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Abstract 19 

As the major water resource in the southwestern United States, the Colorado River is 20 

experiencing decreases in naturalized streamflow and is predicted to face severe challenges 21 

under future climate scenarios. To better quantify these hydroclimatic changes, it is crucial that 22 

the scientific community establishes a reasonably accurate understanding of the spatial patterns 23 

associated with the basin hydrologic response. In this study, we employed remotely sensed Land 24 

Surface Temperature (LST) and Snow Cover Fraction (SCF) data from the Moderate Resolution 25 

Imaging Spectroradiometer (MODIS) to assess a regional hydrological model applied over the 26 

Colorado River Basin between 2003 and 2018. Based on the comparison between simulated and 27 

observed LST and SCF spatiotemporal patterns, a stepwise strategy was implemented to enhance 28 

the model performance. Specifically, we corrected the forcing temperature data, updated the 29 

time-varying vegetation parameters, and upgraded the snow-related process physics. Simulated 30 

nighttime LST errors were mainly controlled by the forcing temperature, while updated 31 

vegetation parameters reduced errors in daytime LST. Snow-related changes produced a good 32 

spatial representation of SCF that was consistent with MODIS but degraded the overall 33 

streamflow performance. This effort highlights the value of Earth observing satellites and 34 

provides a roadmap for building confidence in the spatiotemporal simulations from regional 35 

models for assessing the sensitivity of the Colorado River to climate change.  36 

 37 
Keywords: watershed hydrology; spatial patterns; surface energy balance; numerical modeling; 38 
Variable Infiltration Capacity model; southwestern United States.  39 
 40 
  41 
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1. Introduction 42 

Physically based numerical models of the coupled water-energy cycle have emerged as 43 

powerful tools to address critical societal needs (Fatichi et al., 2016), including flood forecasting 44 

(Maidment, 2017), irrigation operation (Gibson et al., 2017), weather and climate prediction 45 

(Baker et al., 2017; Senatore et al., 2015), and evaluations of water scarcity (Zhou et al., 2016). 46 

Over the last three decades, several types of hydrologic models have been developed with 47 

different levels of conceptualization that often change with the domain size due to computational 48 

constraints. One class of models, denoted as regional or macroscale models, were originally 49 

designed to serve as land surface scheme of atmospheric models and are routinely used to 50 

simulate hydrologic processes in continental basins (>105 km2) at spatial resolutions of 10 to 25 51 

km (e.g., Lawrence et al., 2011; Liang et al., 1994; Niu et al., 2011). These processes include 52 

infiltration, evapotranspiration, runoff production, and snow accumulation and ablation, that are 53 

typically simulated in a regular grid without considering lateral transfers across cells (Clark et 54 

al., 2015). In recent years, the National Water Model combines a regional hydrologic model 55 

applied at the unprecedented resolution of 1 km with routing schemes to generate operational 56 

hydrologic predictions over the continental United States (Lahmers et al., 2019, 2021). 57 

In many cases, hydrologic models are applied under prescribed meteorological forcings 58 

using an optimal set of parameters that are calibrated by minimizing differences between 59 

simulated streamflow and observations at one or more locations (e.g., Gou et al., 2021; Li et al., 60 

2019; Nijssen et al., 1997; Xiao et al., 2018; Yun et al., 2020; Zhang et al., 2017). While widely 61 

used, this approach has two important limitations. First, input and structural uncertainties are 62 

often not taken into account (Gupta and Govindaraju, 2019), causing an inflation of parametric 63 

uncertainty that can exacerbate the problem of equifinality (Beven and Binley, 1992). Second, 64 
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this calibration method relies only on aggregated measure of the hydrologic response and does 65 

not consider the model ability to capture the spatially variable internal processes (Becker et al., 66 

2019; K. Ajami et al., 2004). As a result of these two limitations, this calibration approach could 67 

cause the undesirable outcome that the model provides the right answer for the wrong physical 68 

reasons (Rajib et al., 2018; Tobin and Bennett, 2017), which can in turn induce wrong 69 

conclusions when the model is applied under nonstationary conditions due to changes in land 70 

cover and/or climate. 71 

Satellite remote sensors provide spatially distributed estimates of hydrologic states and 72 

fluxes, including soil moisture (Entekhabi et al., 2010; Njoku et al., 2003; Kerr et al., 2001), land 73 

surface temperature (LST; Shi and Bates, 2011; Zhengming Wan and Dozier, 1996), snow cover 74 

fraction (SCF, Painter et al., 2009), evapotranspiration (Boschetti et al., 2019; Fisher et al., 75 

2020), and changes in water storage (Tapley et al., 2004). These products can reduce parametric, 76 

structural, and input uncertainties of hydrologic models by including additional constraints in the 77 

calibration process (Wood et al., 2011; Fatichi et al., 2016; Ko et al., 2019). Despite this 78 

potential, the use of remote sensing products to reduce hydrologic simulation uncertainty has 79 

been explored in only a few studies. For instance, in studies by Corbari & Mancini (2014), Crow 80 

et al. (2003) and Zink et al. (2018), satellite LST was used with river discharge to calibrate 81 

model parameters, finding that including LST in the process improved the simulation of 82 

evapotranspiration as estimated by eddy covariance towers or other satellite products. This 83 

outcome was also found by Gutmann and Small (2010), who applied a regional model at 14 flux 84 

towers and showed that incorporating remotely-sensed LST estimates in the calibration allowed 85 

achieving two thirds of the improvements gained by ingesting more accurate ground LST data. 86 

In other efforts, satellite LST products have been used to verify performance of hydrologic 87 
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models, as done by Koch et al. (2016) with the North America Land Data Assimilation System 88 

(NLDAS), Xiang et al. (2014) with the TIN-based Real-time Integrated Basin Simulator (tRIBS), 89 

Xiang et al. (2017) with the Weather Research and Forecasting (WRF)-Hydro model, and Wang 90 

et al. (2021) with the Variable Infiltration Capacity (VIC) model. Finally, a few studies have 91 

enhanced streamflow simulations (Bennett et al., 2019; Bergeron et al., 2014; Tekeli et al., 2005) 92 

by improving the timing of snowmelt using remotely sensed snow cover fields. 93 

The Colorado River Basin (CRB) is a regional watershed where hydrologic simulations 94 

are needed to support short- and long-term water management decisions. Its water resources are 95 

used by almost 40 million people in seven states of southwestern U.S. (Arizona, California, 96 

Colorado, Nevada, New Mexico, Utah, and Wyoming), to irrigate ~22,000 km2 of land, and to 97 

generate over 4,200 MW of hydroelectric power (USBR, 2012). The mean annual discharge of 98 

the CRB is 20.2 km3, with high interannual variability resulting from large variations in climatic 99 

forcings (Christensen et al., 2004; Gautam and Mascaro, 2018). Until 2021, the CRB was able to 100 

meet the demand of all users by storing runoff in a large system of dams, mainly operated by the 101 

U.S. Bureau of Reclamation (USBR), and transporting water through canals and aqueducts, 102 

including the Central Arizona Project. However, declines in the mean flow observed over the last 103 

two decades (Hoerling et al., 2019; Udall and Overpeck, 2017) combined with increasing 104 

demands led to the first-ever declaration of water shortages in the CRB in January 2022. The 105 

water cuts affecting users in Arizona and Nevada (CAP, 2021) are expected to become more 106 

severe in the near future and impact the agricultural sector (Mitchell et al., 2022; Norton et al., 107 

2021).  108 

In previous studies on the hydrologic responses of the CRB using the VIC model, 109 

confidence in the model results was built mainly through comparisons against estimates of 110 
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naturalized flow (e.g., Christensen et al., 2004; Vano et al., 2012, 2014; Xiao et al., 2018). The 111 

CRB is characterized by a marked difference between the colder and wetter Upper Basin, where 112 

more than 90% of streamflow is generated (Li et al., 2017), and the warmer and drier Lower 113 

Basin with reduced runoff production due to low precipitation, high evaporative demand, and 114 

channel transmission losses (Rajagopalan et al., 2009). As a result of this large contrast, limiting 115 

the calibration of VIC to the use of naturalized flow in the Upper Basin may lead to uncertainty 116 

on its ability to simulate the spatiotemporal hydrologic response.  117 

The objective of this study is to improve the physical reliability of VIC simulations in the 118 

CRB by incorporating remotely sensed fields of LST and SCF obtained from the Moderate 119 

Resolution Imaging Spectroradiometer (MODIS). LST is an important variable that impacts the 120 

coupled water-energy balance, while SCF provides information on snow conditions which are 121 

crucial to quantify runoff generation. We start from a parameterization of VIC that led to good 122 

estimates of monthly discharge in the period 2003-2018. We then apply a stepwise procedure to 123 

reduce uncertainties on model forcings, parameters, and structure based on comparisons of 124 

simulated and remotely sensed LST and SCF fields. While based on VIC, the methods proposed 125 

here can provide guidance to refine the calibration and reduce uncertainties of other physically 126 

based hydrologic models, as well as to identify areas for structural improvement. 127 

 128 
2. Study Area and Datasets  129 

2.1 Study basin 130 

The CRB has a total area of approximately 630,000 km2, covering seven states in United 131 

States and a small portion in Mexico. Here, we considered the drainage area above Imperial 132 

Dam, plus the Gila River (Fig. 1). The Colorado River Compact of 1922 divides the CRB into 133 

the Upper and Lower Basins. As revealed by the land cover map reported in Fig. 1c, most of the  134 
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 135 
Figure 1. (a) Digital elevation model of the CRB. (b) Channel network and eight subbasins 136 

analyzed in this study. The red circle marks Imperial Dam. (c) Dominant vegetation type in each 137 

pixel with legend. (d) Time-averaged vegetation fraction, fv. (e) Total soil depth. All maps are at 138 

0.0625˚ (~6 km) spatial resolution. Values of fv and soil depth are from the baseline simulation. 139 

 140 

basin is covered by shrub or scrub ecosystems (~60%), followed by various forest types (~24%). 141 

Table 1 summarizes the mean hydroclimatic and land surface features of the subbasins. The 142 

Upper Basin consists of the Green, Upper Colorado, Glen Canyon, and San Juan River 143 

subbasins. These higher elevation subbasins (except Glen Canyon) receive more snowfall than 144 

the rest of the CRB, resulting in the presence of a significant snowpack (mean annual snow water 145 

equivalent, or SWE, ranges from 13.7 to 58.8 mm) that eventually leads to the generation of 146 

