estimates derived from P-LSHθ (ETP-LSH_θ) matched well with the 425 

ETrecon and captured the strong seasonality of both basins (Fig. 6). The P-LSHθ algorithm had advantages in 

normalized standard deviation and centered RMSE, with values of 0.80 and 0.40, while they were 0.61 ± 0.08 and 

0.55 ± 0.08 of existing coupling algorithms in Sect. 4.1 (Fig. 7). The rtot value in the  P-LSHP algorithm for each 

basin was set the same as that in the P-LSHθ algorithm. The ET estimates derived from the P-LSHP (ETP-LSH_P) were 

similar to ETP-LSH_θ and showed a better simulation of the Qaidam Basin, especially the simulations of low values in 430 

spring and winter (Fig. 6). However, the ETP-LSH_P estimates were always underestimated on the Qiangtang Plateau, 

much lower than the ETrecon in summer, which may have been caused by the error of the GPM satellite precipitation 

on the Qiangtang Plateau (Li et al., 2020) (also see Sect. 4.3). Nevertheless, ETP-LSH_P estimates still performed well, 

second only to ETP-LSH_θ among all algorithms for both basins (Fig. 7). In summary, the P-LSHθ and P-LSHP 

algorithms for both basins showed better performance than the existing algorithms in Sect. 4.1.  435 

 
Figure 6. Comparisons of the monthly regional average ET estimates derived from two improved retrieval 
algorithms (P-LSHθ and P-LSHP) with the ETrecon for (a) the Qaidam Basin and (b) the Qiangtang Plateau. 
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Figure 7. Taylor diagram comparing the retrieved ET by the six existing coupling algorithms and the two improved 440 
retrieval algorithms (P-LSHθ and P-LSHP) in the two basins. The green dashed line represents the centered root 
mean square error. 
 
The multiyear average annual ETP-LSH_θ and ETP-LSH_P estimates for both basins are shown in Fig. 8. The estimations 

of the two algorithms shared a similar spatial pattern, with a decreasing trend from the southeastern to northwestern 445 

basins. From the perspective of the regional average, ETP-LSH_θ and ETP-LSH_P were 177 and 148 mm for the Qaidam 

Basin, respectively, and 300 and 232 mm for the Qiangtang Plateau, respectively. However, in the central Qaidam 

Basin and northwest of the Qiangtang Plateau, the ETP-LSH_P estimates were generally lower than those of ETP-LSH_θ, 

and these underestimations existed in almost all seasons (Fig. 9). This underestimation was little in winter because 

both precipitation and soil moisture in winter were low, and the spatial differences between ETP-LSH_P and ETP-LSH_θ 450 

almost disappeared. 
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Figure 8. The spatial distributions of multi-year (2003.1–2011.8) average annual ET derived from (a, b) the P-LSHθ 
and (c, d) P-LSHP for (a, c) the Qaidam Basin and (b, d) the Qiangtang Plateau. 
 455 

Fig. 9 shows the multi-year spring (March, April, and May), summer (June, July, and August), autumn (September, 

October, and November), and winter (December, January, and February) ETP-LSH_θ and ETP-LSH_P in both basins. The 

pattern of seasonal estimates was similar to that of the annual values. Generally, the ET in autumn was higher than 

that in spring, with 71% of ETP-LSH_θ and 97% of ETP-LSH_P for the Qaidam Basin and 72% of ETP-LSH_θ and 85% of 

ETP-LSH_P for the Qiangtang Plateau (percentage represents the number of pixels accounting for the basin). The 460 

multi-year seasonal ETP-LSH_θ and ETP-LSH_P averaged over the Qaidam Basin were 36, 88, 40, and 13 mm, and 20, 87, 

33, and 8 mm for spring, summer, autumn, and winter, respectively. The multi-year seasonal ETP-LSH_θ and ETP-LSH_P 

averaged over the Qiangtang Plateau were 61, 142, 68, and 29 mm, and 41, 114, 55, and 22 mm for spring, summer, 

autumn, and winter, respectively. 
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 465 
Figure 9. The spatial distributions of multi-year (2003.1-2011.8) seasonal ET derived from (a-d, i-l) P-LSHθ and (e-
h, m-p) P-LSHP for (a-h) the Qaidam Basin and (i-p) the Qiangtang Plateau. 
 

4.3 Uncertainty of soil moisture and precipitation influence on soil evaporation 

Two soil moisture constraint schemes based on the respective surface soil moisture and precipitation data were used 470 

to improve the P-LSH algorithm (Sect. 4.2), leading to two improved P-LSH algorithms, namely P-LSHθ and P-

LSHP. Our results show that both of the improved algorithms generally performed well in the two study basins. 

