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Abstract.

For climate change impact assessment, many applications require very high-resolution data of precipitation consistent both in

space and time for current or future climate. In this regard, stochastic weather generators are designed as a statistical down-

scaling tool that can provide such data. Here, we adopt the framework of a precipitation generator of Kleiber et al. (2012),

which is based on latent and transformed Gaussian processes, and propose an extension to that for a mountainous region with5

complex topography by allowing elevation dependence in the model. The model is used to generate two-dimensional fields of

precipitation with 1 km spatial and daily temporal resolution in a small region with highly complex terrain in the Austrian Alps.

This study aims at evaluating the model for its ability to simulate realistic precipitation fields over the region using historical

observations from a network of 29 meteorological stations as an input, discusses its added value over the original set-up and

its limitations. Results show that the model generates realistic fields of precipitation with good spatial and temporal variability.10

The model is able to generate some of the difficult areal statistics useful for impact assessment such as areal dry and wet spells

of different lengths and areal monthly mean of precipitation with great accuracy. The model also captures the inter-seasonal

and intra-seasonal variability very well while the inter-annual variability is well captured in summer but largely underestimated

in autumn and winter. The proposed model adds substantial value over the original modeling framework, specifically for the

precipitation amount. The model is not able to reproduce realistic spatio-temporal characteristics of precipitation in autumn.15

We conclude that with further development, the model is a promising tool for downscaling precipitation in complex terrain for

a wide range of applications in impact assessment studies.

1 Introduction

Precipitation is a major component of the hydrological cycle. With global warming, the hydrological cycle is expected to in-20

tensify and the risk associated with extreme events will increase (Tabari (2020); Pfahl et al. (2017)). The resulting changes in

the precipitation will be unequally distributed around the world. There are many hydrologic responses to climate change and

the potential impacts of these are likely to affect availability of fresh water, agriculture, timing and severity of wildfires and

habitat sustainability (Bates et al. (2008); Kundzewicz et al. (2008)). With the increasing awareness about climate change and

its global impact on the ecosystem and human societies (Konapala et al. (2020); Haddeland et al. (2014); Schewe et al. (2014)),25
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there is also an increasing need to understand the effects and impacts that would occur at local scale. Knowledge on how the

local hydrological cycle and water resources will be affected by climate change is essential for planning reliable adaptation

strategies and water policy.

In Austria, where a large part of the country is covered by mountains, the local hydrological cycle depends widely on temporal30

and spatial variations in precipitation. Tourism and agriculture are among the main drivers of Austria’s economy. Accessibility

of water resources for human consumption and ecosystems largely depends on the spatio-temporal distribution of precipitation.

In the Austrian Alps, studies on the observed as well as projected impact of climate change show the changes on the availability

of snow cover as well as water flux (e.g. Abermann et al. (2009); Wijngaard et al. (2016)). This ultimately will have impact on

the economy, the ecosystem, the environment and the society. To assess the impacts of climate change at local scales, precise35

climate information is critical which can serve the needs of the decision makers. Often such information should be consistent

in space and time for present as well as future climate. Many applications in hydrology require very high resolution data of

precipitation, typically of 1 km for spatial and daily for temporal scale. However, obtaining such high-resolution precipitation

data is still a challenging task especially in the mountainous region (Henn et al. (2018)). Most importantly for the complex

topography such as the Austrian Alps, even 1 km resolution cannot include the impact of topography on climate correctly. For40

such regions, many applications in hydrology and ecology require even higher resolution data – in the spatial scale of 100 m

and hourly for temporal scale. Climate models with higher resolutions like Regional Climate Models are also unable to provide

such data. For that reason, various downscaling methods have been in use in the past few decades. Among all the downscaling

methods, statistical downscaling using stochastic weather generators (WGs) has become very popular mainly because WGs

are computationally parsimonious.45

A vast variety of WGs have been developed based on different approaches. Most widely used WGs are based on a rather

simplistic approach in which the sites are mutually independent in space and time. Such WGs are generally referred to as

single-site WGs. Among the single-site WGs, the most popular WGs are the parametric models based on Richardson (1981),

who used a Markov chain to simulate time series of precipitation occurrence (wet/dry days) and amount and other variables50

were generated upon the condition of whether the generated day is wet or dry (e.g. Dabhi et al. (2021), Caron et al. (2008);

Zhang et al. (2004); Dubrovský et al. (2004); Wilks (1992)). The details on the available WGs can be found in the review

articles by Ailliot et al. (2015); Maraun et al. (2010); Wilks and Wilby (1999) where Maraun et al. (2010) focused solely on

precipitation.

55

The major drawback of single-site WGs is that they are focused on a single location only, which can generate realistic data at a

location but lacks the spatially correlated structure in the generated data. Getting a spatially and temporally consistent dataset

– which is more realistic – from single-site models is impossible. For that reason, in the past two decades the focus has moved

towards development of spatio-temporal WGs also known as multi-site WGs. As for precipitation, given the uneven nature of

its occurrence and intensity, it becomes more challenging to model it by keeping the spatio-temporal structure. In particular, in60
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complex topography like in the Alps, this task is even more challenging.

Numerous approaches have been proposed to generate spatially and temporally correlated precipitation data. Wilks (1998) did

one of the early works on multi-site generation of daily precipitation where single-site parametric WGs at sites were forced

with correlated random numbers to generate the occurrence of precipitation and the amount of precipitation was generated65

using a mixture of two exponential distributions. Other approaches to spatio-temporal modeling of precipitation are hidden

Markov models (e.g. Ghamghami et al. (2016); Charles et al. (1999); Ailliot et al. (2009)), copula-based approaches (Serinaldi

(2009); Bárdossy and Pegram (2009)), resampling based on k-nearest neighbours (Apipattanavis et al. (2007); Buishand and

Brandsma (2001); Rajagopalan and Lall (1999)), Poisson cluster models (Ramesh et al. (2012); Cowpertwait (1995)), artificial

neural networks (Harpham and Wilby (2005)) and Generalised Linear Model (GLM) based approaches (Kleiber et al. (2012);70

Verdin et al. (2018)). Baxevani and Lennartsson (2015) proposed a spatio-temporal model using a censored latent Gaussian

field for precipitation generation. Olson and Kleiber (2017) used the Approximate Bayesian Computation method. Gao et al.

(2021) developed a multi-site stochastic daily rainfall model by coupling a univariate Markov chain with a multi-site rainfall

event model. There also exist more sophisticated WGs that can provide high-resolution spatio-temporal fields combining phys-

ical and stochastic approaches (e.g. Peleg et al. (2017); Paschalis et al. (2013)).75

However, most of the aforementioned approaches simulate precipitation only at the locations where observations are available

and such multi-site WGs have been implemented for the Alps. For example, Keller et al. (2015) and Keller et al. (2017) used

a Wilks-type WG for precipitation simulation and downscaling, respectively, for a mountainous catchment in the Swiss Alps.

Breinl et al. (2013) used a semi-parametric multi-site precipitation generator for the mountains in the Austrian-German Alps.80

However, high resolution data in space and time are needed to provide more realistic input for local climate impact assessment.

To achieve that, a gridded multi-site model is required. Sparks et al. (2017) proposed a multi-site multivariate WG based on the

use of periodically extended empirical orthogonal functions (EOFs), in which they modeled precipitation as a censored latent

Gaussian process. They generated gridded data of precipitation and temperature over Europe using gridded input data, but their

WG can not provide gridded data without gridded observations. Peleg et al. (2017) developed a WG called AWE-GEN-2d and85

used it in the Swiss Alps, which can generate two-dimensional fields of various meteorological variables where precipitation

is generated at 2 km spatial and 5 min temporal resolution. Although their approach is sophisticated as it is a hybrid approach

combining dynamical and statistical approaches, it requires spatially distributed data for calibration of the WG and it cannot

generate data on a region outside the calibration region. Such WGs are of limited use if the observed gridded data are not

available which is often the case. To our knowledge, not much work has been done for complex terrain like the European Alps90

using multi-site gridded WG without gridded observations.

Wilks (2009) developed one of the first ever WGs which can provide gridded data of precipitation and also temperature at

locations with no observations. Kleiber et al. (2012) also gave an approach using the GLM based model which uses Gaussian

processes to generate gridded data. Their approach is appealing as it generates the readily available field of precipitation using95
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kriging for interpolation of the model parameters. The advantage of their approach is that in the GLM framework, one could

include various covariates such as large-scale climate indices, local climate information, topographical information etc. which

makes the model more flexible. Another advantage is that it is a probabilistic approach which allows one to quantify the un-

certainties in the parameter estimation. However, Kleiber et al. (2012) tested the model only for the multi-site precipitation

generation, i.e. at locations with observation and not for the generated gridded data of precipitation. Since many applications100

for impact studies require gridded data as input, before producing the gridded data for such applications, one must evaluate the

model for its ability to reproduce gridded fields. Another important point to be noted is, since the model can provide data at

locations without historical observations, one can obtain historical time series of daily precipitation at those locations. In order

to use the model for this purpose, it is necessary to assess the model performance for the gridded fields. Verdin et al. (2018)

modified the framework of Kleiber et al. (2012) by including seasonal precipitation as an additional covariate and evaluated105

the model for gridded data, but it was implemented in flat terrain. Also, their modified model and the original model, both

used an isotropic and stationary covariance structure with ordinary kriging (OK) for the interpolation of the model parameters

which may not be suitable for the complex topographical terrain. Bennett et al. (2018) generated precipitation fields using a

latent-variable approach that provides a parsimonious method to jointly generate rainfall occurrence and amount. They used an

isotropic powered-exponential function for including spatial correlations and kriging for the interpolation of the parameters.110

However, they also implemented their model in relatively flat terrain in South Australia. To our knowledge, no space-time grid-

ded precipitation generator has been evaluated for its ability to generate two-dimensional fields of precipitation in the highly

complex terrain without needing gridded input data.