~90% of the CRB runoff. While the Lower Basin receives about 60% of the mean annual  147 
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Table 1. Spatially averaged mean annual precipitation (P), snow water equivalent (SWE), runoff 148 

(Q), and runoff ratio (Q/P), along with area, mean elevation, mean soil depth, and percentage of 149 

trees in the CRB and its subbasins. 150 

  CRB Green Upper 
Colorado 

San 
Juan 

Glen 
Canyon 

Little 
Colorado 

Grand 
Canyon 

Lower 
Colorado Gila 

P (mm yr-1) 350.9 405.5 539 348.8 267.4 293.5 294.6 209.7 357.9 

SWE (mm) 17.6 58.8 48.6 13.7 5.5 0.9 1.7 0.1 0.4 

Q (mm yr-1) 36.9 73.9 126.2 45.7 16.6 5.2 12.3 8.3 9.9 

Q/P (%) 10.5 18.2 23.4 13.1 6.2 1.8 4.2 4 2.8 

Area (103 km2) 629.5 105.9 62.5 59.2 55.9 68.5 80 42 155.6 

Soil depth (m) 2.55 2.55 2.69 2.62 2.52 2.55 2.36 2.48 2.6 

Elevation (m) 1729.1 2215.3 2542.3 2034.3 1823.8 1929.3 1503.1 708.8 1184.6 

Percentage of 
trees (%) 25.2 27.8 62 24.9 15.4 23.8 20.9 2.9 20.6 

 151 

precipitation of the subbasins in the Upper Basin per unit area, its runoff ratio (i.e., the fraction 152 

of annual precipitation becoming runoff) is three times smaller than that of the Upper Basin.   153 

2.2 Remote sensing and ground-based datasets 154 

We integrated different remotely sensed and ground-based data. Meteorological forcings 155 

were obtained from the gridded (0.0625º or ~6 km) daily datasets of Livneh et al. (2013) and Su 156 

et al. (2021) for precipitation, maximum temperature, minimum temperature, and wind speed. 157 

We also used the Precipitation Regression on Independent Slopes Method (PRISM) 30-year 158 

normal (Di Luzio et al., 2008) for temperature corrections. For assessing streamflow 159 

performance, we used monthly naturalized flow records from USBR at four interior locations of 160 

the Upper Basin. Note that this is the largest available resolution for the reconstructed 161 

naturalized flow since the river is highly regulated. To improve the simulation of spatial patterns, 162 
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we used two products from the Aqua MODIS sensor: daily LST (MYD11A1) and monthly SCF 163 

(MYD10CM). The LST product is available at 1-km resolution twice a day at about 1 p.m. 164 

(daytime) and 1 a.m. (nighttime) local times (Wan, 2013). The percent of missing data, largely 165 

due to cloud cover, varies from 42% to 95% with larger values in the winter season and July 166 

(Fig. S1). Monthly SCF is provided at 0.05˚ (~5 km) resolution as the average of SCF for days 167 

with a prescribed level of sky clearness (Hall & Riggs, 2016). Both MODIS products were 168 

aggregated to the 0.0625˚ scale used in the model. We also validated simulated and remotely-169 

sensed LST using measurements at 14 eddy covariance towers (Baldocchi et al., 2001) selected 170 

based on available data (>300 days over 2003-2018). The station locations are shown in Fig. S2, 171 

with twelve located in the Lower Basin at elevations from 987 to 2618 m. Five stations were 172 

forested, and the remaining were covered by a short canopy. We extracted records of observed 173 

longwave radiation at the stations and used them to compute LST following Wang et al. (2021). 174 

We also used the National Land Cover Database (NLCD) Multi-Resolution Land Characteristics 175 

(MRLC) rangeland and tree canopy cover products, which contains canopy cover fraction at 30-176 

m resolution for forests and shrublands (Coulston et al., 2012; Homer et al., 2020).  177 

3. Methods 178 

3.1. The Variable Infiltration Capacity model  179 

We used the VIC model version 5.0 (Hamman et al., 2018) to simulate the hydrologic 180 

response of the CRB from 2003-2018 at an hourly time step and 0.0625˚ resolution. VIC is a 181 

macroscale, physically based model that solves the water and energy balance on a regular grid. 182 

Land surface heterogeneity in each cell is modeled through land cover tiles, each with a single 183 

vegetation class on top of a three-layer soil column. The model requires meteorological forcings 184 

as inputs and returns outputs over the grid. Fluxes and state variables simulated at grid cells are 185 
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calculated as the areal weighted average of separate computations of the water and energy 186 

balances for each land cover tile. Here, we adopted the VIC version with the clumped vegetation 187 

scheme proposed by Bohn & Vivoni (2016), where the vegetation fraction (fv) accounts for 188 

spacing among plants in each tile. This modification allows simulating the energy balance with a 189 

higher fidelity, as shown by Bohn & Vivoni (2016) through the comparison with ground 190 

estimates of evapotranspiration in the southwestern U.S. and northwestern Mexico. 191 

Since our adjustment strategy is based on the comparison of simulated and remotely 192 

sensed LST and SCF, we describe how these variables are simulated using the schematic in Fig. 193 

2. The governing equations are reported in Appendix A, while the most influential parameters 194 

are in Table 2. In our simulations, 16 vegetation classes are used, which include four types of tall 195 

trees: deciduous forest, evergreen forest, mixed forest, and woody wetlands. For other canopy 196 

types (e.g., tile A of Fig. 2), the energy balance is solved over a control volume that combines 197 

the fractions of vegetation (fv,A) and bare soil (1 – fv,A) using a weighted aerodynamic resistance. 198 

A single surface temperature (Ts,A) is computed and assumed uniform over the tile and equal to 199 

the foliage temperature (Tf,A = Ts,A). For tall trees (e.g., tile B in Fig. 2), a vegetated overstory and  200 
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 201 
Figure 2. Schematic explaining how LST is computed in VIC (LSTV) as compared to MODIS 202 

(LSTM) in a pixel covered by short vegetation (tile A) and tall trees (tile B). fv is the vegetation 203 

fraction; Tair is the air temperature; Ts, Tf, and Tc are simulated temperatures for the surface, 204 

canopy, and canopy air; LWd,v is the downward longwave radiation from the canopy; and LWd is 205 

the downward longwave radiation from the atmosphere. A and B refer to variables in each tile. 206 

 207 

Soil

Tair

Tc,B

Ts,B

Tf,B

Tair

Ts,A

Snow

Soil

Tf,A = Ts,A

LWd,v,B*(1-fv,B)LWd,v,B*fv,B

LWd,B*(1-fv,B)
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Table 2. List of spatially-variable forcings, vegetation and soil parameters, and state variables 208 

involved in the computation of the energy balance (symbols defined in main text and Appendix 209 

A). Forcings and state variables vary each hour. Parameters are either constant in time or vary 210 

each month (denoted with +).  211 

Energy balance 
component Forcings Vegetation 

parameters Soil parameters State variables 

𝑹𝒏 𝑅", 𝑅# 𝛼$, 𝑓%$  𝑇" 

𝑳𝑯 
𝑅", 𝑅#, 𝑇&'(, 

vapor pressure, 
wind speed 

LAI+, 𝑟&(), 𝑟*'+, 
𝑓%$ 𝐷, 𝑊, 𝐺"*, 𝑇" 

𝑺𝑯 𝑇&'(, wind speed 𝑧-, 𝑑-, 𝑓%$  𝑇" 

𝑮𝑯   𝐷, 𝑇", 𝑇, 
 212 

an understory without vegetation are introduced. If snow is absent, the overstory foliage 213 

temperature is assumed equal to air temperature (Tf,B = Tair) and a single Ts,B in the understory is 214 

calculated with the scheme described above. When snow is present, Ts,B is calculated by solving 215 

the energy balance in the overstory, understory, and the atmosphere surrounding the canopy. 216 

Since the satellite sensor observes the top of the surface, the simulated LST by VIC (LSTV) that 217 

is compared against MODIS (LSTM) is the weighted average of foliage temperature in tiles with 218 

tall trees and the ground temperature in other tiles. In the case of Fig. 2, this leads to: 219 

LST. =
/!⋅1",!$/$23%,$⋅1&,$$4,53%,$6⋅1",$7

/!$/$
,   (1) 220 

where AA and AB are the areas of tiles A and B, respectively.  221 

To compute SCF in the grid cells, VIC allows subdividing each tile into elevation bands 222 

to capture changes in forcing temperature due to terrain heterogeneity. Elevation bands are the 223 

same for all tiles in a grid cell and limited typically to three bands in total. Given the mean 224 

elevation of each elevation band, the air temperature forcing is adjusted using a lapse rate of -6.5 225 
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ºC/km and then used to solve the energy balance within each tile. Depending on temperature and 226 

precipitation, snow may be simulated within a tile and SWE is calculated. When SWE > 0, SCF 227 

is assumed to be 100%, such that a tile within that elevation band is fully covered with snow; 228 

otherwise, SCF is 0 and the elevation band within the tile is snow-free (i.e., a binary outcome). 229 

SCF in the grid cell is the area weighted average of the SCFs from all tiles and elevation bands. 230 

3.2. Baseline simulation 231 

We created a first model parameterization, labeled as “baseline”, based on applications 232 

by Xiao et al. (2018) and Bohn & Vivoni (2019). Hourly gridded meteorological forcings were 233 

generated from the daily grids of Livneh et al. (2013) and Su et al. (2021) using MetSim 234 

(Bennett et al., 2020; Bohn et al., 2013, 2019). Model parameters were obtained from Livneh et 235 

al. (2015), with a few updates as follows. Land surface parameters were based on MODIS and 236 

NLCD products from Bohn & Vivoni (2019), which include a land cover classification and 237 

climatological monthly means of leaf area index (LAI), fv, and albedo. We replaced the elevation 238 

data used in prior VIC studies with the 30-m USGS National Elevation Dataset (USGS, 2016). 239 

The model was tested against monthly naturalized streamflow records by manually adjusting 240 

seven soil parameters that affect runoff production, as well as the parameters controlling the 241 

relation between snow albedo with snow age. As shown in Fig. S3, under the baseline 242 

simulation, VIC captured well the monthly streamflow in key subbasins of the Upper Basin 243 

where most runoff is produced and at the basin outlet, with a Nash-Sutcliffe efficiency (NSE) > 244 