However, the two improved algorithms are highly dependent on high-quality gridded data, so it is necessary to 

quantify the influence of uncertainty in the soil moisture and precipitation data on ET estimation. To this end, we 

selected five surface soil moisture and five precipitation datasets to investigate the impact of uncertainty in the 475 

moisture constraint quantification. To be specific, we investigated the difference between ET estimates derived from 

five surface soil moisture/precipitation datasets, together with the difference among the five soil 

moisture/precipitation datasets. The daily and 1/12° pixel soil evaporation estimates for both basins were estimated 

and aggregated to monthly and basin scales. We calculated the coefficient of variation (Cv, defined as the ratio of 

the standard deviation to the mean) between five barren evaporation estimates from the P-LSHθ and five barren 480 

evaporation estimates from the P-LSHP algorithms, where the non-barren estimate was masked (hereafter Es_P-LSH_θ 
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and Es_P-LSH_P, where the subscript s denotes soil evaporation for barrens). In the following part, we further discussed 

the impacts of temporal and spatial uncertainties in soil moisture and precipitation on soil evaporation estimates. 

To quantify the temporal uncertainties in soil moisture and precipitation and their resultant ET uncertainties, we 

calculated the multi-monthly (i.e., monthly average from 2003 to 2011) values for every soil moisture and 485 

precipitation dataset and its associated ET estimate on a grid-cell basis. There was a clear spatial pattern of the Cv 

among multi-monthly (i.e., monthly average from 2003 to 2011) average Es_P-LSH_θ and Es_P-LSH_P from various 

datasets. The Cv of Es_P-LSH_θ showed little variation in both basins (Fig. 10a and 10b). The Cv of Es_P-LSH_θ on the 

Qaidam Basin ranged from 0.05 to 0.65 with a mean of 0.29, and ranged from 0.03 to 0.71 with a mean value of 

0.29 on the Qiangtang Plateau. In contrast, the Cv of Es_P-LSH_P was not consistent in both basins. In the Qaidam 490 

Basin, the Cv of Es_P-LSH_P was at a lower level (Fig. 10c), with an average of 0.29, which was comparable to that of 

Es_P-LSH_θ. On the Qiangtang Plateau, the Cv of Es_P-LSH_P increased from the southeast to the northwest of the basin 

(Fig. 10d), with an average of 0.46, which was higher than that of Es_P-LSH_θ. 

 
Figure 10. Maps of the Cvs of monthly average soil evaporation from 2003 to 2011 for barrens estimated by (a, b) 495 
the P-LSHθ algorithm driven by five soil moisture datasets and (c, d) the P-LSHP algorithm driven by five 
precipitation datasets in (a, c) the Qaidam Basin and (b, d) the Qiangtang Plateau. The gray indicates the non-barren 
areas within the basin. 
 

To further distinguish the impact of the datasets and algorithm structure on barren evaporation estimates, we 500 

compared the variation for various surface soil moisture and precipitation datasets, as shown in Fig. 11. The surface 

soil moisture had high uncertainty in the central and northern Qaidam Basin and western Qiangtang Plateau (Fig. 

11a and 11b), but these uncertainties were not reflected in Es_P-LSH_θ, indicating that the moisture constraint 

calculated by Eq. (20) reduced the uncertainty of soil moisture and, instead, focused more on the relative changes in 

the soil moisture of each dataset. The Cv of the precipitation showed a similar spatial distribution to that of Es_P-LSH_P 505 
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in both basins, and their correlation coefficients were 0.93 and 0.98 (p < 0.001) for the Qaidam Basin and Qiangtang 

Plateau, respectively, indicating that the characteristics of precipitation were almost completely transferred to the 

Es_P-LSH_P through Eq. (21). In contrast, the correlation coefficients of the Cv of soil moisture and Es_P-LSH_θ were only 

0.33 and 0.46 (p < 0.001) for the two basins. 

 510 
Figure 11. Maps of the Cvs of (a, b) five soil moisture datasets and (c, d) five precipitation datasets in (a, c) the 
Qaidam Basin and (b, d) the Qiangtang Plateau. Each soil moisture or precipitation dataset is the monthly average 
value from 2003 to 2011. The gray indicates the non-barren areas within the basin. 
 