Here, we propose an extension to the framework of Kleiber et al. (2012) for complex terrain and evaluate the model for its115

capabilities to generate realistic two-dimensional fields of precipitation for a mountainous region in the Austrian Alps. In ad-

dition, we examine the added value of our model to the original isotropic set-up and discuss the limitations of the model.

This article is organized in a following way: Section 2 describes the extension to the isotropic framework for the implementation

in a mountainous region. Section 3 details the study area, the data and the model evaluation strategy used in the study. Section120

4 presents and analyses the results, Section 5 comprises a discussion of the results and Section 6 summarizes the study.

2 Model Description

2.1 Precipitation Occurrence

At a location s and on a day t, precipitation occurrence O(s, t) is 0 (dry day) if no precipitation and 1 (wet day) if precipitation

occurs. A wet day is defined when the precipitation amount exceeds 0.1 mm.125

For a set of locations s and on a day t, a latent Gaussian processWO(s, t) is defined with mean function µO(s, t) and covariance

function CO(h,v, t), where h= |si− sj | is the horizontal (Euclidean) distance between two locations denoted by i and j
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and v = |vi− vj | is the elevation difference between the two locations. The suffix ‘O’ stands for occurrence. Since we are

implementing the model in a mountainous region, we define the covariances among the sites as a function of the difference130

in the elevation, too. In comparison with the original model where an isotropic covariance structure is used as a function of

horizontal distances among the sites, this allows us to include anisotropy in the model. The precipitation occurrence then is

defined as

O(s, t) = 0 if WO(s, t)< 0

O(s, t) = 1 if WO(s, t)≥ 0 (1)135

where the mean function is

µO(s, t) = βO(s)′XO(s, t) (2)

‘XO’ is a vector of covariates and ‘βO’ is a vector of regression parameters as in Eq. 5.140

Kleiber et al. (2012) used a stationary and isotropic exponential covariance function of the form

C(h, t) = exp

(
−|h|
A(t)

)
(3)

where A(t) is the time dependent scale parameter.

145

Since our goal is to use the model in complex topography, we introduce anisotropy in the covariance function (Eq. 3) by taking

the difference in elevation between two locations. Thus, our stationary and anisotropic covariance function C(h,v, t) takes the

following form

CO(h,v, t) = exp

(
− |h|
A(t)

− |v|
B(t)

)
(4)

where A(t) and B(t) are the time dependent scale parameters in the horizontal and vertical direction, respectively.150

Elevation dependence in the covariance structure is the natural assumption in complex terrain. In the literature, it has been used

for precipitation simulation in the mountains, e.g. Wilks (1999) and Wilks (2009).

At the base of this model is the single-site precipitation generator based on the GLM framework (e.g. Stern and Coe (1984);155

Chandler and Wheater (2002); Furrer and Katz (2007)) which is similar to a Richardson-type precipitation generator (Richard-

son (1981)), where daily precipitation occurrence is modeled as a first-order Markov chain and daily precipitation amount is
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modeled using a gamma distribution. The GLM-based approach allows more flexibility as one may include as many covariates

as desirable, through which the seasonality or the influence of large scale circulation on the local precipitation can be included.

In the GLM approach, taking the previous day’s occurrence as a covariate, forms a first-order Markov chain. Thus, at individual160

sites, the model reduces to a logit model which is given by

log

(
pt

1− pt

)
= β′O(s)XO(s, t) (5)

where, pt is the probability of occurrence on a day t.

Note that we use a logit link function instead of a probit link function, as was the choice in the original model. The parameters165

βO are estimated at each location using the maximum likelihood approach.

CO(h,v, t) is estimated as the covariance matrix of the residuals in the logit model. We use the method of moments approach

as suggested by Kleiber et al. (2012) to estimate the parameters of the covariance function. The parameters are estimated sep-

arately for each month to allow for seasonality in the generated data. The nugget term (in the kriging, see below) is considered170

zero.

Note that the Gaussian process modelling is considered a non-parametric method. In a parametric model, the number of

parameters remains fixed with respect to the amount of the data available (i.e. number of stations in our case), while with

non-parametric methods, the number of parameters grows with the number of data points.175

The Gaussian process itself allows for a spatial interpolation method called ‘kriging’ which allows one to interpolate the model

parameters βO associated with each covariate, which are estimated at observation locations, to any location of interest. These

gridded interpolated coefficients are then used to obtain the mean function (Eq. 2). Here, we use kriging with external drift

(KED) to interpolate the regression parameters. Since precipitation in the mountains is unequally distributed across the terrain,180

we allow elevation as an external drift in kriging such that the predicted values of precipitation (through the interpolated param-

eters) reflect the elevation dependence of precipitation. Again, inclusion of the elevation in kriging interpolation is natural in

complex terrain. It has been used in the literature for precipitation interpolation in the mountains and proven to outperform OK,

e.g. Tobin et al. (2011) and Rata et al. (2020). Also, we have found linear dependence in the model parameters with elevation

(plots not shown). In KED, an auxiliary variable is assumed, which is elevation here, that is linearly related to the variable of185

interest which is the β parameter associated with each covariate in the model.

We also compare the results of our model with a simulation using ordinary kriging (OK) instead of KED in our model and also

with the original isotropic model using OK and KED. This will be discussed in the Section 4.3.

190
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2.2 Precipitation Amount

To simulate spatially correlated fields of precipitation, another Gaussian process WA(s, t) is defined with mean function

µA(s, t) and covariance function CA(h,v, t), such that

Y (s, t) =G−1s,t (Φ(WA(s, t)) (6)

where Gs,t is the cumulative distribution function (CDF) of the gamma distribution at the locations s and time t, and Φ is the195

CDF of a standard normal distribution. The suffix ‘A’ stands for amount.

At an individual location, the amount model is the gamma GLM with logarithmic link function as given by Furrer and Katz

(2007). The shape parameter α of the gamma distribution varies with space but not with time, while the scale parameter γ

varies with both space and time. This way each location has its own distinct value of shape and scale parameters, with the scale200

parameter varying with time. Thus, we have

log(γ(s, t)α(s)) = β′A(s)XA(s, t) (7)

with the mean of the gamma distribution being the product of the scale and shape parameters, i.e. γα. XA is the vector of

covariates possibly different from those selected in the occurrence model.

205

The scale and shape parameters, γ and α respectively, and the model parameters βA parameters are estimated at each individual

observation site using the maximum likelihood approach and then are interpolated using KED. We allow the scale parameter

to vary with every month to include seasonal variations in precipitation at each location.

The mean function µA(s, t) of the Gaussian processWA(s, t) is again obtained from a regression on covariates. The covariance

function CA(h,v, t) is the same as given in the occurrence model (Eq. 4), but with different parameters. The parameters of the210

covariance function are estimated for each month separately using the method of moments approach to allow the seasonality

in spatio-temporal pattern of precipitation amount.

3 Implementation

3.1 Study area and data

The model is implemented in a small region comprising highly complex terrain (ranging from 256 m a.s.l. to over 3500 m a.s.l.)215

in the Austrian Alps. The area is surrounding the catchment of River Oetz, mainly in the federal state of Tyrol but also includes

a part of the Autonomous Province of South Tyrol in northern Italy. The reason for selecting this region is that the catchment

of river Oetz is a widely researched area (e.g. Wijngaard et al. (2016); Abermann et al. (2009)). To include more stations in the

study, we allow stations from the surrounding region, also including northern Italy. The study region is comprised of several
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Figure 1. Study area showing the locations of the 29 meteorological observation stations (right) whose data are used in the study and the

location of the region in the central Alps (left). Longitude and latitude are given in degrees east and north, respectively. Gray shading denotes

the elevation (m a.s.l.). Stations with elevation higher than 1500 m a.s.l., usually high-mountain stations, are shown by the symbol type M

and the stations with elevation less than 1500 m a.s.l., typically the valley stations, are shown by symbol type V. The stations shown in red

colour are selected as example stations to illustrate the results in the article.

valleys including Oetz and Pitz Valley in Austria and Passeier Valley in South Tyrol. Daily observations from 29 meteorolog-220

ical stations (Figure 1) based on the availability of homogeneous time series of a period of 30 years from 1981 to 2010 are

selected. Typically, for hydrological applications the input data required are hourly on a temporal scale for the spatial scale of

terrain considered, but due to very few hourly data sets available over climate time scales, we selected daily data for the study.