0.9.  245 

 246 

3.3. Model improvements with remote sensing products: overview of the stepwise calibration 247 

strategy 248 
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The baseline simulation was aimed at reproducing the streamflow response and did not 249 

consider the model ability to capture spatial patterns of hydrologic variables. We designed a  250 

 251 
Figure 3. Flowchart of the stepwise calibration procedure. 252 
 253 

stepwise strategy aimed at reducing the three main sources of uncertainty in the simulation of 254 

LST and SCF. A schematic of the procedure is reported in Fig. 3; here, we provide an overview 255 

of the steps and describe the details of each step in the corresponding sections in the Results. In 256 

the first step (“Forcing-adj” or forcing adjustment), we targeted input uncertainty and modified 257 

air temperature to reduce errors of nighttime LST. In the second step (“Veg-adj” or vegetation 258 

adjustment), we focused on modifying spatially variable vegetation parameters affecting daytime 259 

LST identified among those reported in Table 2. The first two steps were guided by metrics 260 

quantifying the agreement between simulated and remotely sensed LST, including the correlation 261 

coefficient (CC), root mean squared error (RMSE), and Bias (mean LSTV - mean LSTM) 262 

between: (1) time series of daily LSTV and LSTM at each grid cell, and (2) daily spatial maps. 263 

These metrics were obtained for both daytime and nighttime through comparisons at the MODIS 264 

overpass time. To further quantify the improvements of our calibration approach, for each step 265 

we computed the Structural Similarity Index Measure (SSIM; Wang and Bovik, 2002) and the 266 

Spatial Efficiency metric (SPAEF; Demirel et al., 2018) between spatial maps of observed and 267 

Baseline Simulation Forcing Adjustment
(Forcing-adj)

Vegetation Parameter 
Adjustment

(Veg-adj)

Snow Module 
Adjustment
(Snow-adj)

• Correction of air 
temperature 
forcings with PRISM 
30-year normal 

• Dynamic vegetation 
• Rescaling of fv with NLCD 

products
• Calibration of other 

vegetation parameters

• Update of understory 
longwave radiation 
into snow surface 

• Calibration of snow 
albedo parameter 
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simulated long-term climatological mean LST; these two metrics were chosen since they have 268 

been specifically designed to compare spatial patterns. 269 

After improving LST, we reduced structural uncertainty by modifying the computation of 270 

the snow energy balance in a step labeled as “Snow-adj” (or snow adjustment). As described 271 

above, when snow exists in tiles covered by tall trees, the downward longwave radiation into the 272 

understory (or ground) snowpack is assumed to originate from the overstory (indicated as LWd,v 273 

in Fig. 2, tile B). For areas without tall trees, the downward longwave radiation reaching the 274 

understory comes from the atmosphere (indicated as LWd). To account for this in the clumped 275 

canopy scheme, we modified the downward longwave radiation as the weighted average: [𝑓% ⋅276 

𝐿𝑊8,% + (1 − 𝑓%) ⋅ 𝐿𝑊8]. In addition, we adjusted the empirical relation controlling the change 277 

of albedo during snow melt to reduce the Bias between VIC and MODIS SCF. All modifications 278 

of the model parameters were performed via manual tuning. 279 

 280 
4. Results 281 

4.1. Comparison of VIC and MODIS LST with ground observations 282 

First, we provide an overview of the comparison among the time series of LST that were: 283 

(1) observed at the 14 eddy covariance stations, (2) simulated by VIC, and (3) retrieved from 284 

MODIS at the co-located 6-km pixel. The error metrics for the 14 stations are summarized 285 

through boxplots in Figs. 4a-c, while the time series of LST at a representative site for daytime 286 

and nighttime are shown in Figs. 4d-e. Station values and VIC simulations at the overpass times 287 

were extracted for comparison with MODIS. Dates with missing data in MODIS and station 288 

records were not considered. We find MODIS LST to be very strongly correlated with ground 289 

measurements (CC > 0.91) and characterized by RMSE from ~1.5 to 5.3 ºC. Bias is slightly 290 

positive (negative) at daytime (nighttime) with a median of 0.3 ºC (-1.6 ºC). The error metrics for 291 



 16 

VIC reveal that performance degrades moderately with larger variability across the stations: CC 292 

ranges from 0.70 to 0.95, the median RMSE is 6.3˚C (5.8˚C) for daytime (nighttime), and the 293 

median Bias is 1.1˚C (-3.3˚C) for daytime (nighttime). The error metrics against ground data 294 

provide a reference for evaluating the model improvements, as discussed next. 295 

 296 

 297 
 298 
Figure 4. (a, b, c) Boxplots of CC, RMSE, and Bias comparing VIC and MODIS LST to 299 

observations at 14 sites. Time series of daytime (d) and nighttime LST (e) at one site (Fuf 300 

location shown in Fig. S2). 301 

4.2. Errors in the simulation of LST in the baseline simulation and their controls 302 
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Fig. 5 shows maps of CC, RMSE, and Bias of the time series of LSTV and LSTM at each 303 

pixel for daytime and nighttime periods over the entire simulation from 2003 to 2018. To help 304 

the interpretation, boxplots of the metrics in the grid cells within the CRB and three subbasins 305 

are presented in Fig. 6. Results for other subbasins are reported in Figs. S4-S6 and Table S1.  306 

 307 
 308 
Figure 5. Spatial maps of CC, RMSE, and Bias between time series of LSTV and LSTM over 309 

2003-2018 at each pixel. The top (bottom) row presents daytime (nighttime) comparisons. 310 

  311 

Day

Night
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 312 
 313 
Figure 6. Boxplots of (a)-(d) CC, (e)-(h) RMSE, and (i)-(l) Bias between time series of LSTV 314 

and LSTM in CRB pixels and three representative subbasins. Boxplots show median with 50% 315 

and 90% confidence intervals. Different simulations are plotted in different colors. 316 

 317 

Overall, CC is high (>0.8) throughout the CRB, with values like those found against station data. 318 

CC is relatively higher for daytime than nighttime. On the other hand, RMSE maps show that 319 

simulated LST matches better with MODIS during nighttime, with values largely consistent with 320 

those found for stations. For both times of the day, RMSE is slightly larger in the Upper Basin. 321 

Results for RMSE suggest that model performance for LST is relatively better at nighttime 322 

without solar radiation forcing and tends to be better in drier and hotter regions in the Lower 323 

Basin. Bias maps reveal simulations of LST during daytime (nighttime) are warmer (cooler) than 324 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
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MODIS observations in most of the CRB, with a median bias of 1.2 ºC (-0.7 ºC). These findings 325 

are largely consistent across the subbasins and with the station observations.  326 

Spatial patterns of the metrics are complex, suggesting that LST simulation errors are 327 

impacted by several model parameters and forcings. To gain insights into these controls, we 328 

computed the correlation coefficient between the maps of error metrics between the time series 329 

and key parameters or forcings involved in the energy balance. Model parameter maps were 330 

created by calculating the area weighted averages within each grid cell. For monthly LAI, 331 

albedo, and fv, we computed the annual mean map. For Tair, we calculated the mean across the 332 

entire study period. Figure 7 summarizes the results in each subbasin for RMSE and Bias using 333 

heatmaps (also see Fig. S7 for CC). For daytime LST, the key factors change across the 334 

subbasins, while results are more spatially uniform for nighttime LST. During daytime, we found 335 

that the Green and Upper Colorado subbasins dominated by snow and evergreen forests exhibit 336 

different controls as compared to the other subbasins. Here, RMSE is highly correlated to fv and 337 

LAI, while Bias is mainly controlled by Tair. In the other subbasins, albedo and, to a lesser 338 

extent, Tair are the dominant factors related to daytime RMSE. Different parameters affect the 339 

patterns of Bias, including albedo in all subbasins, most vegetation parameters, and root depth in 340 

the San Juan and Little Colorado, and Tair in the Little Colorado. Considering nighttime LST, Tair 341 

and, to a lower degree, soil depth are the main factors related to RMSE at all sites. Interestingly, 342 

nearly all parameters and Tair are linked to nighttime Bias. This is explained by considering that 343 

Tair is correlated with elevation and elevation is correlated with all other parameters (Fig. S8).  344 

 345 
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 346 
Figure 7. Heatmaps showing the Pearson correlation coefficient between (1) the spatial map of 347 

Tair or key soil and vegetation parameters involved in the energy balance, and (2) the spatial map 348 

of the error metrics (left: RMSE, right: Bias) between the time series of LSTM and LSTV for the 349 

baseline simulation. The correlation coefficients are computed for each subbasin. Symbols are 350 

explained in Table 2. Top (bottom) row is for daytime (nighttime) LST. 351 

 352 

Fig. 8 presents the intra-annual variability of the error metrics between daily pairs of 353 

LSTV vs. LSTM fields, shown as monthly averages. As found previously, CC is high for both 354 
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times of the day and relatively higher for daytime, while RMSE is larger at daytime. VIC 355 

simulations at daytime are positively biased throughout the year, while Bias changes sign for 356 

nighttime LST, being positive in winter and negative from April to July. In addition, both RMSE 357 

and Bias of daytime LST are higher from April to July. This indicates that simulated daytime 358 

LST degrades when incoming solar radiation is high, especially during snow-melting events after 359 

peak SWE, typically around the end of March. To corroborate this, we repeated the analyses in 360 

snow-dominated grid cells (mean annual maximum SWE > 30 mm) and for all other cells, 361 

finding higher daytime RMSE in April for snow-dominated cells than other cells, indicating that 362 

the LST during the ablation process is also more difficult to capture.  363 

 364 
 365 
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Figure 8. Time series of multiyear monthly average CC, RMSE, and Bias between VIC and 366 

MODIS daily LST fields for the baseline simulation and each adjustment step.  367 

 368 

4.3. Stepwise reduction of uncertainty in the simulation of LST and SCF 369 

4.3.1. Forcing adjustment  370 

We first focused on the improvement of simulated LST at nighttime. Fig. 7 indicates that 371 

Tair is a key input affecting the energy balance at nighttime. Alder & Hostetler (2019) compared 372 

two air temperature datasets, finding that Livneh et al. (2013) products tend to be colder than 373 

PRISM in the mountain areas of the CRB. Based on this, we adjusted the daily minimum and 374 

maximum Tair in Livneh et al. (2013) and Su et al. (2021) to match the climatological (1981-375 