From the perspective of the regional average, we used Cv to express uncertainty, considering the magnitude between 515 

soil moisture and precipitation. There were some uncertainties in various soil moisture datasets, especially in spring, 

autumn, and winter (Fig. 12a and 12b), with Cv of 0.41 ± 0.07 and 0.41 ± 0.08 for the Qaidam Basin and Qiangtang 

Plateau, respectively. The uncertainty of the peaks in summer tended to be much lower and always at a lower level 

of soil moisture values. The uncertainty among various precipitation datasets was comparable with soil moisture, 

with Cv of 0.36 ± 0.20 and 0.55 ± 0.22 for the Qaidam Basin and Qiangtang Plateau. The Cv of the precipitation had 520 

a similar temporal pattern, similar to soil moisture, low in summer, and high in other seasons (Fig. 12c and 12d). In 

terms of Es_P-LSH_θ and Es_P-LSH_P, and considering the same object, we used the interval length of various estimates to 

express uncertainty. Overall, the uncertainty of Es_P-LSH_P was lower than that of Es_P-LSH_θ, especially in spring and 

winter in both basins (Fig. 12e and 12f). The interval length of Es_P-LSH_P were 4.94 ± 3.63 and 14.61 ± 10.45 mm 

month-1, and were 11.41 ± 5.91 and 16.92 ± 7.01 mm month-1 in Es_P-LSH_θ for the Qaidam Basin and Qiangtang 525 

Plateau, respectively. On the Qiangtang Plateau, the higher uncertainty of the precipitation datasets led to a larger 

interval length in the estimation of Es_P-LSH_P compared with the Qaidam Basin, yet this uncertainty was still smaller 

than that of Es_P-LSH_θ.  



 

22 
 

 
Figure 12. Monthly regional average (a-b) soil moisture datasets, (c-d) precipitation datasets, (e-f) soil evaporation 530 
estimates and their Cvs over barrens of the Qaidam Basin and the Qiangtang Plateau. The shades indicate the range 
determined by five datasets/estimates and solid lines represent the mean of them, depending on the left y-axis. The 
light dashed lines represent Cvs of five datasets/estimates, depending on the right y-axis. Blue represents results of 
soil moisture datasets or Es estimates derived from soil moisture, and red represents results of precipitation datasets 
or Es estimates derived from precipitation. 535 
 
From the perspective of simulation accuracy, the ETP-LSH_θ driven by θGLDAS Noah performed best, outperforming 

estimates derived from any other soil moisture and precipitation (Table 3). The satellite-based θESA CCI showed poor 

performance, which may be attributed to missing data, and simple temporal linear interpolation weakened the 

seasonal variation in soil moisture. The ETP-LSH_θ estimates derived from θQu and θYang performed well, where soil 540 

moisture came from machine learning and model assimilation, respectively. By contrast, the ETP-LSH_P estimates 

overall had high and relatively stable precision, with RMSE of 7.70 ± 0.46 mm month-1, while it was 8.39 ± 1.08 

mm month-1 from five ETP-LSH_θ estimates. 

Table 3. RMSE (mm), Bias (mm), NSE, and R2 of the five ETP-LSH_θ and five ETP-LSH_P in comparison with the 
ETrecon for aggregation of two basins. 545 

Soil moisture 
sources 

ETP-LSH_θ Precipitation 
sources 

ETP-LSH_P 

RMSE Bias NSE R2 RMSE Bias NSE R2 

θQu 7.57 -2.88 0.82 0.86 PMSWEP 7.17 -0.82 0.84 0.86 
θESA CCI 10.92 -7.07 0.63 0.81 PGPM 7.76 2.15 0.81 0.87 
θGLDAS Noah 6.44 -1.97 0.87 0.89 PGLDAS Noah 8.22 -0.22 0.79 0.81 
θMERRA 9.64 -7.09 0.71 0.87 PMERRA 8.05 1.86 0.80 0.86 
θYang 7.36 -1.93 0.83 0.86 PCMFD 7.28 -2.26 0.83 0.85 
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5 Discussion and conclusion 

This paper compared the applicability and effectiveness of various soil moisture constraint schemes in the existing 

ET algorithms in typical arid and semi-arid basins of the Tibetan Plateau and then proposed two improved P-LSH 

algorithms, in which normalized surface soil moisture and the ratio of cumulative antecedent precipitation to 

cumulative antecedent equilibrium evaporation are used to represent soil water stress, respectively. We further 550 

assessed the impacts of uncertainty in the soil moisture and precipitation forcing data on the soil evaporation 

retrievals. The first part of this study investigated the applicability of six existing coupling algorithms with ETrecon in 

two basins. The moisture constraints and equilibrium equations for these algorithms were different. The A1 

algorithm, which considers cumulative precipitation and equilibrium evaporation in soil evaporation, has the best 

performance on a monthly scale for both basins, with RMSE of 4.06 mm month-1 for the Qaidam Basin and RMSE 555 

of 11.13 mm month-1 for the Qiangtang Plateau. The A5 algorithm, which directly considers soil moisture as a 

constraint, is second in performance, with RMSE of 4.36 mm month-1 for the Qaidam Basin and RMSE of 11.42 

mm month-1 for the Qiangtang Plateau. The ET estimates from the A2 algorithm hardly match well for both basins 

because they are significantly affected by high-quality soil properties. The A4 algorithm uses the diurnal 

temperature range to reflect the apparent thermal inertia and humidity constraints, with moderate performance in 560 