The dataset comprises data provided by the Austrian National Weather Service (ZAMG – Zentralanstalt für Meteorologie und

Geodynamik), the Hydrographic Service of Austria, the Hydrographic Service of the Autonomous Province of South Tyrol,225

the Institute of Atmospheric and Cryospheric Sciences – University of Innsbruck and TIWAG (Tiroler Wasserkraft AG). The

highest station is on a glacier (Hintereisferner) at the elevation of 2860 m a.s.l., while the lowest is at 588 m a.s.l in northern

Italy. A few stations have missing values for single days or a short period. Our model ignores such values while computing the

observed statistics. The data at all the stations are thoroughly quality controlled by the respective service providers.

230

In the northern part of the region, we have a dense network of stations, while the southern part has relatively fewer stations.

The average inter-station distance between two locations is 28.15 km. The maximum inter-station distance is 72.84 km and

the minimum inter-station distance is 1.25 km. The average altitude difference between two stations is 0.605 km, while the

maximum altitude difference is 2.272 km. The locations of the 29 stations are shown in Figure 1 and further details about the
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stations are given in Table 1.235

The mean annual precipitation observed in the lowlands is approximately 780 mm on an average of 150 wet days in a year,

while the highest mean annual precipitation is observed at the high-mountain station Dresdner Huette which is 1320 mm with

an average of 176 wet days in a year. The highest number of mean annual wet days is 220 at St. Martin in Passeier Valley in

South Tyrol with 887 mm mean annual precipitation.240

Due to strongly different topography, a large variability both in space and in time is observed in the dataset. Out of all the 29

stations, Prutz has the most distinct climatological characteristics. For example, Prutz has the largest variability in almost all

the months. Also, the most extreme precipitation (156.5 mm) in a day is recorded at Prutz (in July 2009) whereas amongst

the remaining 28 stations, the second highest amount of precipitation recorded on the same day was at Dresdner Huette (35.1245

mm). Apart from Prutz, only Dresdner Huette recorded a daily precipitation amount as high as 120.4 mm in the 30 years of

record. At the location St. Leonhard im Pitztal, there are two stations operated by two different service providers. One is by

the hydrographic service of Austria (St. Leonhard im Pitztal-1, see Table 1) in the northern part of the Valley and the other by

ZAMG (St. Leonhard im Pitztal-2, see Table 1) in the southern part of the Pitz Valley. St. Leonhard im Pitztal-2 has some-

what different climatological characteristics than the nearby stations. Another station is St. Martin which has quite different250

climatologies compared to the Austrian stations. Note that this station is in the south of the Alpine crest (i.e. in northern Italy)

and has the lowest elevation in the observed data. Thus, there are high variations in the observed climatologies of precipitation

from valley to valley and also for stations within the same valley. This adds a particular challenge to the simulation.

To reduce the sampling uncertainty and increase the robustness of the observations, we increase the sample size of the observed255

data by considering a 7-days window centred at the day of interest. Thus, the chance that a particular date had, e.g., 30 dry

days by random choice, is minimized – what avoids a probability of dry day being 1.0 (rather than 0.98, say), which is a prob-

lematic model setting. We generate N=30 stochastic realisations, each 30 years long (30 realisations×30 years = 900 years),

of daily two-dimensional fields of precipitation on a 1 km grid over the region using the aforementioned observed daily data

of 30 years. The Shuttle Radar Topography Mission (SRTM) 1 km (30 arc second) resolution dataset (Becker et al. (2009))260

is used as a simulation grid. We select 1 km spatial resolution to reduce the simulation time as well as data storage requirement.

For the Northern Atlantic Oscillation Index (NAOI) (see Section 3.2), a daily time series from 1981 to 2010 is obtained from

the National Oceanic and Atmospheric Administration (NOAA) website1.

265

Note that the observed data are from different service providers, therefore the time of the data collection may differ which may

affect the results.

1https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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Table 1. List of the 29 meteorological stations whose data are used in the study. The names in bold letters are the three representative stations

to illustrate the results.

Id no. Name of the station Longitude Latitude Altitude (m a.s.l.)

1 Gries im Sellrain 11.16 47.20 1200

2 Kuehtai 11.01 47.20 1970

3 Oetz 10.89 47.21 760

4 Umhausen 10.93 47.14 1040

5 Jerzens-Ritzenried 10.78 47.12 1120

6 Fliess 10.65 47.11 860

7 Landeck 10.57 47.13 800

8 Ladis-Neuegg 10.65 47.10 1350

9 See im Paznaun 10.46 47.08 1040

10 Laengenfeld 10.97 47.08 1180

11 St. Leonhard im Pitztal-1 10.84 47.08 1329

12 Prutz 10.66 47.07 871

13 Ried im Oberinntal 10.66 47.06 895

14 Fendels 10.68 47.05 1343

15 Kaunertal-Vergoetschen 10.75 47.04 1269

16 St. Leonhard im Pitztal-2 10.86 47.02 1460

17 Dresdner Huette 11.14 47.00 2290

18 Plangeross 10.87 46.99 1605

19 Soelden Schmiedhof 11.01 46.97 1380

20 Pfunds 10.51 46.95 992

21 Spiss 10.45 46.96 1540

22 Pitztaler Gletscher (Pitztal Glacier) 10.88 46.93 2860

23 Nauders 10.50 46.90 1360

24 Obergurgl 11.02 46.86 1940

25 Vent 10.91 46.86 1890

26 Vernagtbach 10.83 46.86 2640

27 Ausserrojen 10.48 46.81 1833

28 St. Martin im Passeier Beobachter 11.23 46.78 588

29 Marienberg 10.52 46.71 1310

3.2 Selection of covariates in the model

We allow several covariates in the model such that the model can capture a realistic structure of precipitation patterns over the270

region. This includes the day-to-day time dependence, seasonality as well as the influence of large scale circulation. As the
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first covariate, we select previous day’s occurrence (Occt-1) as possible covariate such that day-to-day temporal dependency

in occurrence at a location is captured. To include seasonality, time dependent 1st and 2nd order harmonics of sine and cosine

(see Table 2) are considered as the possible covariates. To allow the influence of large scale circulation over Europe, the NAOI

is considered as a possible covariate. Studies show that there are links between the NAOI and precipitation characteristics275

(Casty et al. (2005); Beniston (1997)). A strongly positive NAOI is associated with persistent high pressure over the alpine

region, resulting in warmer than average temperatures and lower than average precipitation. In general, winter NAOI correlates

negatively with precipitation. Along with the described covariates, we also take into account their interaction terms as possible

covariates.

280

For the selection of the covariates in the model, we use both the Akaike Information Criterion (AIC) (Akaike (1974)) and

the Bayesian Information Criterion (BIC) (Schwarz (1978)). None of the two criteria selects the same set of covariates at all

the stations. BIC has a tendency to select the simplest model whereas AIC has a tendency to select more complex models.

However, it turns out that BIC helps in identifying the most important covariates at all the stations.

285

The three most important covariates for the occurrence model at the majority of stations are Occt-1, Cos(2πt/n) and Cos(4πt/n),

where ‘t’ is the day of year. We select those covariates which are selected by both AIC and BIC at the majority of the stations.

The selected covariates are listed in Table 2. BIC selected this set of covariates at 18 stations out of total 29 stations (see Section

3.1), while AIC selected the same set of covariates at 11 stations. Thus, the vector of covariates in the model is

XO(s, t) = (1,Occt-1,Cos
(

2πt

n

)
,Sin

(
2πt

n

)
,Cos

(
4πt

n

)
,Cos

(
4πt

n

)
∗Sin

(
4πt

n

)
,

Occt-1 ∗Cos
(

2πt

n

)
,NAOI) (8)290

where ‘n’ is 365 or 366 in case of a leap year. The first term is associated with the intercept in the model.

For the precipitation amount also, we take into account all the possible covariates as described for the occurrence model. We

select the covariates using both AIC and BIC for the amount model also. Additionally, selecting the same 7 covariates as in

the occurrence model at the majority of stations, the 2nd harmonic of sine is also selected by both AIC and BIC (17 stations295

by BIC and 16 stations by AIC). Thus, we allow a total of 8 covariates in the amount model (see Table 2) and the vector of

covariates for the amount model is

XA(s, t) = (1,Occt-1,Cos
(

2πt

n

)
,Sin

(
2πt

n

)
,Cos

(
4πt

n

)
,Sin

(
4πt

n

)
,Cos

(
4πt

n

)
∗Sin

(
4πt

n

)
,

Occt-1 ∗Cos
(

2πt

n

)
,NAOI) (9)
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Table 2. List of the covariates included in occurrence and amount model (Eq. 8 and Eq. 9)

No. Name of the Covariate Description Occurrence

model

Amount

model

1 Occt-1 Previous day’s occurrence X X

2 Cos(2πt/n) 1st harmonic of Cosine X X

3 Sin(2πt/n) 1st harmonic of Sine X X

4 Cos(4πt/n) 2nd Harmonic of Cosine X X

5 Sin(4πt/n) 2nd harmonic of Sine × X

6 Cos(4πt/n) ∗ Sin(4πt/n) Interaction of Cos(4πt/n) and

Sin(4πt/n)

X X

7 Occt-1 ∗Cos(2πt/n) Interaction of Occt-1 and Cos(2πt/n) X X

8 NAOI Northern Atlantic Oscillation Index X X
‘n’ is 365 (366 in case of leap year)

The correlations for precipitation amount in the model are computed only for days when the precipitation was observed.300

3.3 Model evaluation strategy

Although the model produces daily fields of precipitation, before evaluating the model for gridded data, we first evaluate it at

the individual locations where the observations are available. This is common practice for validation of WGs that the input

statistics must be reproduced. From the simulated gridded data, the 30 years time series of daily precipitation at the nearest grid

point to the observation locations is extracted from each of the N=30 realisations. The mean of the simulated statistics in each305

realisation is compared with the observed statistics. The validation is carried out for daily and long-term statistics along with

considering more difficult statistics to be reproduced by the model. For the illustration of the results at individual locations, out

of 29 stations, three example stations are selected which are: i) Oetz, ii) Pitztal Glacier, and iii) Prutz. These three stations are

highlighted by red colour in the study area (Figure 1). The three stations are selected such that Oetz represents the results at val-

ley stations, Pitztal Glacier represents the results at the high-mountain stations and the third station Prutz is one of the stations310

with different climatic characteristics and has climatic characteristics most distinct from those at the surrounding stations (and

is, therefore, most challenging). Note that Pitztal Glacier is the highest station amongst the 29 observation stations (see Table 1).