2010) monthly means from PRISM. If 𝑇&'(,8,*#  is the maximum or minimum daily Tair on day d 376 

and month m, the bias-corrected value, 𝑇&'(,8,*
#,:; , was obtained as: 377 

𝑇&'(,8,*
#,:; = 𝑇&'(,8,*# − (𝑇=&'(,*< − 𝑇=&'(,*# ),     (2) 378 

where 𝑇=&'(,*<  and 𝑇=&'(,*#  are the climatological monthly means of maximum or minimum Tair 379 

from PRISM and Livneh et al. (2013), respectively. Once we bias-corrected Tair, we regenerated 380 

the hourly forcings using MetSim. As shown in Fig. 9, the Forcing-adj simulations improved 381 

Bias, which was reduced in most subbasins. The nighttime RMSE also slightly decreased 382 

throughout the basin. These outcomes are reflected in the time series of Fig. 8 that also show that 383 

improvements (lower RMSE and Bias) occur largely in the warm season. On the other hand, the 384 

Forcing-adj simulations did not improve VIC performance at daytime, only yielding a slight 385 

increase of Bias (Figs. 6 and 8) that was fixed in the next steps.  386 
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 387 
Figure 9. Spatial maps of the RMSE and Bias between time series of nighttime LSTV and LSTM 388 

during 2003-2018 at each pixel for all steps. Top (bottom) row presents results of RMSE (Bias). 389 

 390 

4.3.2. Vegetation parameter adjustment 391 

Fig. 7 shows that both static and time-varying vegetation parameters affect the error 392 

metrics of LST. In the Veg-adj step, we modified a set of influential parameters by incorporating 393 

new datasets. We first replaced the climatological mean monthly values of LAI, albedo, and fv 394 

with yearly-varying monthly estimates from MODIS. Second, we updated fv using new products 395 

from MRLC. In the baseline simulation, fv was derived from Normalized Difference Vegetation 396 

Index (NDVI) retrieved from MODIS (Bohn and Vivoni, 2016, 2019). MRLC released 30-m 397 

RMSE

Bias

Baseline Snow-adjForcing-adj Veg-adj
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grids of mean annual fv for major vegetation types in the CRB that were used to linearly rescale 398 

values of fv in the shrub and trees classes to match the annual climatology of MRLC as: 399 

𝑓%,*=>") = 𝑓%,*?
3%̅'()*

3%̅+
,      (3) 400 

where 𝑓%,*?  is fv in month m used in the baseline simulation, 𝑓%,*=>") is the rescaled value, and 401 

𝑓%̅A=#;  and 𝑓%̅? are long-term mean annual values of MRLC and the baseline parameters.  402 

Fig. 7 indicates that rmin, rarc, d0, and z0 affect errors in the simulation of LST, especially 403 

in the Green and Upper Colorado subbasins. Distributed estimates for these parameters are not 404 

currently available. Thus, we adjusted their values to reduce the Bias between daytime LSTV and 405 

LSTM guided by the process equations reported in Appendix A. Reducing z0 and d0 leads to 406 

lower aerodynamic resistance and higher sensible heat flux and, in turn, lower LSTV. Increases in 407 

rmin and rarc lead to lower values of latent heat flux and higher LSTV. Adjusting z0 has a greater 408 

impact than modifying the other parameter such that iteratively scaling of z0 in each pixel was 409 

performed at 25%, 50%, 150%, or 250% depending on the daytime LST Bias (Fig. 10). Changes 410 

were limited within physically plausible ranges. Next, we applied the same method to update d0, 411 

rmin, and rarc, but variations for these three parameters were minimal as documented in Fig. S9.  412 

The Veg-adj simulation did not lead to significant changes of model performance at 413 

nighttime, confirming that the dominating factor affecting nighttime LST was Tair. On the other 414 

hand, improvements in the simulation of daytime LST were remarkable. Fig. 6 shows that both 415 

RMSE and Bias were reduced at all locations, both in terms of median (~0.9 ºC) and variability 416 

in each subbasin (lower width of the confidence intervals), with values slightly higher than those 417 

found between MODIS and station observations (Fig. 4). These improvements were even more 418 

apparent in the maps of Fig. 10, which also showed that the complex spatial patterns of the errors 419 

of the baseline simulation have been replaced by more uniform and smoother patterns. The Veg- 420 
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 421 
Figure 10. Same as Figure 9 but for daytime LST. 422 
 423 

adj simulation also decreased large errors in the simulation of daytime LST from April to July, 424 

with lower RMSE, higher CC, and Bias close to 0 ºC throughout the year (Fig. 8).  425 

4.3.3 Adjustment of snow dynamics 426 

The Snow-adj step was aimed at improving the simulation of SCF. We first modified the 427 

computation of longwave radiation for tall trees which improved the simulation of SCF during 428 

the snow accumulation season. Next, a parameter of the relation controlling the decay of snow 429 

albedo was modified from 0.92 to 0.80, leading to an enhanced simulation of SCF in the ablation 430 

season. Fig. 11 presents Bias maps between simulated and observed mean monthly SCF and 431 

seasonality of SCF in snow-dominated cells for the baseline, Veg-adj, and Snow-adj simulations. 432 

Time series of SCF in two pixels are also shown to visualize differences in regions with positive  433 

RMSE

Bias

Baseline Snow-adjVeg-adjForcing-adj
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 434 
 435 
Figure 11. (a) Spatial maps of Bias between mean monthly SCF (VIC minus MODIS). Circles 436 

indicate locations of two grid cells with positive and negative Bias. (b) Time series of multiyear 437 

mean monthly SCF (in %) for snow-dominated cells. RMSE and Bias from monthly SCF 438 

comparisons are reported. (c, d) Same as (b) but for site with positive and negative Bias, 439 

respectively.  440 

 441 

and negative Bias. In the baseline simulation, SCF Bias was positive which occurs mainly during 442 

May through October. Forcing corrections reduced SCF as Tair was increased in mountain areas. 443 

Adjustments in the Snow-adj step reduced Bias in most locations during the accumulation and 444 

ablation seasons. When averaged over time and in the CRB, SCF Bias was relatively small. 445 

When focusing on single pixels, however, the Bias magnitude was larger, with differences in 446 

seasonality depending on location. For example, Bias reached +20% in Fig. 11c from April to 447 
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December and -20% in Fig. 11d from November to March. As expected, Snow-adj changes 448 

mainly impacted LST simulations in mountains, while a marginal influence occurred in the rest 449 

of the CRB. Overall, the daytime LST Bias map improved, while RMSE in mountain regions for 450 

both daytime and nighttime remained similar. To complete the model performance assessment, 451 

we reported in Figs. S10 and S11 the maps of simulated and observed long-term climatology of 452 

monthly SCF in the snow season and LST, respectively, over 2003-2018. Error metrics between 453 

the maps are presented in Table S2, which shows that the overall trend the metrics specifically 454 

designed to compare spatial patterns, SSIM and SPAEF, are in line with the changes in RMSE 455 

and Bias that have been used in the rest of the paper. 456 

4.4. Impacts on VIC streamflow performance and water balance 457 

As shown previously (Corbari and Mancini, 2014; Crow et al., 2003), improving the 458 

simulation of hydrologic spatial patterns could affect streamflow performance since structural 459 

limitations and different degrees of conceptualization require further tuning. We investigated this 460 

in Fig. 12 using time series of monthly runoff in the Green and San Juan subbasins and the 461 

Upper Basin. Model performance is very good for baseline simulations since its calibration was 462 

tailored to naturalized streamflow records. Forcing and vegetation parameter adjustments slightly 463 

lowered performance (changes in NSE ≤  0.05), whereas changes for the snow adjustment led to 464 

streamflow overestimation in May in all subbasins, especially in the Green subbasin (NSE 465 

reduced to 0.57). Overall, simulated streamflow performance here is consistent with Tang and 466 

Lettenmaier (2010), who found that incorporating MODIS snow cover degrades streamflow 467 

metrics. We attribute this degradation in performance to a number of reasons. First, remotely 468 

sensed spatiotemporal data of SCF have limitations in its usefulness for tracking SWE which is 469 

the modeled state variable more directly impacting streamflow. Second, VIC uses a binary 470 
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scheme for depicting SCF in elevation bands within each time of each grid cell, limiting its 471 

accuracy in representing topographic variations. To address these limitations, enhancements are 472 

needed in both simulation of snow physics and remote sensing of the spatial variation of snow 473 

depth or SWE at high spatiotemporal resolutions.  474 

In addition to streamflow, we explored the impacts of each calibration step on the water 475 

balance. For this aim, we computed the climatological monthly mean of the water balance 476 

components for the Upper Basin, where most runoff is generated. Results are presented in Figure 477 

13, which shows in panel (a) fluxes (P, ET, and RO; see caption for their definition) and changes 478 

in state variables (DSM and DSWE) for the Baseline simulations, and in panels (b)-(d) the 479 

difference between a given variable simulated in each calibration step and the variable from the 480 

Baseline simulation. The Forcing-adj and Veg-adj steps lead to small changes in ET and RO with 481 

a decrease of both fluxes in the summer months and an increase in the other months. The 482 

modification of these fluxes is due to a change in the storage components with (1) lower SWE 483 

(i.e., negative DSWE) and higher SM from November to February, and (2) higher SWE and 484 

lower SM from March to July. The Snow-adj step modifies the seasonality of SWE compared to 485 

the Baseline by increasing this storage component in February and March and reducing it in 486 

April and May. This, in turn, leads to an opposite behavior for SM, which is ultimately translated 487 

into a positive (negative) change of RO in May and June (July and August). In all cases, the 488 

changes in runoff occurred in a similar way for both the surface and underground components. 489 
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 490 
 491 
Figure 12. Monthly time-series of naturalized streamflow (NFL) and streamflow from baseline, 492 

Forcing-adj, Veg-adj, and Snow-adj simulations at: (a) Green, (b) Upper Colorado, (c) San Juan, 493 

and (d) Upper Basin for 2003-2013. NSE values are also reported. 494 

 495 

 496 

Figure 13. (a) Climatological monthly mean of the water balance components for the Baseline 497 

simulations in the Upper Basin. P is precipitation, ET is evapotranspiration and sublimation, RO 498 
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is surface and underground runoff, and DSM (DSWE) is the differences between soil moisture 499 