both basins. Both algorithms, A3 and A6, use an RHVPD/k term to express the sensitivity of the soil water deficit, and 

take the assumption that the surface moisture status is reflected in the adjacent atmospheric moisture, specifically in 

the form of evaporative demand of the atmosphere. This method has good applicability for ET estimation (Fisher et 

al., 2008; Zhang et al., 2010a; Mu et al., 2011), which may be because it pays more attention to total ET rather than 

soil evaporation. On the barrens of the TP, vegetation is sparse, and only soil evaporation exists; therefore, defects 565 

involving this method are exposed. On the TP, RH has weak seasonality, whereas VPD is high in summer and low 

in winter, with strong seasonal variability. These phenomena result in RHVPD/k being high in winter and low in 

summer, which is contrary to actual soil moisture. In addition, the relationship between VPD and soil moisture may 

be decoupled on a daily scale (Purdy et al., 2018; Brust et al., 2021), which will eventually lead to model structural 

errors involving the A3 and A6 algorithms. 570 

The second part of this study improved the P-LSH algorithm by introducing two schemes for quantifying moisture 

constraints to ET in terms of surface soil moisture and precipitation. From the perspective of the regional average, 

the two improved algorithms significantly improved the performance of the P-LSH algorithm, and the simulation 

accuracy was higher than that of the six existing coupling algorithms. The P-LSHθ algorithm showed the best 

performance among all algorithms, indicating that direct soil moisture can adequately express the moisture supply in 575 

evaporation estimates for barrens. As a surrogate for moisture supply, precipitation can better express the constraints 

in barrens evaporation than RH, VPD, ATI, etc. However, the two estimates show some uncertainty in the 

Qiangtang Plateau, which requires more soil evaporation observations or other means to further estimate their 

reliability. 

The last part of this study tested the applicability of satellite soil moisture and precipitation data for improving ET 580 

retrieval and analyzing the influence of soil moisture and precipitation uncertainties on ET estimation on alpine 

barren areas. In the spatial pattern, the uncertainty of Es_P-LSH_θ was lower because the model structure flattened the 
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magnitude difference in soil moisture. On the Qiangtang Plateau, the uncertainty of Es_P-LSH_P is larger, with 47.4% 

of the Cv higher than 0.5, which is mainly due to the underestimation of precipitation by the GPM and MERRA in 

the northwestern basin. From the perspective of the regional average, the uncertainty of soil moisture is comparable 585 

to that of precipitation, yet the uncertainty of Es_P-LSH_θ is higher than that of Es_P-LSH_P. The ETP-LSH_θ derived from 

θGLDAS Noah performs better than those from any other soil moisture and precipitation datasets, and the ETP-LSH_P from 

all precipitation datasets generally showed high and stable accuracy, suggesting that high-quality soil moisture can 

optimally express moisture supply to ET, and that more accessible precipitation data can serve as a substitute of soil 

moisture as an indicator of moisture status for its robust performance in barren evaporation. 590 

There were some uncertainties in this study. Because the revisit rates of various satellites are usually two to three 

days, it is difficult to obtain full daily soil moisture coverage of basins, and the satellite-based θESA CCI faces the risk 

of spatial or temporal discontinuity. Simple temporal linear interpolation was used in our study, which weakened the 

seasonality of soil moisture. Although differences in various soil moisture datasets were discussed in this study, 

more spatially and temporally continuous satellite-based soil moisture datasets would be of significant interest. 595 

Considering the coarse spatial resolution, uncertainties in the GRACE data are generally much greater; therefore, the 

ETrecon estimates derived from it also have a coarse temporal and spatial resolution (monthly and basin-scale) and 

high uncertainty. We matched the pixel-scale and daily remote sensing algorithm outputs with the ETrecon, which 

may cause errors offset in the algorithms to a certain extent. In addition, various processes for GRACE products are 

sources of uncertainty in ΔS, which in turn affects the accuracy of the ETrecon. Despite the above uncertainties, the 600 

water balance method is still an effective means of providing a benchmark for remote sensing algorithm outputs at a 

basin-scale and is recognized in most studies (Zeng et al., 2012; Long et al., 2014; Hui et al., 2020; Chao et al., 

2021; Zhang et al., 2020). In terms of results, almost all algorithms had high uncertainty in the simulation of soil 

evaporation on the Qiangtang Plateau, especially in the summer of 2006 and subsequent years. Zhang et al. (2017) 

reported that inland lakes on the Qiangtang Plateau have expanded since the 1990s, whereas static land cover was 605 

used in this study. In the future, a dynamic dataset will be necessary to reflect the characteristics of the ground 

surface for ET estimation. 
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cci.org/; the precipitation data from GPM are available at https://gpm.nasa.gov/; the precipitation data from MSWEP 
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