In the next step, we evaluate the model for its ability to reproduce spatial statistics. For that, gridded observed data are required.

We use the Alpine Precipitation Grid Dataset (APGD) (Isotta et al. (2014)) from the Swiss Federal Office for Meteorology and315

Climatology (MeteoSwiss) which has a 5 km spatial and daily temporal resolution. The dataset is based on measurements at

high-resolution rain-gauge networks, incorporating more than 8500 stations from seven Alpine countries with more than 5500

rain-gauge measurements on average per day. With 10-15 km station spacing, the dataset is one of the densest in-situ observa-

tion networks over a high-alpine topography worldwide. These data are available from 1971 to 2008. Note that this dataset is
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not a perfect reference. To obtain 30 years of gridded observations, we select the period from 1979 to 2008 for the validation320

of the simulated gridded data.

In order to assess the interpolation accuracy, we perform a hold-out cross validation in which one or more stations are with-

held from the model fitting process. We withhold the same three stations which are selected for the illustration of the results,

i.e. Oetz, Pitztal Glacier, and Prutz. The model should be able to reproduce the observed statistics accurately at the withheld325

stations. For cross-validation also, we generate N=30 realisations of 30 years i.e. 900 years of data.

For the uncertainty estimation in the N=30 realisations, we use a tolerance interval (TI) (Patel (1986), Krishnamoorthy and

Mathew (2009) and Young (2010)) instead of the conventional way of using a confidence interval for the sampling error, which

is sensitive to sample size. As opposed to confidence intervals, which would give expected bounds on the means of the sim-330

ulated data, the tolerance interval gives bounds on the future individual observations. In our view, TIs provide an appropriate

visualization of the expected variability of the simulated data, as well as a means of comparison with the original data. Here,

we use a parametric two-sided TI with a normal distribution. The TIs are computed for each of the statistics considered in this

study, obtained from the simulated 30 realisations at each station. As uncertainty criteria, we select a confidence interval of

95 % and a 99 % proportion of the population for the T.I, i.e. the TIs indicate the 99% range of the simulated values (with335

95% confidence). The TIs are shown in each figure as a shaded area around the curve and denoted as TI95
99 throughout the article.

To quantify the model performance, along with various error metrics, we also take into account correlation coefficients (CC)

and coefficients of determination (R2). All together, we employ the following metrics: i) mean bias error (MBE), ii) mean ab-

solute error (MAE), iii) root mean square error (RMSE), iv) CC, and v) R2. Each of the performance metrics serves a different340

purpose. MBE measures the overall bias in the model performance, MAE and RMSE both provide information on the mean

magnitude of the error regardless of the direction of the error. However, the greater the difference between them, the greater the

variance in the individual errors in the sample. Similarly, correlation shows the association between the two variables (which

are observed and synthetic statistics here) butR2 shows the proportion of data variation explained by the model. All the perfor-

mance metrics for the spatial statistics (corresponding to Figure 13) are obtained between the observed and synthetic statistics345

derived at all the grid points, e.g. for the spatial occurrence probabilities, the metrics are derived between the observed and

synthetic “spatial series” of the occurrence probabilities.

4 Results

An extensive evaluation of the model generated data is carried out here.350
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4.1 Evaluation at individual stations

4.1.1 Daily occurrence probabilities at individual stations

First, we assess the performance of the occurrence model for the daily conditional probabilities on which the model is trained.

These are important statistics as they are associated with the ability of the model to reproduce dry and wet spells. Figure 2

illustrates the annual cycle of the empirical and simulated daily conditional probability of a dry day following a dry day (Pdd)355

at the three selected stations along with the results of cross-validation for the same variable, whereas Figure 3 illustrates the

daily conditional probability of a wet day following a wet day (Pww). The solid lines are the fitted curve using the Locally

Weigthed Scatterplot Smoothing (LOESS) method (Cleveland (1979)) to each of the three probabilities — observed, simulated

and cross-validated, respectively. The annual cycle of Pdd is accurately simulated at Oetz and Pitztal Glacier while at Prutz,

the model largely underestimates throughout the year. However, the seasonality in Pdd is well captured at Prutz. The annual360

cycle of Pww is well captured at Oetz and Pitztal Glacier, but slightly underestimated at Oetz during the entire year whereas at

Pitztal Glacier, the model accurately reproduces the probabilities throughout the year.

At Prutz, the model performs badly for Pww (Figure 3 (c)). The observed seasonality in Pww at Prutz is completely different

compared to the seasonality at other stations which is not reproduced by the model at all. Similar to Prutz, the other two stations365

(St. Leonhard im Pitztal-2 and St. Martin), which have very different climatic characteristics, also exhibit marked differences

(not shown) between the simulated and the observed daily values of Pdd and Pww. What is noteworthy here is that the magni-

tude and the seasonality in both Pdd and Pww at Prutz are close to the magnitude and seasonality of Pdd and Pww at the valley

station (Oetz). Similar behaviour is observed at the other two stations with poor performance. This is partly due to the fact

that the covariates, which were selected at the majority of stations as optimal, did not optimally represent the statistics at Prutz370

(and neither at the other stations with distinct climatologies). This indicates that the selected set of covariates is not able to

reproduce seasonality at all the stations because a small subset of stations has distinctly different seasonality. Furthermore, the

performance of the model at Prutz is influenced by the climate characteristics at the nearby stations with regard to magnitude

and seasonality and not the other way around. At all other stations, Pdd and Pww are well simulated. This suggests that the

selected harmonics are capable to capture the seasonality in daily occurrence probabilities. Moreover, the temporal dependency375

in the occurrence is well reproduced by the covariate Occt−1. In general, we find that the performance of the model at valley

stations is similar to that at ‘Oetz’, and at the high-mountain stations similar to Pitztal Glacier.

Cross-validation produces similar results at all the three sites for Pdd. Compared to the results with the simulated probabilities,

Prutz and Oetz show slightly more underestimation throughout the year, while Piztal Glacier has mostly the same results with380

only minor deviations. For Pww, Oetz has similar results throughout the year, while Pitztal Glacier has deviations in spring

and Prutz in autumn and winter. The seasonal differences are likely due to very different precipitation characteristics at Prutz

which was removed from the model fitting along with Oetz and Pitztal Glacier in cross-validation.
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To further examine the ability of the model to reproduce the observed climatology of wet days, we next consider the uncon-385

ditional daily occurrence probability of wet days (Pw) (Figure 4). Again, at both Oetz and Pitztal Glacier, Pw is very well

simulated and the annual cycle of Pw is well captured by the model. At Prutz, the generator not only largely overestimates the

probabilities but is also not able to accurately capture the seasonality. Again, both the seasonality and magnitude at Prutz in

simulated probabilities are closer to those at valley stations (such as Oetz). Cross-validation produces similar results at all the

three sites for Pw also with small deviations compared to the simulated results.390

The performance metrics for daily occurrence probabilities are shown in Figure 8 (a) (note that the performance metrics are

presented for the simulated data and not for the cross-validation). The metrics are computed for each of the 29 stations and

plotted as a boxplot. All the error metrics, CC and R2 suggest the best performance is for Pdd followed by Pw and then Pww.

The high values of CC and R2 for Pdd and Pw demonstrate the overall very good performance for these two statistics. Con-395

versely, the small values of CC and R2 for Pww indicate a relatively poor performance of the model. This is – at least partly –

due to the fact that the model performs very poorly in generating precipitation series at the stations with distinct climatologies

(see Figure 3 (c)).