(snow water equivalent) at the end and beginning of the month. (b)-(e) Difference between each 500 

variable for the Forcing-adj, Veg-adj, and Snow-adj simulations and the Baseline simulations. 501 

 502 

5. Summary and Conclusions 503 

In this study, we made improvement to a regional hydrologic model in the Colorado 504 

River Basin using MODIS observations of land surface temperature and snow cover. Based on 505 

the remotely sensed data, we corrected the meteorological forcings, updated the vegetation 506 

parameters, and revised snow-related processes to enhance the model performance. The 507 

adjustments increased the consistency between VIC and MODIS LST and SCF fields, thus 508 

enhancing credibility of the spatial simulations. Our conclusions are summarized as follows: 509 

1. MODIS products provided spatiotemporal information that can be used to identify 510 

uncertainties in a hydrologic model calibrated with streamflow records at a few locations. 511 

Although baseline simulation performance for LST was high (mostly CC > 0.8), spatial errors 512 

within the CRB were non-negligible. The baseline simulation had lower RMSE of LST for 513 

nighttime and cold season conditions. Baseline model discrepancies were primarily associated 514 

with energy exchanges at land surface during periods of higher solar radiation. 515 

2. Simulated nighttime LST values were dominated by the initial air temperature such 516 

that improvements were obtained from forcing corrections. This led to a reduction of nighttime 517 

LST Bias from -7 to 6 ºC in the baseline case to -5 to 5 ºC in the Forcing-adj simulation.  518 

Vegetation adjustments led to large improvements in daytime LST, with RMSE reductions from 519 

7.5 ºC to 2.5 ºC but were less effective at night. In addition, the range of daytime RMSE of LST 520 

was reduced from 4 to 10 ºC in the baseline case to 2.5 to 3.5 ºC in the Veg-adj simulation. 521 



 31 

3. Updated snow physics reduced the negative bias in SCF during the accumulation 522 

season. We further adjusted melting snow albedo to improve performance in the ablation period. 523 

Unlike other modifications, runoff was substantially impacted by the lower snow albedo. Thus, 524 

the consistency between VIC and MODIS snow cover did not ensure an improved streamflow 525 

simulation, demonstrating the limitations of the regional application in accurately capturing the 526 

variation of SWE in mountainous areas. A possible solution to improve the spatial credibility of 527 

the hydrologic model without degrading streamflow performance is by incorporating satellite 528 

products and ground observations into a multi-objective calibration. 529 

Our work complements and expands efforts on validating physically based hydrologic 530 

simulations through remote sensing products. The adjustment steps led to the improvements of 531 

simulated LST that are in line with studies using hydrologic models with various levels of 532 

sophistication. For instance, simulations of Xiang et al. (2017) in a semiarid basin in northern 533 

Mexico found LST RMSE of 4.3˚C daytime and 1.9˚C at nighttime as compared to MODIS; the 534 

hyperresolution (~80 m) simulations of Ko et al. (2019) in the same basin resulted in Bias of -535 

1.4˚C and CC of 0.87; and the high-resolution simulations with VIC in central Arizona by Wang 536 

et al. (2021) yielded LST biases between -1.5 and 3.6 ˚C. To our knowledge, this study is the 537 

first to improve the simulated spatial patterns of hydrologic variables in the CRB using remote 538 

sensing products. By increasing the credibility of the spatial model outputs, this effort builds 539 

confidence in using regional hydrologic models for water resources predictions and decision 540 

making under the on-going megadrought in the Colorado River. Finally, we identified several 541 

future research avenues to further improve the fidelity of hydrologic models through the 542 

incorporation of remote sensing products. First, once the key parameters involved in the physical 543 

equations simulating a variable observed by satellite sensors have been identified as done here, a 544 



 32 

robust multiparameter sensitivity analysis could be conducted to investigate possible interactions 545 

among the parameters; this effort will help further refine the calibration. Second, automatic 546 

calibration strategies could be designed and applied to simultaneously target the simulation of 547 

multiple variables (here, LST and SCF). 548 
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 563 
Appendix A 564 

We describe the solution of the energy balance in VIC, which leads to the computation of 565 

ground surface temperature (Ts) and canopy foliage temperature (Tf) used to compute the land 566 

surface temperature variable, LSTV, that is compared against the MODIS estimate, LSTM. We 567 
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emphasize the main parameters and variables involved in the computation of these state 568 

variables. More detailed descriptions can be found in previous publications (Andreadis et al., 569 

2009; Bohn & Vivoni, 2016; Cherkauer et al., 2003; Cherkauer & Lettenmaier, 1999; Liang et 570 

al., 1994). We first illustrate the original algorithm introduced in the first version of VIC (Liang 571 

et al., 1994), then the snow-overstory scheme introduced by Cherkauer & Lettenmaier (2003), 572 

and finally the clumped-canopy scheme implemented by Bohn & Vivoni (2016). 573 

Original scheme from Liang et al. (1994) 574 

In Liang et al. (1994), the minimal unit of simulation is the tile with a homogeneous land 575 

cover, i.e., the “big-leaf” approach. The energy balance equation for the tile can be expressed as: 576 

Rn = LH + SH + GH   ,     (A1) 577 

where Rn is net radiation, SH is sensible heat flux, LH is latent heat flux and GH is ground heat 578 

flux. The parameters and variables involved in the computation of each term are summarized in 579 

Table 2. Net radiation is determined by: 580 

 𝑅+ = (1 − 𝛼) ∙ 𝑅" + 𝜀 ∙ (𝑅# − 𝜎 ∙ 𝑇"B),     (A2) 581 

where RS and RL are downward shortwave and longwave radiations, 𝛼 is albedo, 𝜀 is surface 582 

emissivity (0.98 for water; 0.97 for other conditions), and 𝜎 is the Stefan-Boltzmann constant.  583 

The latent heat is computed as: 584 

𝐿𝐻 = 	𝜌C ∙ 𝜆% ∙ (𝐸) + 𝐸D + 𝐸?),      (A3) 585 

where 𝜌C is the density of liquid water, 𝜆% is the latent heat of vaporization, Ec is evaporation 586 

from wet canopy, Et is plant transpiration, and Eb is evaporation from surface soil moisture. For 587 

any given time, the maximum value of Ec, denoted as Ec,max, is calculated as: 588 

𝐸),*&E = G F
F,-.

H
G/I

⋅ 𝐸J ⋅ G
(-

(-$(-/0
H,      (A4) 589 
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where W is the amount of canopy interception at a given time, Wmax is the maximum amount of 590 

water that the canopy can intercept (computed as 0.2∙LAI), rarc is the canopy architectural 591 

resistance, 𝑟& is the aerodynamic resistance, Ep is the potential evaporation derived from the 592 

Penman-Monteith equation with a canopy resistance set to zero as: 593 

 𝐸J =
D=1$K-∙)2∙M>∙

3
/-

[D$O∙(,$/"/-
)]∙S%

,        (A5) 594 

where D is the slope of the saturation vapor pressure temperature relationship, 𝜌& is the air 595 

density, 𝑐J is the specific heat of air, 𝛿𝑒 is the vapor pressure deficit, 𝛾 is the psychrometric 596 

constant, and 𝑟" is the surface resistance. The aerodynamic resistance is calculated as: 597 

 𝑟& =
,

;4$T(U)
,         (A6) 598 

where u(z) is the wind speed at the measurement height z, and Cw is the transfer coefficient for 599 

water defined as: 600 

 𝐶C = 1.351 ⋅ V5

WXY	[ 667
58767

\]
5 ⋅ 𝐹(𝑅'),      (A7) 601 

where k is the von Karman’s constant, z0 is the roughness length, d0 is the displacement height, 602 

F(Ri) is a function of the Richardson number, Ri, that accounts for atmospheric stability. z0 and d0 603 

have different values for each vegetation type and for bare soil and snow. Ri is defined as: 604 

 𝑅' =
^∙(1-9/51")∙U

(
:-9/;:"

5 )∙T(U)5
,        (A8) 605 

where g is the gravitational acceleration, and Tair is the air temperature. When W ≥ Ec,max, Ec = 606 

Ec,max; otherwise, Ec is a fraction of Ec,max determined as a function of precipitation and W.  607 

The transpiration, Et, is calculated as: 608 

 𝐸D = R1 − G F
F,-.

H
5
<S ⋅ 𝐸J ⋅ G

(-
(-$(-/0$(0

H,     (A9) 609 
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where the canopy resistance, rc, is related to the minimal stomatal resistance, rmin, via: 610 

 𝑟) = 𝑟*'+ ⋅
_",
#/`

     .    (A10) 611 

Gsm is the soil moisture stress factor depending on root zone water availability (depth dependent 612 

on vegetation type). Bare soil evaporation, Eb, is equal to Ep when the shallowest soil layer is 613 

saturated; otherwise, it is computed as:  614 

 𝐸? = 𝐸J ∙ T∫ 𝑑𝐴/"
- + ∫ '7

',[,5(,5/)3 +9⁄ ]
𝑑𝐴,

/"
W,     (A11) 615 

where As is the fraction of saturated soil, computed as (Zhao et al., 1980): 616 

 𝐴" = 1 − G1 − '7
',
H
?9

,         (A12) 617 

where bi is the infiltration shape parameter, i0 is the current infiltration capacity determined by 618 

water availability, and im is the maximum infiltration capacity computed as the product between 619 

maximum soil moisture (equal to soil depth times porosity) and (1 + 𝑏').  620 

The sensible heat flux, SH, is given by: 621 

 𝑆𝐻 = K-⋅)⋅(1"51-9/)
(-

  ,      (A13) 622 

where 𝜌& and c are the mass density and specific heat of air at constant pressure, respectively.   623 

The ground heat flux, GH, is calculated by: 624 

 𝐺𝐻 = a
b3
(𝑇" − 𝑇,)   ,      (A14) 625 

where T1 is soil temperature at depth D1 (0.1 m here) and 𝜅 is the soil thermal conductivity.  626 

The equations described above are used to estimate Ts through an iterative procedure. Ts 627 

is initially set to Tair, leading to Ri = 0 and F(Ri) = 1; evapotranspiration is then estimated and the 628 

energy balance is solved to update Ts (Liang et al., 1994). Iterative solutions for Ts are repeated 629 

until the difference between initial and final values are within a tolerance. This scheme is applied 630 

to the case of tile A in Fig. 2 when fv,A = 1. 631 
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 632 