(a)  Oetz (b)  Pitztal Glacier (c)  Prutz
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Figure 2. Daily conditional probability of a dry day following a dry (Pdd) day at three selected stations: (a) Oetz, (b) Pitztal Glacier, and (c)

Prutz, (Figure 1 and Table 1). The observed probabilities(navy blue) are obtained from the observed 30 years (1981–2010). The simulated

probabilities are the mean of the 30 realizations (skyblue) and from the hold-out cross validation simulation (brown). The solid lines are the

fitted curves using the LOESS method to the observed and simulated probabilities, respectively.
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Figure 3. The same as Figure 2, but for daily conditional probability of a wet day following a wet day (Pww).
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Figure 4. The same as Figure 2, but for daily occurrence probability of wet days (Pw).

4.1.2 Frequency of spells of different lengths at individual stations400

Another important feature of the model is its ability to simulate long sequences of wet and dry days. Here, we examine the

ability of the model to simulate wet and dry spells of different length at individual stations. Figure 5 displays the frequency of

wet spells at the selected stations for the length 2 to 15 days. The precipitation generator is able to reproduce the wet spells of
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Figure 5. Frequency of wet spells of different length at three selected stations: (a) Oetz, (b) Pitztal Glacier, and (c) Prutz. The frequency

of the observed spells is obtained from the observed 30 years (1981–2010). The frequency of the simulated spells is determined for each

of the 30-year simulations separately and averaged over the 30 realizations. The shaded region is the selected tolerance interval TI95
99 for the

simulated values in the 30 realisations. The two-sided tolerance interval is specified for 99 % of the population and with 95 % confidence

level. Note that the TIs are not presented for cross-validation.

different length at the valley and high-mountain station accurately. The shaded region is the tolerance interval TI95
99 in the 30

realisations. The observed values of the spells of different length are within the tolerance interval which shows that the model405

does an excellent job in reproducing even the longer spells. It is noteworthy that the model captures the spells very accurately

even if it is not trained on these statistics. There are very few occurrences of wet spells longer than 10 days at the majority of

stations in the observed data which are also well reproduced. At Prutz, the model overestimates the wet spells of all different

lengths. The observed values of the spells are not within the TI95
99 which shows that the overestimation is consistent in all the 30

realisations. The overestimation occurs because the model is not able to reproduce the conditional probabilities Pww at Prutz410

even reasonably well. In fact, the large overestimation in Pw at Prutz (Figure 4) ultimately contributes to the overestimation in

wet spells. Again, cross-validation produces similar results.

Figure 6 demonstrates the frequency of dry spells of length 2 to 25 days at three selected stations. The model is able to simulate

the dry spells of all different lengths at the valley station as well as high-mountain station with great accuracy. There are very415

few occurrences of extreme spells of length longer than 15 days in the observed data which are also well reproduced by the

model. At Prutz, the model overestimates the spells of shorter length of up to 4 days but does a very good job for the longer

spells. Again, the shaded regions are the statistical tolerance level TI95
99 in the 30 ensembles. The observed values of the spells
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Figure 6. As Figure 5, but for the frequency of dry spells of different length.

are within the tolerance region except for the shorter spells even at Prutz. The worst performance for both wet and dry spells has

been observed at Prutz. In general, for the stations in the valley, the model does a better job than at the high-mountain stations420

(figure not shown). The previous day’s occurrence as a covariate (Occt−1) is able to simulate the long sequences of both wet

and dry days very well at the majority of the stations with a great accuracy. The occurrence model satisfactorily reproduces the

occurrence pattern at the majority of the stations, except at the few distinct stations with peculiar climatologies. The results of

the cross-validation are similar again.

425

As for dry and wet spells, the model performance is mostly similar for both the spells (Figure 8 (b)) except that the RMSE

is, in general, larger for wet spells suggesting overall slightly worse performance for wet spells. The CC and R2 are nearly 1

which indicates an excellent agreement of the model with the observations for both dry and wet spells.

4.1.3 Monthly mean precipitation at individual stations

An important aspect of the precipitation generator is its ability to reproduce the amount of precipitation observed at the stations.430

As the model for amount is the gamma distribution at the observed locations, the mean, which is the product of the shape and

scale parameters of the gamma distribution, should be well reproduced. Figure 7 displays the monthly mean of precipitation

in the observed and simulated data at the selected stations along with the results of cross-validation. At both Oetz and Pitztal

Glacier, the model is able to reproduce the mean very well as the observed values are within the TI95
99 (the shaded region). At

Prutz, the model underestimates the mean in April, May, October and November while in other months, the model is able to435

reproduce the mean reasonably well as the observed values are within the TI95
99. The results for cross-validation are similar at all
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Figure 7. Monthly mean precipitation [mm/day] at the three selected stations: (a) Oetz, (b) Pitztal Glacier, and (c) Prutz. The observed values

are obtained from the observed 30 years (1981–2010) and the simulated values are the mean of the 30 realisations. The shaded region is the

selected tolerance interval TI95
99 for the simulated 30 realisations.

the three stations, but compared to simulated data, Pitztal Glaciers and Prutz show slight deviations. The performance metrics

are displayed in Figure 8 (b). For the monthly mean precipitation, the model performs very well which can be seen by the small

magnitudes of the errors – typically less than 0.5 mm/day, and strong values of CC and R2.

440

19



−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

Pww Pdd Pw

V
al

ue
 o

f t
he

 m
at

ric

MBE(a)

0.00

0.05

0.10

0.15

Pww Pdd Pw

MAE

0.00

0.05

0.10

0.15

Pww Pdd Pw

RMSE

0.00

0.25

0.50

0.75

1.00

Pww Pdd Pw

CC

0.00

0.25

0.50

0.75

1.00

Pww Pdd Pw

R2

−0.8

−0.4

0.0

0.4

0.8

Wetspells Dryspells MMP

V
al

ue
 o

f t
he

 m
at

ric

MBE(b)

0.0

0.2

0.4

0.6

0.8

1.0

Wetspells Dryspells MMP

MAE

0.0

0.5

1.0

1.5

2.0

Wetspells Dryspells MMP

RMSE

0.00

0.25

0.50

0.75

1.00

Wetspells Dryspells MMP

CC

0.00

0.25

0.50

0.75

1.00

Wetspells Dryspells MMP

R2

Figure 8. Performance metrics for the model at individual stations: (a) for daily occurrence probabilities (Pdd, Pww and Pw), and (b) for the

frequency of dry spells and wet spells of different length and monthly mean precipitation (MMP). The unit for the MBE, MAE and RMSE

for dry/wet spells are [per year] and for MMP is [mm/day]. The red horizontal line in each panel plot corresponds to the optimal performance

for the corresponding metric.

4.1.4 QQ plot at individual stations

Here, we examine the QQ plot at each individual station where the observed data are available (Figure 9). It can be seen that the

distribution of the precipitation is accurately simulated at a majority of the stations. Largest discrepancy between the observed

and simulated distribution is found at Prutz which has the largest spread in the observed data which is not well reproduced

by the model. Apart from that, there are some stations including Dresdner Huette where the higher quantiles are not well445

reproduced. These are the stations which have longer tails in the distribution of precipitation in the observed data. This is a

commonly reported problem in the literature that the gamma distribution is not adequate to simulate extremes.

We further examine the distributions of the generated data for each month at each of the 29 stations using the Kolmogorov-

Smirnov test and the Wilkoxon-Mann-Whitney test. The results are shown in the Supplement (Figures S1–S2). As revealed450

by the QQ plots, the worst performance is observed at Prutz, St. Martin and St. Leonhard im Pitztal-2 which have the distinct

climatologies.
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Figure 9. QQ plot showing percentiles of daily precipitation at each of the 29 individual stations (Table 1). The shaded region is the selected

two-sided tolerance interval TI95
99 for the simulated 30 realisations. The black solid line in each panel plot corresponds to the 1:1 line.
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4.2 Evaluation of simulated gridded data

In this section, we focus on evaluating the spatial dependence structure in the simulated data which is an important aspect455

for many hydrological applications. We present here the results of the validation — first for the spatial statistics related to the

occurrence and then for the occurrence and amount together. More details on this aspect of validation is given in the discussion

Section 5.

4.2.1 Frequency of areal spells of different length

One of the most challenging features of the gridded precipitation generator is its ability to reproduce the areal spells of wet and460

dry days of different length. This is one of the sought-after features in agricultural and hydrological applications. We define an

areal wet (dry) spell as the number of consecutive days when 95 % of the study area is wet (dry). Figure 10 illustrates the areal

spells of dry and wet days of different length in the observed and simulated data. It can be seen that the areal dry spells are

better simulated than the areal wet spells. The areal dry spells of length greater than 2 days are accurately simulated, whereas

the areal dry spells of 2 days are overestimated. For areal wet spells, the model underestimates the spells of all lengths. Larger465

discrepancies are found for shorter spells.

For the areal spells, the performance metrics are shown in Table 3. For areal dry spells, the error statistics suggest that the

model has a tendency to overestimate the spells. This is because the model largely overestimates the areal dry spells of shorter

lengths. The CC is perfect and R2 is also nearly 1 which suggest an excellent performance of the model. For areal wet spells,470

the error metrics MBE, MAE and RMSE are small where a negative value of MBE indicates overall underestimation in the wet

spells and strong CC and R2 suggest a very good agreement with the observed values.