 633 

Snow-overstory scheme from Cherkauer et al. (2003) 634 

The energy balance in VIC was improved with the snow-overstory scheme of Cherkauer 635 

et al. (2003). Andreadis et al. (2009) upgraded this scheme with fully-balanced energy terms and 636 

representation of snow interception. The scheme assumes a vegetated overstory (with foliage 637 

temperature Tf) and an understory without vegetation (with surface temperature Ts), as in tile B 638 

of Fig. 2 with fv,B = 1. If snow is not present, Tf is assumed equal to Tair and Ts is calculated with 639 

the scheme described above. When snow is present, the energy balance is solved separately in 640 

control volumes (CVs) of the overstory, understory, and the atmosphere surrounding the canopy 641 

(with temperature Tc), respectively. The algorithm involves the following steps: 642 

1. Tc is initially assigned equal to Tair. The snow on the canopy is determined according to 643 

snowfall and maximum interception capacity, 5𝑒5B ∙ 𝐿( ∙ 𝐿𝐴𝐼, where Lr is a step function of 644 

Tf from the last time step. If there is no snow on the trees, Tf = Tc = Tair. If there is snow on 645 

the trees and snow is melting, Tf = 0 ºC. If the snow is not melting, the energy balance of the 646 

overstory CV with snow is solved for Tf: 647 

𝑅+
"+cC5)&+cJd + 𝐸/ = 𝑆𝐻"+cC5)&+cJd + 𝐿𝐻"+cC5)&+cJd,   (A15) 648 

where EA is energy advected by precipitation, 𝑆𝐻"+cC5)&+cJd is calculated as in equation 649 

(A13) but with Ts and Tair replaced by Tf and Tc. The net radiation for snow on the canopy is:  650 

𝑅+
"+cC5)&+cJd = (1 − 𝛼"+cC) ∙ 𝑅" + 𝜀 ∙ \𝑅# + 𝜎 ∙ 𝑇"B − 2 ∙ 𝜎 ∙ 𝑇3B^, (A16) 651 

with asnow as the snow albedo. If Ts is not available, an initial value of 0 ºC is used in 652 

equation (A16). The latent heat from snow sublimation is: 653 

𝐿𝐻"+cC5)&+cJd = -.fGG∙S"∙K-∙M>
<-∙(-,"1>4

,      (A17) 654 
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where 𝜆" is the latent heat of sublimation, 𝑃& is atmospheric pressure, and	𝑟&,"+cC is the 655 

aerodynamic resistance near the snow surface. 656 

2. The energy balance is then applied to the understory CV. Due to the presence of a tall tree, 657 

the shortwave radiation reaching the ground surface is reduced due to shading effect (by 658 

50%). The incoming longwave radiation is computed only as a function of Tf, while the 659 

contribution from the atmosphere is assumed negligible. Ts is then calculated by solving the 660 

energy balance. In this case, sensible heat is calculated using equation (A13) by replacing Tair 661 

with Tc, and computing the aerodynamic resistance as: 662 

𝑟&,"+cC =
g+[6?8"6"

\
5

V5∙T(U)
,       (A18) 663 

where zs is snow surface roughness and ds is the snow depth. If there is no liquid water in the 664 

ground snowpack, the latent heat is calculated with equation (A17). If there is liquid water, 665 

equation (A17) is used with the latent heat of vaporization, i.e., 𝜆" is replaced by 𝜆%.  666 

3. Once Ts is derived, Tc is updated by solving the energy balance at the CV that includes the 667 

atmosphere surrounding the canopy: 668 

𝑆𝐻1-9/,10 = 𝑆𝐻10,1" + 𝑆𝐻10,1&,      (A19) 669 

where 𝑆𝐻10,1" is the sensible heat into snow calculated in step 2, and 𝑆𝐻10,1& is the 670 

𝑆𝐻"+cC5)&+cJd calculated in step 1. Tc is compared with its estimate from the previous step 671 

(Tair in first iteration). If the values are not included within a tolerance, steps 1-3 are repeated. 672 

Clumped-canopy scheme from Bohn & Vivoni (2016) 673 

The schemes described above are based on the “big-leaf” approach, where vegetation was 674 

assumed to cover the entire surface of the tile. Bohn & Vivoni (2016) introduced the “clumped-675 

canopy” scheme to improve the simulation of bare soil evaporation from inter-canopy spaces. 676 
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This scheme relies on the vegetation fraction (fv). The aerodynamic resistance of each tile is 677 

updated to be the inverse of aerodynamic conductance, 1/ga, with: 678 

𝑔& = (1 − 𝑓%) ∙ 1 𝑟&,"a + 𝑓% ∙ 1 𝑟&,%a   ,   (A20) 679 

where 𝑟&," and 𝑟&,% are aerodynamic resistances for bare soil and vegetated area, respectively, 680 

computed using equation (A6). For the soil, a constant roughness height of 0.0001 m is used.  681 

Because of the introduction of fv, we improved the snow physics in the Snow-adj step. 682 

The version of VIC employed in our baseline simulation assumed that longwave radiation into 683 

the snowpack was received only from the canopy in the tiles covered by trees, even for the 684 

unvegetated fraction. In the clumped scheme, where a fraction (1 – fv) is unvegetated, this 685 

assumption is not reliable. Therefore, we updated the computation of the longwave radiation as 686 

the weighted average of canopy longwave and longwave from atmosphere [LWd,v,B∙(1- fv,B) was 687 

replaced by LWd,B∙ (1- fv,B) as highlighted in Fig. 2b].  688 

689 



 39 

References 690 
 691 
Alder, J. R. and Hostetler, S. W.: The Dependence of Hydroclimate Projections in Snow‐692 

Dominated Regions of the Western United States on the Choice of Statistically 693 

Downscaled Climate Data, Water Resour. Res., 55(3), 2279–2300, 694 

doi:10.1029/2018WR023458, 2019. 695 

Andreadis, K. M., Storck, P. and Lettenmaier, D. P.: Modeling snow accumulation and ablation 696 

processes in forested environments, Water Resour. Res., 45(5), 1–13, 697 

doi:10.1029/2008WR007042, 2009. 698 

Baker, I. T., Sellers, P. J., Denning, A. S., Medina, I., Kraus, P., Haynes, K. D. and Biraud, S. C.: 699 

Closing the scale gap between land surface parameterizations and GCMs with a new 700 

scheme, SiB3-Bins, J. Adv. Model. Earth Syst., 9(1), 691–711, 701 

doi:10.1002/2016MS000764, 2017. 702 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, 703 

C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, 704 

Y., Meyers, T., Munger, W., Oechel, W., Paw, U. K. T., Pilegaard, K., Schmid, H. P., 705 

Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S.: FLUXNET: A New Tool 706 

to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, 707 

Water Vapor, and Energy Flux Densities, Bull. Am. Meteorol. Soc., 82(11), 2415–2434, 708 

doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001. 709 

Becker, R., Koppa, A., Schulz, S., Usman, M., aus der Beek, T. and Schüth, C.: Spatially 710 

distributed model calibration of a highly managed hydrological system using remote 711 

sensing-derived ET data, J. Hydrol., 577(June), 123944, 712 

doi:10.1016/j.jhydrol.2019.123944, 2019. 713 

Bennett, A., Hamman, J. and Nijssen, B.: MetSim: A Python package for estimation and 714 



 40 

disaggregation of meteorological data, J. Open Source Softw., 5(47), 2042, 715 

doi:10.21105/joss.02042, 2020. 716 

Bennett, K. E., Cherry, J. E., Balk, B. and Lindsey, S.: Using MODIS estimates of fractional 717 

snow cover area to improve streamflow forecasts in interior Alaska, Hydrol. Earth Syst. 718 

Sci., 23(5), 2439–2459, doi:10.5194/hess-23-2439-2019, 2019. 719 

Bergeron, J., Royer, A., Turcotte, R. and Roy, A.: Snow cover estimation using blended MODIS 720 

and AMSR-E data for improved watershed-scale spring streamflow simulation in 721 

Quebec, Canada, Hydrol. Process., 28(16), 4626–4639, doi:10.1002/hyp.10123, 2014. 722 

Beven, K. and Binley, A.: The future of distributed models: Model calibration and uncertainty 723 

prediction, Hydrol. Process., 6(3), 279–298, doi:10.1002/hyp.3360060305, 1992. 724 

Bohn, T. J. and Vivoni, E. R.: Process‐based characterization of evapotranspiration sources over 725 

the North American monsoon region, Water Resour. Res., 52(1), 358–384, 726 

doi:10.1002/2015WR017934, 2016. 727 

Bohn, T. J. and Vivoni, E. R.: MOD-LSP, MODIS-based parameters for hydrologic modeling of 728 

North American land cover change, Sci. Data, 6(1), 1–13, doi:10.1038/s41597-019-0150-729 

2, 2019. 730 

Bohn, T. J., Livneh, B., Oyler, J. W., Running, S. W., Nijssen, B. and Lettenmaier, D. P.: Global 731 

evaluation of MTCLIM and related algorithms for forcing of ecological and hydrological 732 

models, Agric. For. Meteorol., 176, 38–49, doi:10.1016/j.agrformet.2013.03.003, 2013. 733 

Boschetti, L., Roy, D. P., Giglio, L., Huang, H., Zubkova, M. and Humber, M. L.: Global 734 

validation of the collection 6 MODIS burned area product, Remote Sens. Environ., 235, 735 

111490, doi:10.1016/j.rse.2019.111490, 2019. 736 

Cherkauer, K. A. and Lettenmaier, D. P.: Hydrologic effects of frozen soils in the upper 737 



 41 

Mississippi River basin, J. Geophys. Res. Atmos., 104(D16), 19599–19610, 738 

doi:10.1029/1999JD900337, 1999. 739 

Cherkauer, K. A. and Lettenmaier, D. P.: Simulation of spatial variability in snow and frozen 740 

soil, J. Geophys. Res. Atmos., 108(22), 1–14, doi:10.1029/2003jd003575, 2003. 741 

Cherkauer, K. A., Bowling, L. C. and Lettenmaier, D. P.: Variable infiltration capacity cold land 742 

process model updates, Glob. Planet. Change, 38(1–2), 151–159, doi:10.1016/S0921-743 

8181(03)00025-0, 2003. 744 

Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P. and Palmer, R. N.: The effects 745 

of climate change on the hydrology and water resources of the Colorado River basin, 746 