Table 3. Performance metrics for the gridded model for reproducing areal statistics

Statistics MBE MAE RMSE CC R2

Frequency of areal dry spells of different length 1.02 [per year] 1.38 [per year] 3.34 [per year] 1.00 0.99

Frequency of areal wet spells of different length -0.41 [per year] 0.62 [per year] 1.30 [per year] 0.99 0.97

Monthly mean areal precipitation -0.23 [mm/day] 0.26 [mm/day] 0.33 [mm/day] 0.96 0.93

4.2.2 Spatial distribution of occurrence probabilities

The spatial distribution of the simulated probabilities of wet days (Pw) for each season (Figure 11 (left column)) is compared475

to that of the (gridded) observations (Figure 11 (middle column)). It is noteworthy that the model generated data have 1 km

spatial resolution, while the observed gridded data have 5 km resolution. The model is able to generate the seasonality in the

spatial distribution of Pw very well. In particular, the higher probabilities in spring and summer are well reproduced. Also, at 1

km high resolution, the influence of topography on the spatial distribution of Pw is clearly visible. This is due to the inclusion
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Figure 10. Frequency of the areal spells of different length (see Section 4.2.1): (a) Dry spells, (b) Wet spells. The observed spells are obtained

from the APGD gridded data of 30 years (1979–2008). The simulated spells are the mean of the 30 realizations. The shaded region is the

selected tolerance interval TI95
99 for the simulated data. The two-sided tolerance interval is specified for 99 % of the population and with 95

% confidence level.

of elevation in the kriging interpolation.480

To test the model performance at each grid point, we upscale the simulated data from 1 km to 5 km and the difference between

the observed and the simulated data is shown in the right column in Figure 11. It can be seen that in spring and summer the

biases are small and mostly similar throughout the domain, while in winter there is an overestimation in the south-eastern

part of the region and a slight underestimation in the north-western part. This is because in the south-eastern part of the study485

area the density of stations is very low. There is one station (St. Martin) that is heavily influencing that area which has the

highest probability of precipitation occurrence and that is manifested through the spatial interpolation of the model parameters

through kriging (see Section 2) to generate the gridded fields. Except for summer, this station has a much higher probability of

precipitation occurrence relative to the other stations. It is also reflected in the simulation that in summer in the south-eastern

part the bias is mostly zero.490
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Figure 11. Spatial distribution of occurrence probability (Pw) in four seasons in the simulated 30 realisations (left column) and 30 years

(1979–2008) APGD observed gridded data (middle column) and the bias (simulated-observed) in the simulated data (the last column). The

spatial resolution for APGD data is 5×5 km. Note the different scales in the color coding for the different seasons.
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Figure 13 (a) illustrates the performance metrics for the spatial distribution of Pw for each month. All the three error statistics

are within 0.1 which suggests a very good performance of the model. The largest errors are for August where negative MBE

indicates overall underestimation in Pw, while the largest overestimation is found in February. The lowest overall bias is found

in September. The highest value of CC and R2 is observed in May. In colder months, i.e. in winter and autumn the correlations495

between the observed and simulated probabilities are weak and also theR2 is small which suggests poor performance for these

months. The worst performance is observed in January where the CC and R2 are almost zero, while the best is found in May.

4.2.3 Spatial distribution of mean wet-day daily precipitation

Next, we consider the mean wet-day daily precipitation for assessing the ability of the model to reproduce the observed clima-500

tology of precipitation amount over the region. We consider the mean of daily precipitation on wet days in each season over the

30 years of simulated 30 ensembles, i.e. 900 years of data at each grid point (Figure 12 left column) and compare it with the

observations (Figure 12 middle column). The right column in Figure 12 depicts the bias in the simulated and observed values

at each grid point. The model is able to simulate the spatial seasonal variability in precipitation very well. In particular, the

summer precipitation due to the convective processes and thunderstorms, which account for high amounts of precipitation, is505

well reproduced. In the colder seasons (DJF and SON), the precipitation amount in the simulated data has visibly less elevation

dependence and hence the generator has a tendency to generate less spatial variability of daily precipitation amount across the

region. In contrast with the largely overestimated spatial probability of occurrence in the south-eastern part of the study area

(Figure 11), the model underestimates the precipitation amount. St. Martin does not only have a high frequency of wet days but

also the highest precipitation amount in all the seasons among the 29 stations. The gamma distribution is not able to reproduce510

the large amount at this station which results in underestimating the amount in the surrounding area also.

Another important aspect to notice is that in the observed data APGD, the probabilities of wet days in the south-eastern part of

the region in the colder seasons are low (Figure 11), whereas in the same part of the region, the precipitation amount is high –

particularly in SON (Figure 12). The model fails to capture this behaviour. This is also because in this part of the study area the515

model has to extrapolate the parameters as there is no observed station present beyond St. Martin. Hofstra et al. (2010) found

that the density of station network used for interpolation influences the distribution of precipitation and the areal mean amount

of precipitation. They found that when fewer stations are used, precipitation is over-smoothed which leads to a strong tendency

for interpolated values to be less than the “true” value, and the effect was largest for higher percentiles. Dresdner Huette also

has a larger amount in observed data in autumn (and also in winter) compared to other stations. The model underestimates520

the amount in the region surrounding this station also, which is mainly in SON (see the north-eastern part in SON in Figure

12). Another reason for the underestimation in autumn could be the inability of the model to simulate orographic precipitation

particularly related to föhn events. This altogether leads to large underestimation in autumn in this region.
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Figure 12. Spatial distribution of mean wet-day daily precipitation amount for four seasons [mm/day] for simulated (left column), observed

(middle column) and bias (simulated-observed) in the simulated data (right column). The mean wet-day daily precipitation is obtained at

each grid point for each season in each of the 30 realisations and the average of the 30 realisations is shown. The spatial resolution for

simulated data is 1×1 km and for observed data is 5×5 km. Note the different scales in the color coding for the different seasons.
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Figure 13. Performance metrics for the gridded model: (a) for spatial distribution of probabilities of wet days (Pw) in each month, and (b)

for spatial distribution of mean wet-day daily precipitation where the unit for the MBE, MAE and RMSE is [mm/day]. The red horizontal

line in each panel plot corresponds to the optimal performance for the corresponding metric.

Figure 13 (b) depicts the performance metrics for the spatial distribution of mean wet-day daily precipitation for each month.525

The MBE, MAE and RMSE are the largest in November and the negative value of MBE of approximately -2 mm/day sug-

gests large underestimation in that month. For October also, large underestimation is found, while the smallest error metrics

are found in March followed by February. The high values of CC and R2 are in February and March which suggest the best

performance for these months, while the worst performance is found in September. Contrary to the bad performance for spatial

distribution of Pw, the spatial distribution of mean precipitation is better reproduced in winter (compare the right columns of530

Figures 11 and 12).

4.2.4 Monthly mean areal precipitation

Next, we assess the ability of the precipitation generator to provide an areal climatology of the precipitation amount. This is

also one of the desired characteristics for impact modelling. Figure 14 displays the areal precipitation mean for each month535

in the observed as well as simulated gridded data. The precipitation generator, except in autumn, simulates the mean areal

precipitation in all seasons with good accuracy as the observed values are within the TI95
99. As seen in the spatial distribution of

the amount of precipitation (Figure 12), in autumn the model underestimates mainly in October and November. The statistics

are shown in Table 3. The small negative value of MBE indicates overall slight underestimation, while MAE and RMSE are
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Figure 14. Monthly mean areal precipitation [mm/day]. The observed values are obtained from the APGD observed 30 years (1979–2008)

and the simulated values are the mean of the 30 realisations. The shaded region is the selected two-sided tolerance interval TI95
99 for the

simulated data.

also small, about less than 0.4 mm/day. The high values of CC and R2 show that the model estimated means are in very good540

agreement with the observed.

4.2.5 Annual maximum precipitation sums

Here, we assess the ability of the model to reproduce extreme precipitation amount. We consider the annual maximum daily

precipitation at 29 sites. The daily sum of the observed daily precipitation at 29 sites is obtained and the maximum of the daily545

sum in every year is shown as a boxplot in Figure 15. For the simulated data, the time series of daily precipitation for 30 years

at the nearest grid point to the 29 observation stations are extracted from the gridded data in each of the 30 realisations. The

sum of the daily precipitation at the 29 sites in the simulated data is obtained and the maximum in each year is presented as a

boxplot in Figure 15. There is an underestimation in the simulated maximum precipitation sums. The median is underestimated
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Figure 15. Annual maximum daily precipitation sum at 29 sites for observed and simulated data. The sum of daily precipitation at 29 sites

is obtained and the maximum in each year is presented as a boxplot. Thus, the boxplot for observed is based on 30 values and for simulated

is based on 900 (30 realisations of 30 years) values.

approximately by 20%. The interannual variability in the maximum precipitation sums is also underestimated as can be seen550

from the interquartile range (IQR). However, the range of the boxplot of the model simulated values is larger than that of the

observed where the extreme outliers suggest the model generates higher extreme precipitation sums than those in the observed.

In general, the model is able to generate the extreme precipitation reasonably well.