Clim. Change, 62(1–3), 337–363, doi:10.1023/B:CLIM.0000013684.13621.1f, 2004. 747 

Clark, M. P., Fan, Y., Lawrence, D. M., Adam, J. C., Bolster, D., Gochis, D. J., Hooper, R. P., 748 

Kumar, M., Leung, L. R., Mackay, D. S. and Maxwell, R. M.: Hydrological partitioning 749 

in the critical zone: Recent advances and opportunities for developing transferable 750 

understanding of water cycle dynamics, Water Resour. Res., 1–28, 751 

doi:10.1002/2015WR017096.Received, 2015. 752 

Corbari, C. and Mancini, M.: Calibration and validation of a distributed energy-water balance 753 

model using satellite data of land surface temperature and ground discharge 754 

measurements, J. Hydrometeorol., 15(1), 376–392, doi:10.1175/JHM-D-12-0173.1, 2014. 755 

Crow, W. T., Wood, E. F. and Pan, M.: Multiobjective calibration of land surface model 756 

evapotranspiration predictions using streamflow observations and spaceborne surface 757 

radiometric temperature retrievals, J. Geophys. Res. Atmos., 108(23), 1–12, 758 

doi:10.1029/2002jd003292, 2003. 759 

Entekhabi, D., Njoku, E. G., O’Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., 760 



 42 

Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., 761 

Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., 762 

Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L. and Van Zyl, J.: The Soil Moisture 763 

Active Passive (SMAP) Mission, Proc. IEEE, 98(5), 704–716, 764 

doi:10.1109/JPROC.2010.2043918, 2010. 765 

Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., 766 

Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., 767 

Restrepo, P., Rigon, R., Shen, C., Sulis, M. and Tarboton, D.: An overview of current 768 

applications, challenges, and future trends in distributed process-based models in 769 

hydrology, J. Hydrol., 537, 45–60, doi:10.1016/j.jhydrol.2016.03.026, 2016. 770 

Fisher, J. B., Lee, B., Purdy, A. J., Halverson, G. H., Dohlen, M. B., Cawse‐Nicholson, K., 771 

Wang, A., Anderson, R. G., Aragon, B., Arain, M. A., Baldocchi, D. D., Baker, J. M., 772 

Barral, H., Bernacchi, C. J., Bernhofer, C., Biraud, S. C., Bohrer, G., Brunsell, N., 773 

Cappelaere, B., Castro‐Contreras, S., Chun, J., Conrad, B. J., Cremonese, E., Demarty, J., 774 

Desai, A. R., De Ligne, A., Foltýnová, L., Goulden, M. L., Griffis, T. J., Grünwald, T., 775 

Johnson, M. S., Kang, M., Kelbe, D., Kowalska, N., Lim, J., Maïnassara, I., McCabe, M. 776 

F., Missik, J. E. C., Mohanty, B. P., Moore, C. E., Morillas, L., Morrison, R., Munger, J. 777 

W., Posse, G., Richardson, A. D., Russell, E. S., Ryu, Y., Sanchez‐Azofeifa, A., Schmidt, 778 

M., Schwartz, E., Sharp, I., Šigut, L., Tang, Y., Hulley, G., Anderson, M., Hain, C., 779 

French, A., Wood, E. and Hook, S.: ECOSTRESS: NASA’s Next Generation Mission to 780 

Measure Evapotranspiration From the International Space Station, Water Resour. Res., 781 

56(4), doi:10.1029/2019WR026058, 2020. 782 

Gautam, J. and Mascaro, G.: Evaluation of Coupled Model Intercomparison Project Phase 5 783 



 43 

historical simulations in the Colorado River basin, Int. J. Climatol., 38(10), 3861–3877, 784 

doi:10.1002/joc.5540, 2018. 785 

Gibson, J., Franz, T. E., Wang, T., Gates, J., Grassini, P., Yang, H. and Eisenhauer, D.: A case 786 

study of field-scale maize irrigation patterns in western Nebraska: implications for water 787 

managers and recommendations for hyper-resolution land surface modeling, Hydrol. 788 

Earth Syst. Sci., 21(2), 1051–1062, doi:10.5194/hess-21-1051-2017, 2017. 789 

Gou, J., Miao, C., Wu, J., Guo, X., Samaniego, L. and Xiao, M.: CNRD v1.0: A High-Quality 790 

Natural Runoff Dataset for Hydrological and Climate Studies in China, Bull. Am. 791 

Meteorol. Soc., 102(5), E929–E947, doi:10.1175/BAMS-D-20-0094.1, 2021. 792 

Gupta, A. and Govindaraju, R. S.: Propagation of structural uncertainty in watershed hydrologic 793 

models, J. Hydrol., 575(May), 66–81, doi:10.1016/j.jhydrol.2019.05.026, 2019. 794 

Gutmann, E. D. and Small, E. E.: A method for the determination of the hydraulic properties of 795 

soil from MODIS surface temperature for use in land-surface models, Water Resour. 796 

Res., 46(6), doi:10.1029/2009WR008203, 2010. 797 

Hamman, J. J., Nijssen, B., Bohn, T. J., Gergel, D. R. and Mao, Y.: The variable infiltration 798 

capacity model version 5 (VIC-5): Infrastructure improvements for new applications and 799 

reproducibility, Geosci. Model Dev., 11(8), 3481–3496, doi:10.5194/gmd-11-3481-2018, 800 

2018. 801 

Hoerling, M., Barsugli, J., Livneh, B., Eischeid, J., Quan, X. and Badger, A.: Causes for the 802 

Century-Long Decline in Colorado River Flow, J. Clim., 8181–8203, doi:10.1175/jcli-d-803 

19-0207.1, 2019. 804 

Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., 805 

Wickham, J., Stehman, S., Auch, R. and Riitters, K.: Conterminous United States land 806 



 44 

cover change patterns 2001–2016 from the 2016 National Land Cover Database, ISPRS 807 

J. Photogramm. Remote Sens., 162(March), 184–199, 808 

doi:10.1016/j.isprsjprs.2020.02.019, 2020. 809 

K. Ajami, N., Gupta, H., Wagener, T. and Sorooshian, S.: Calibration of a semi-distributed 810 

hydrologic model for streamflow estimation along a river system, J. Hydrol., 298(1–4), 811 

112–135, doi:10.1016/j.jhydrol.2004.03.033, 2004. 812 

Ko, A., Mascaro, G. and Vivoni, E. R.: Strategies to Improve and Evaluate Physics-Based 813 

Hyperresolution Hydrologic Simulations at Regional Basin Scales, Water Resour. Res., 814 

(88 m), 1–24, doi:10.1029/2018WR023521, 2019. 815 

Koch, J., Siemann, A., Stisen, S. and Sheffield, J.: Spatial validation of large-scale land surface 816 

models against monthly land surface temperature patterns using innovative performance 817 

metrics, J. Geophys. Res. Atmos., 121(10), 5430–5452, doi:10.1002/2015JD024482, 818 

2016. 819 

Lahmers, T. M., Gupta, H., Castro, C. L., Gochis, D. J., Yates, D., Dugger, A., Goodrich, D. and 820 

Hazenberg, P.: Enhancing the structure of the WRF-hydro hydrologic model for semiarid 821 

environments, J. Hydrometeorol., 20(4), 691–714, doi:10.1175/JHM-D-18-0064.1, 2019. 822 

Lahmers, T. M., Hazenberg, P., Gupta, H., Castro, C., Gochis, D., Dugger, A., Yates, D., Read, 823 

L., Karsten, L. and Wang, Y.-H.: Evaluation of NOAA National Water Model Parameter 824 

Calibration in Semi-Arid Environments Prone to Channel Infiltration, J. Hydrometeorol., 825 

(2019), 2939–2970, doi:10.1175/jhm-d-20-0198.1, 2021. 826 

Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C., Lawrence, P. 827 

J., Zeng, X., Yang, Z.-L., Levis, S., Sakaguchi, K., Bonan, G. B. and Slater, A. G.: 828 

Parameterization improvements and functional and structural advances in Version 4 of 829 



 45 

the Community Land Model, J. Adv. Model. Earth Syst., 3(3), 1–27, 830 

doi:10.1029/2011ms000045, 2011. 831 

Li, D., Wrzesien, M. L., Durand, M., Adam, J. and Lettenmaier, D. P.: How much runoff 832 

originates as snow in the western United States, and how will that change in the future?, 833 

Geophys. Res. Lett., 44(12), 6163–6172, doi:10.1002/2017GL073551, 2017. 834 

Li, D., Lettenmaier, D. P., Margulis, S. A. and Andreadis, K.: The Role of Rain-on-Snow in 835 

Flooding Over the Conterminous United States, Water Resour. Res., 55(11), 8492–8513, 836 

doi:10.1029/2019WR024950, 2019. 837 

Liang, X. and Lettenmaier, D.: a simple hydrologically based model of land surface water and 838 

energy fluxes for general circulation models, J. Geophys. …, 99 [online] Available from: 839 

http://onlinelibrary.wiley.com/doi/10.1029/94JD00483/full (Accessed 16 April 2014), 840 

1994. 841 

Livneh, B., Rosenberg, E. A., Lin, C., Nijssen, B., Mishra, V., Andreadis, K. M., Maurer, E. P. 842 

and Lettenmaier, D. P.: A long-term hydrologically based dataset of land surface fluxes 843 

and states for the conterminous United States: Update and extensions, J. Clim., 26(23), 844 

9384–9392, doi:10.1175/JCLI-D-12-00508.1, 2013. 845 

Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., Cayan, D. R. 846 

and Brekke, L.: A spatially comprehensive, hydrometeorological data set for Mexico, the 847 

U.S., and Southern Canada 1950-2013, Sci. Data, 2, 1–12, doi:10.1038/sdata.2015.42, 848 

2015. 849 

Di Luzio, M., Johnson, G. L., Daly, C., Eischeid, J. K. and Arnold, J. G.: Constructing 850 

retrospective gridded daily precipitation and temperature datasets for the conterminous 851 

United States, J. Appl. Meteorol. Climatol., 47(2), 475–497, 852 



 46 

doi:10.1175/2007JAMC1356.1, 2008. 853 

Maidment, D. R.: Conceptual Framework for the National Flood Interoperability Experiment, 854 

JAWRA J. Am. Water Resour. Assoc., 53(2), 245–257, doi:10.1111/1752-1688.12474, 855 