4.3 Comparison between anisotropic and isotropic model using KED and OK

Here, we compare the results of our simulations i.e. using KED in the anisotropic model (Aniso-KED) with three different555

model set-ups: i) by considering OK in the interpolation of the parameters of the anisotropic model (Aniso-OK), ii) using the

original isotropic model which uses OK for the interpolation of the parameters (Iso-OK), and iii) using the isotropic model

with KED (Iso-KED). We examine the results for the monthly sum of areal mean daily precipitation in these four cases of

simulations (experiments) with the observed gridded data APGD. Figure 16 displays the distributions of the monthly sum of

areal mean daily precipitation for the simulated 900 years for each of the four experiments and the observed 30 years gridded560

data.
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The model performance for Aniso-KED and Iso-KED is mostly similar in all the months, whereas the model performance

for Iso-OK and Aniso-OK is similar in all the months. The model performance varies greatly from month to month for all

four experiments, but both the experiments involving KED (Aniso-KED and Iso-KED) outperform those using OK in all the565

months. It is evident that by allowing the elevation as a covariate in the kriging interpolation for prediction at each grid point,

the amount of precipitation is considerably improved in most months.

The median for both the KED experiments is overestimated in the months February, March, May and September and in the

rest of the months, the median is underestimated. The IQR in Figure 16 shows the inter-annual variability (IAV) but the fig-570

ure also shows the intra-seasonal and inter-seasonal variability. The model reproduces the intra-seasonal and inter-seasonal

variability very well in all the four experiments but in general better for the experiments when KED is employed. The IAV is

better simulated in summer than in colder months. The best performance is found in July, when the variability is larger in the

simulated data for all the four experimental set-ups compared to the observed data. For both the simulations using KED, the

median in July is furthermore very close to the observed value. This is a remarkably good performance as WGs are typically575

criticized to have a tendency to underestimate the low frequency variability, as it is the case for most of the months in our

precipitation generator. Conversely, our model – for all the four experiments – is not able to reproduce the larger IAVs in other

months (particularly October). This also could be one of the reasons for the large underestimation in the precipitation amount

over the study area in the autumn season as discussed in the previous sections. It is noteworthy that from October to December,

the model performance is essentially similar in all the four experiments. This shows that regardless of the type of correlation580

structure and the interpolation method, the model is unable to capture the spatial distribution of precipitation in those months.

In general, the model performance is better in warmer months than in colder months.

The differences in the observed and simulated median and IQR in each month for each of the four experiments are listed in

Table 4. Overall, the experiments with KED outperform those using ordinary kriging and the Iso-KED combination is slightly585

superior to the fully anisotropic combination. Apparently, even for such a small region in complex terrain as the present study

area, an isotropic covariance is adequate to reproduce the precipitation fields. In the observed data, anisotropy is indeed present

but the difference between the variation in the correlations with horizontal distance compared to that in the vertical is very

small. Hence, there is almost no difference in the performance of the model in isotropic and anisotropic formulation. The

two experiments with OK not just underestimate the amount of precipitation but also lack the topographical influence on the590

simulated precipitation amount and rather produce smooth precipitation fields over the region (see Figure S3 in Supplement).

However, the influence of topography must be included in the model, to realistically simulate the precipitation fields, as we

showed here by considering KED interpolation.

As for the occurrence model, the covariance structure has a slight influence on the model performance. Figure 17 compares the595

areal dry and wet spells for all the four experiments with those observed. The performance of the anisotropic model is better

for dry spells where Aniso-KED performs sightly better than Aniso-OK. Contrarily, the performance of the isotropic model is
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Figure 16. Monthly sum of areal mean daily precipitation [mm] for each month in APGD observed 30 years (1979–2008) and simulated 900

years (30 realisations of 30 years) of data for the four experiments: Aniso-KED, Iso-KED, Aniso-OK and Iso-OK (see text for specifications).

better for wet spells where Iso-KED performs slightly better than Iso-OK. For both areal dry and wet spells, KED interpolation

adds little value to the simulation over using OK.

600

5 Discussion

The extended model proposed here for simulating precipitation adds substantial value over the original framework of Kleiber

et al. (2012) to the simulation of gridded precipitation fields in the highly complex mountainous region in the Austrian Alps.

The precipitation generator, using observed meteorological station data as input, is able to provide high resolution gridded

precipitation fields in complex terrain and thus provides data where historical observations are not available. As a statistical605

downscaling tool, this model does not require any large computational resources. Obviously, compared to a single-site WG, it

requires additional computing resources, but it is still very parsimonious and fast compared to dynamical downscaling models.
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Table 4. Difference (Simulated-Observed) in the median and interquartile range (IQR) of the observed and simulated monthly sum of areal

mean daily precipitation [mm] in each month and each of the four experiments. The bold values indicate the best performance of the model

in each month.

Month Aniso-KED Iso-KED Aniso-OK Iso-OK

Difference in Median (IQR) [mm]

Jan -3.54 (-20.52) -4.01 (-20.16) -7.70 (-22.06) -5.84 ( -19.79)

Feb 1.33 (-12.52 ) 1.57 ( -11.93) -2.76 (-15.34) -3.99 (-15.44)

Mar 8.35 (-11.10) 8.31 (-10.66) 0.70 (-12.92) 0.78 (-12.32)

Apr -2.15 (-13.13) -1.80 ( -8.94) -7.98 (-13.42 ) -8.26 (-12.15 )

May 7.08 (-10.58) 6.26 (-6.86) -4.20 (-10.33) -1.63 (-7.19)

Jun -5.69 (-8.56) -3.13 ( -6.55) -14.47 (-10.95) -14.71 (-9.98)

Jul -2.30 (5.87) -1.61(9.83) -13.91 ( 0.95) -9.22 (5.84)

Aug -18.18 (-17.34) -16.76 (-18.80) -24.67 (-22.44) -25.30 (-21.56)

Sep 7.10 (-20.44) 10.28 ( -18.20) 0.60 (-22.71) 1.00 (-23.03)

Oct -12.42 (-49.34) -13.56 (-45.64) -14.64 (-48.79) -13.24 (-47.90)

Nov -7.90 (-23.54) -10.00 (-24.40) -9.30 (-25.25) -10.04 ( -22.74)

Dec -4.29 (-9.79) -3.43 (-9.26) -4.94 (-9.89) -6.65 (-8.19)

It can be easily run on any high-end personal computer.

In this study, we have tested two extensions of the original isotropic model to be used for applications in complex topography.610

First, to include anisotropy in the covariance function and second, to apply KED in the interpolation of the parameters

instead of OK. The major improvement in the results from our model comes from the KED interpolation, rather than the

included anisotropy in the covariance structure. This suggests that there is no strong directional dependency in the precipitation

simulation. Although there are minor differences in the model performance using the isotropic and anisotropic covariance

functions, it can be concluded that an isotropic covariance function is sufficient even for small-scale topographic variability615

as in the present study in the European Alps. However, the topographical details must be included in the interpolation of the

parameters of the model. Similar results can be expected for complex terrain in other mountainous regions.

In this study, we have tested two extensions of the original isotropic framework of Kleiber et al. (2012) for the simulation of

precipitation fields. First, to include anisotropy in the covariance function and second, to apply KED in the interpolation of620

the parameters instead of OK. Our model adds substantial value over the original model in the highly complex mountainous

region in the Austrian Alps. As a statistical downscaling tool, this model does not require any large computational resources.

Obviously, compared to a single-site WG, it requires additional computing resources, but it is still very parsimonious and

fast compared to dynamical downscaling models. It can be easily run on any high-end personal computer. In terms of model
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Figure 17. Frequency of areal spells [per year] of different length in each of the four experiments with 900 years of simulated data and in

APGD observed 30 years (1979–2008) data: for (a) areal dry spells, and (b) areal wet spells. For the simulated dry and wet spells, their

frequency is determined for each of the 30-year simulations separately and averaged over the 30 realizations.

complexity, our model has only two parameters more than the original model which are the two range parameters in the verti-625

cal direction due to inclusion of elevation in the covariance functions in the occurrence and amount model, respectively. And

hence, in terms of computational time, the proposed model takes approximately 8% longer compared to the original model to

complete the run which includes model fitting and simulation.

The major improvement in the results from our model comes from the KED interpolation, rather than the included anisotropy630

in the covariance structure. This suggests that there is no strong directional dependency in the precipitation simulation. Al-

though there are minor differences in the model performance using the isotropic and anisotropic covariance functions, it can be

concluded that an isotropic covariance function is sufficient even for small-scale topographic variability as in the present study

in the European Alps. However, the topographical details must be included in the interpolation of the parameters of the model.

Similar results can be expected for complex terrain in other mountainous regions.635

At individual locations with observations, the model satisfactorily reproduces various observed statistics and the overall dis-

tribution of precipitation. The model is also able to capture spatial and temporal variability over the entire region reasonably
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well. It is capable to simulate the dry day statistics over the whole region very well, while for the wet day statistics, there is

an underestimation observed. The frequency of areal dry spells of one or two days is strongly overestimated. The model uses640

previous day’s occurrence as a covariate, which at an individual location creates a first-order two-state Markov chain. Dabhi

et al. (2021) applied a first-order two-state Markov chain model at stations covering different climate zones in Europe and

found that it has a tendency to overestimate dry spells. The first-order Markov chain uses occurrence from only one day in

the past, there may, however, be longer lasting correlations present in the data. Considering the occurrence from two or more

days in the past, i.e. forming a second-order or higher order Markov chain at individual locations may potentially improve the645

results for both dry and wet spells. For example, Wilson Kemsley et al. (2021) studied the order of Markov chains in different

climate regimes across the world where they showed that the third-order model reproduces observed dry spell distributions the

best. Alternatively, by allowing other meteorological variables such as windspeed, humidity as covariates in the GLM can also

improve the results (Ataharul Islam and Chowdhury (2006)).