2017. 856 

Mitchell, J. P., Shrestha, A., Epstein, L., Dahlberg, J. A., Ghezzehei, T., Araya, S., Richter, B., 857 

Kaur, S., Henry, P., Munk, D. S., Light, S., Bottens, M. and Zaccaria, D.: No-tillage 858 

sorghum and garbanzo yields match or exceed standard tillage yields, Calif. Agric., 112–859 

120, doi:10.3733/ca.2021a0017, 2022. 860 

Nijssen, B., Lettenmaier, D. P., Liang, X., Wetzel, S. W. and Wood, E. F.: Streamflow 861 

simulation for continental-scale river basins and radiative forcings ) applications of the 862 

model to the Columbia and annual flow volumes to within a few percent . Difficulties in 863 

reproducing the Sa6ramento Model [ Burnash is dominated using an, , 33(4), 711–724, 864 

1997. 865 

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, 866 

K., Niyogi, D., Rosero, E., Tewari, M. and Xia, Y.: The community Noah land surface 867 

model with multiparameterization options (Noah-MP): 1. Model description and 868 

evaluation with local-scale measurements, J. Geophys. Res. Atmos., 116(12), 1–19, 869 

doi:10.1029/2010JD015139, 2011. 870 

Norton, C. L., Dannenberg, M. P., Yan, D., Wallace, C. S. A., Rodriguez, J. R., Munson, S. M., 871 

van Leeuwen, W. J. D. and Smith, W. K.: Climate and Socioeconomic Factors Drive 872 

Irrigated Agriculture Dynamics in the Lower Colorado River Basin, Remote Sens., 13(9), 873 

1659, doi:10.3390/rs13091659, 2021. 874 

Painter, T. H., Rittger, K., McKenzie, C., Slaughter, P., Davis, R. E. and Dozier, J.: Retrieval of 875 



 47 

subpixel snow covered area, grain size, and albedo from MODIS, Remote Sens. Environ., 876 

113(4), 868–879, doi:10.1016/j.rse.2009.01.001, 2009. 877 

Parajka, J. and Blöschl, G.: Hydrology and Earth System Sciences Validation of MODIS snow 878 

cover images over Austria, Hydrol. Earth Syst. Sci, 10, 679–689 [online] Available from: 879 

www.hydrol-earth-syst-sci.net/10/679/2006/, 2006. 880 

Rajagopalan, B., Nowak, K., Prairie, J., Hoerling, M., Harding, B., Barsugli, J., Ray, A. and 881 

Udall, B.: Water supply risk on the Colorado River: Can management mitigate?, Water 882 

Resour. Res., 45(8), 1–7, doi:10.1029/2008WR007652, 2009. 883 

Rajib, A., Evenson, G. R., Golden, H. E. and Lane, C. R.: Hydrologic model predictability 884 

improves with spatially explicit calibration using remotely sensed evapotranspiration and 885 

biophysical parameters, J. Hydrol., 567(April), 668–683, 886 

doi:10.1016/j.jhydrol.2018.10.024, 2018. 887 

Samimi, M., Mirchi, A., Townsend, N., Gutzler, D., Daggubati, S., Ahn, S., Sheng, Z., Moriasi, 888 

D., Granados‐Olivas, A., Alian, S., Mayer, A. and Hargrove, W.: Climate Change 889 

Impacts on Agricultural Water Availability in the Middle Rio Grande Basin, JAWRA J. 890 

Am. Water Resour. Assoc., 58(2), 164–184, doi:10.1111/1752-1688.12988, 2022. 891 

Senatore, A., Mendicino, G., Gochis, D. J., Yu, W., Yates, D. N. and Kunstmann, H.: Fully 892 

coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of 893 

enhanced hydrological parameterization for short and long time scales, J. Adv. Model. 894 

Earth Syst., 7(4), 1693–1715, doi:10.1002/2015MS000510, 2015. 895 

Shi, L. and Bates, J. J.: Three decades of intersatellite-calibrated High-Resolution Infrared 896 

Radiation Sounder upper tropospheric water vapor, J. Geophys. Res., 116(D4), D04108, 897 

doi:10.1029/2010JD014847, 2011. 898 



 48 

Su, L., Cao, Q., Xiao, M., Mocko, D. M., Barlage, M., Li, D., Peters-Lidard, C. D. and 899 

Lettenmaier, D. P.: Drought Variability over the Conterminous United States for the Past 900 

Century, J. Hydrometeorol., 1153–1168, doi:10.1175/jhm-d-20-0158.1, 2021. 901 

Tang, Q. and Lettenmaier, D. P.: Use of satellite snow-cover data for streamflow prediction in 902 

the Feather River Basin, California, Int. J. Remote Sens., 31(14), 3745–3762, 903 

doi:10.1080/01431161.2010.483493, 2010. 904 

Tapley, B. D., Bettadpur, S., Ries, J. C., Thompson, P. F. and Watkins, M. M.: GRACE 905 

Measurements of Mass Variability in the Earth System, Science (80-. )., 305(5683), 503–906 

505, doi:10.1126/science.1099192, 2004. 907 

Tekeli, A. E., Akyürek, Z., Arda Şorman, A., Şensoy, A. and Ünal Şorman, A.: Using MODIS 908 

snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey, 909 

Remote Sens. Environ., 97(2), 216–230, doi:10.1016/j.rse.2005.03.013, 2005. 910 

Tobin, K. J. and Bennett, M. E.: Constraining SWAT Calibration with Remotely Sensed 911 

Evapotranspiration Data, J. Am. Water Resour. Assoc., 53(3), 593–604, 912 

doi:10.1111/1752-1688.12516, 2017. 913 

Udall, B. and Overpeck, J.: The twenty-first century Colorado River hot drought and 914 

implications for the future, Water Resour. Res., 1–15, doi:10.1002/2016WR019638, 915 

2017. 916 

U.S. Bureau of Reclamation: Colorado River Basin Water Supply and Demand Study. 917 

Washington, D.C., 2012. 918 

Vano, J. A., Das, T. and Lettenmaier, D. P.: Hydrologic Sensitivities of Colorado River Runoff 919 

to Changes in Precipitation and Temperature*, J. Hydrometeorol., 13(3), 932–949, 920 

doi:10.1175/JHM-D-11-069.1, 2012. 921 



 49 

Vano, J. A., Udall, B., Cayan, D. R., Overpeck, J. T., Brekke, L. D., Das, T., Hartmann, H. C., 922 

Hidalgo, H. G., Hoerling, M., McCabe, G. J., Morino, K., Webb, R. S., Werner, K. and 923 

Lettenmaier, D. P.: Understanding Uncertainties in Future Colorado River Streamflow, 924 

Bull. Am. Meteorol. Soc., 95(1), 59–78, doi:10.1175/BAMS-D-12-00228.1, 2014. 925 

Wang, Z., Vivoni, E. R., Bohn, T. J. and Wang, Z. H.: A Multiyear Assessment of Irrigation 926 

Cooling Capacity in Agricultural and Urban Settings of Central Arizona, J. Am. Water 927 

Resour. Assoc., 57(5), 771–788, doi:10.1111/1752-1688.12920, 2021. 928 

Wang, Z., and Bovik, A. C.: A universal image quality index, IEEE Signal Process. Lett., 9(3), 929 

81–84, doi: 10.1109/97.995823, 2002. 930 

Wood, E. F., Roundy, J. K., Troy, T. J., van Beek, L. P. H., Bierkens, M. F. P., Blyth, E., de Roo, 931 

A., Döll, P., Ek, M., Famiglietti, J., Gochis, D., van de Giesen, N., Houser, P., Jaffé, P. 932 

R., Kollet, S., Lehner, B., Lettenmaier, D. P., Peters-Lidard, C., Sivapalan, M., Sheffield, 933 

J., Wade, A. and Whitehead, P.: Hyperresolution global land surface modeling: Meeting a 934 

grand challenge for monitoring Earth’s terrestrial water, Water Resour. Res., 47(5), 935 

doi:10.1029/2010WR010090, 2011. 936 

Xiang, T., Vivoni, E. R. and Gochis, D. J.: Seasonal evolution of ecohydrological controls on 937 

land surface temperature over complex terrain, Water Resour. Res., 50(5), 3852–3874, 938 

doi:10.1002/2013WR014787, 2014. 939 

Xiang, T., Vivoni, E. R., Gochis, D. J. and Mascaro, G.: On the diurnal cycle of surface energy 940 

fluxes in the North American monsoon region using the WRF‐Hydro modeling system, J. 941 

Geophys. Res. Atmos., 122(17), 9024–9049, doi:10.1002/2017JD026472, 2017. 942 

Xiao, M., Udall, B. and Lettenmaier, D. P.: On the causes of declining Colorado River 943 

streamflows, Water Resour. Res., 2, 1–18, doi:10.1029/2018WR023153, 2018. 944 



 50 

Yun, X., Tang, Q., Wang, J., Liu, X., Zhang, Y., Lu, H., Wang, Y., Zhang, L. and Chen, D.: 945 

Impacts of climate change and reservoir operation on streamflow and flood 946 

characteristics in the Lancang-Mekong River Basin, J. Hydrol., 590(June), 125472, 947 

doi:10.1016/j.jhydrol.2020.125472, 2020. 948 

Zhang, Y., You, Q., Chen, C. and Li, X.: Flash droughts in a typical humid and subtropical 949 

basin: A case study in the Gan River Basin, China, J. Hydrol., 551, 162–176, 950 

doi:10.1016/j.jhydrol.2017.05.044, 2017. 951 

Zhengming Wan and Dozier, J.: A generalized split-window algorithm for retrieving land-952 

surface temperature from space, IEEE Trans. Geosci. Remote Sens., 34(4), 892–905, 953 

doi:10.1109/36.508406, 1996. 954 

Zhou, Q., Yang, S., Zhao, C., Cai, M., Lou, H., Luo, Y. and Hou, L.: Development and 955 

implementation of a spatial unit non-overlapping water stress index for water scarcity 956 

evaluation with a moderate spatial resolution, Ecol. Indic., 69, 422–433, 957 

doi:10.1016/j.ecolind.2016.05.006, 2016. 958 

Zink, M., Mai, J., Cuntz, M. and Samaniego, L.: Conditioning a Hydrologic Model Using 959 

Patterns of Remotely Sensed Land Surface Temperature, Water Resour. Res., 54(4), 960 

2976–2998, doi:10.1002/2017WR021346, 2018. 961 

 962 