650

The model captures the month-to-month variability in the monthly sum of precipitation very well which is due to the time-

dependent harmonics of sine and cosine as covariates in the modeled spatial covariance structure. However, the inter-annual

variability is largely underestimated mainly for the colder months. Even if we adopt the NAOI as a covariate to alleviate the

often-discussed problem of overdispersion in this type of models, the overdispersion remains an issue. One reason is the ten-

dency of the model to underestimate the large daily precipitation amounts. This is because the model generates the precipitation655

amount using a transformed Gaussian process which reduces to a gamma distribution at individual locations. The gamma dis-

tribution is not a heavy-tailed distribution and is therefore not well suited to reproduce the heavy precipitation. However, Wilks

(2009) also found the underestimation of heavy precipitation in his study using a mixture of two exponential distributions to

account for both smaller and larger precipitation amounts. This is another commonly reported problem for precipitation gener-

ators (e.g. Wilks (1999), Furrer and Katz (2008)). Allowing heavy-tailed distributions alleviates the overdispersion (Serinaldi660

and Kilsby (2014)), but simulating spatial extremes along with successfully capturing the smaller amounts with such a simple

model is even more challenging. Another way to reduce overdispersion is by allowing a suitable covariate such as seasonal total

precipitation in the GLM as shown by Kim et al. (2012) or by including seasonal dry/wet indicators as in Kim and Lee (2017).

Verdin et al. (2018) modified the model of Kleiber et al. (2012) by allowing the domain averaged seasonal total precipitation

as a covariate and showed that the inclusion of this covariate improved the simulation. However, their study was focused on665

flat terrain where it is promising to take the areal precipitation as a covariate for the whole domain. This may not be suitable

for mountainous terrain and rather location specific climate information might be more promising. In this study, we wanted to

evaluate the model for its ability to reproduce the observed statistics at locations where no observations are available and for

that reason we avoided allowing any location specific information so that the model is not conditioned upon the availability of

the information at each grid point. We believe that, by allowing such gridded information as a covariate, the model performance670

could be improved.
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In complex mountainous terrain individual stations can exhibit precipitation characteristics quite distinct from those of neigh-

bouring (or more distant) stations with more typical characteristics. The station-by-station evaluation (Section 4.1) has revealed

that the model cannot reproduce precipitation at these distinct stations (e.g., Prutz in Figures 2–7). For the gridded simulations675

we would have expected that these distinct stations might negatively influence their neighbouring stations. In contrast, how-

ever, the nearby stations have influenced the distinct stations by generating too strong correlations. Figure S4 (see Supplement)

depicts the inter-station correlations in the precipitation occurrence among the 29 stations in the observed against the simulated

data. The cloud of points having weak correlations in the observed data belong to the distinct stations, but in the generated

data the correlations are very strong. The reason is the good density of the network of 29 stations in such a small region. This680

is also the reason that the largest discrepancy in the performance of both the occurrence and amount models amongst the 29

stations is found at those distinct stations, because at those stations the model generates the statistics of the nearby stations

rather than reproducing their own observations. Thus, a distinct station in a region with dense observational network cannot be

reproduced, but doesn’t strongly deteriorate the overall performance in the reproduction of the spatial information. This finding

is also conformed by the hold-out cross-validation. As discussed in Section 3.2, this is due to the choice of the same set of685

covariates. Using the same set of covariates is, however, a necessary restriction if the model is aimed at gridded output fields.

Reproducing the spatial statistics over the whole region and especially in mountainous region is indeed a challenging task. And

with such a simple model, capturing the realistic spatio-temporal fields of precipitation is even more challenging. Despite of

that, our model successfully captures many difficult statistics useful for climate change impact applications such as long spells

of dry and wet days and areal monthly mean precipitation.690

However, if a ‘distinct station’ is located in a data sparse area (such as St. Martin in our study area), it dominates the entire

neighbouring region and destroys the spatial structure. Thus, for a spatial precipitation generator in complex terrain the stations

should not only be selected according to data availability (and quality) but also based on their precipitation characteristics. If

they have distinctly different precipitation characteristics from the majority of the stations in the region, they should not be695

included in the training data set and if one is explicitly interested in such a station, one should use a single-site approach.

Another limitation of this model is its inability to realistically simulate autumn and winter precipitation. This is because there

are systematic differences in the characteristics of weather types between various seasons. In autumn and winter, westerly cur-

rents are stronger and the associated precipitation patterns are more pronounced than during spring and summer. The precipi-700

tation pattern in winter is associated with dynamically active synoptic-scale weather systems (fronts and low-pressure systems

specifically from the North Atlantic Ocean and the Adriatic Sea) in combination with orographic enhancement whereas the one

in summer is related to convective activity which is either embedded in frontal systems or generated locally. Our model does

not account for the wind-influence on the precipitation. This could be the reason for the model being not capable to capture the

spatio-temporal patterns in autumn and winter. The convective season in Austria usually starts in May and lasts till September705

and during these months the model successfully captures the spatio-temporal patterns.
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The covariance function used in the model is assumed to be stationary which may not be a realistic assumption. Detecting

spatial non-stationarity and modeling it is beyond the scope of this article and will be explored in future research. However, it

is possible that by considering a non-stationary covariance function (e.g. Paciorek (2003)), the model performance may be im-710

proved. Since the precipitation-topography relationship is dominant in mountainous regions, the results can also be improved

by including not just elevation but other variables like slope, aspect, latitude and longitude in kriging (Wotling et al. (2000)).

Considering east-west and north-south gradients of the topography along with elevation in the KED also improves the results

(Hiebl and Frei (2017)). Since the inclusion of elevation at 1 km resolution has improved the results, we believe that consider-

ing even higher spatial resolution would provide even better simulation of precipitation.715

6 Conclusion

A multi-site gridded precipitation generator that provides high resolution two-dimensional fields of precipitation in complex

terrain using historical observations from a network of meteorological stations is developed, implemented and evaluated. The

precipitation generator is an extension of the original framework of Kleiber et al. (2012) which uses a stationary isotropic720

covariance structure. The original framework is based on a latent Gaussian process for the occurrence, and a transformed

Gaussian process for the amount of precipitation where gamma distributed random numbers are transformed to normally dis-

tributed random numbers. This framework considers the parameters of a Generalized Linear Model (GLM) as a realisation of a

spatial Gaussian process which allows one to spatially interpolate the parameters using kriging. In this article, two extensions

to the original framework are proposed: i) by allowing anisotropy in the covariance structure, and ii) by allowing elevation725

as an external drift in kriging. The anisotropy is included in the model by taking into account the elevation difference in the

stationary covariance function of both, the occurrence and amount models. Along with that, elevation is allowed as an auxiliary

variable in the kriging equations for the interpolation of the parameters of both the occurrence and amount models.

The model is tested in a small region (about 100×100 km2) with highly complex terrain in the European Alps where 29 obser-730

vational stations with 30 years of data (1981–2010) are available. The test region comprises stations with elevation differences

of about 2300 m. Thirty realizations of 30 years of synthetic gridded data at 1×1 km2 resolution are generated to allow for a

robust statistical assessment.

The main findings from this study can be summarized as follows:735

– At individual stations where observations are available, the model reproduces the observed statistics realistically well,

including annual cycles of daily probabilities of precipitation occurrence and monthly means of precipitation, dry and

wet spells of different length and the overall distribution of precipitation amount.
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– The model has a great capability to capture the spatio-temporal statistics in the complex terrain, which includes the

spatial distribution of occurrence probabilities and amount, areal dry and wet spells of different length, monthly mean740

areal precipitation and monthly sum of areal daily mean precipitation.

– The proposed extension considerably improves the simulation of spatio-temporal fields of precipitation – mainly due to

the incorporation of elevation in kriging.

– The use of an isotropic or anisotropic covariance function in the mountainous region is equally good with marginal

trade-offs for some of the statistics.745

– The performance of the model varies greatly from month to month – being best in summer and worst in autumn.

– Intra-seasonal and inter-seasonal variabilities are well reproduced, while inter-annual variability is largely underesti-

mated in autumn and winter.

– At a few of the 29 stations, where the observed precipitation statistics, and in particular their seasonality were distinctly

different from all the other stations, the model performance is markedly compromised.750

– The underestimation of large amounts of precipitation remains a problem.

Reproducing the spatio-temporal fields of precipitation in a region characterized by complex terrain like the Alps is a challeng-

ing task especially at locations where no observations are available. However, this is an essential requirement for hydrological

modeling as hydrological models are driven by spatially and temporally coherent precipitation data. The proposed model can755

respond to this need to some extent, nevertheless further improvement is required, as discussed in the article, to employ the

model for downscaling purpose.
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