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Abstract. In seasonal climates with a warm and a cold season, low-flows are generated by different processes so that the

annual extreme series will be a mixture of summer and winter low-flow events. This leads to a violation of the homogeneity

assumption for all statistics derived from the annual series and give rise to inaccurate conclusions. In this paper we propose

a mixed distribution approach to perform frequency analysis in catchments with mixed low-flow regime. We formulate the

theoretical basis of the mixed distribution approach for the lower extremes based on annual minima series. The main strength5

of the model is that it allows the user to estimate return periods of summer low-flows, winter low-flows and annual return

periods in a theoretically sound and consistent way. Using archetypal examples, we show how the model behaves for a range

of low-flow regimes, from distinct winter and summer regimes to mixed regimes where seasonal occurrence in summer and

winter is equally likely. The examples show in a qualitative way the errors we have to expect with conventional extreme value

statistics performed with the annual extremes series. The model is then applied to a comprehensive Austrian data set to quantify10

the expected gain of using the mixed distribution approach compared to conventional frequency analysis. Results indicate that

the gain of using a mixed distribution approach is indeed large. On average, the error is reduced by 21, 39 and 63 % when

estimating the low-flow with a 20-, 50- and 100-year return period. For the 100-year event, 75 % of stations show a performance

gain of > 10 %, 41 % of stations > 50 % and 25 % of stations > 80.6. This suggests a broade relevance of the approach that

goes beyond highly mixed seasonal regimes to include the strongly seasonal ones. We finally correlate the performance gain15

with seasonality indices in order to show the expected gain conditional to the strength of seasonality expressed by the ratio

of average summer and winter low flow SR. For the 100-year event, the expected gain is about 70 % for SR = 1.0, 20 % for

SR = 1.5, and 10 % for SR = 2.0. The errors are further allocated to the spatial patterns of SR in the study area. The results

suggest that the mixed estimator is relevant not only for mountain forelands but for a broad range of low flow regimes. The

mixed distribution approach provides one consistent approach for summer, winter, and annual probabilities and should be used20

by default in seasonal climates with a cold winter season where summer and winter low flows can occur.

1 Introduction

Extreme value statistics are of particular importance to hydrology. The methodology was originally developed for floods, but

has recently received increasing attention for low-flows. It allows the user to characterize the severity of an event by a statistical
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probability or return period, i.e., the expected time interval until an event of the same magnitude occurs. This is a very natural25

method of characterizing extremes that is well understood in the scientific, policy, and public arenas. The underlying methods

of general frequency analysis are well established and simple to use. However, they rely on the basic assumption of data

homogeneity, meaning that the data belong to the same population, which is often not the case for the data or problems under

study.

This is a particular challenge in low-flow hydrology. In seasonal climates, with a warm and a cold season, low-flows are30

generated by different processes, so that the annual extreme value series are a mixture of summer recessions and winter freeze

events. This leads to a violation of the homogeneity assumption for all statistics derived from the annual series and gives rise to

inaccurate conclusions. In such a case, the data set can be stratified into a summer and a winter part to make the extreme value

series more homogeneous (Laaha and Blöschl, 2006b). Temporal stratifications require the beginning and end of low-flow

seasons to be well defined depending on climate and hydrological conditions. For European conditions, various studies have35

suggested a division into a summer season from about April or May to November, and a winter season for the remaining part

of the year (Laaha et al., 2017). The classification has been shown to apply to other parts of the Northern Hemisphere as well,

and can be generalized to the Southern Hemisphere when the seasons are shifted by six months (Hodgkins and et al., 2022).

Based on the seasonal extreme value series two types of analysis can be conducted. In the first case, summer and winter series

are analyzed separately, which yields distinct design values for each season. The seasonal characteristics are directly relevant40

for a number of water management tasks, including environmental flows and hydropower production. For other problems

annual characteristics that describe the absolute minimum regardless of the season are more relevant. In this case, the seasonal

distributions of summer and winter can be combined into a valid annual distribution using a mixed distribution approach.

Mixed distribution approaches for maxima have a longer tradition in hydrology, but have received increasing attention in

recent years. The methods date back to the original extreme value theory of Gumbel (1960), who developed concepts for45

bivariate distributions to capture the co-occurrence of events in different variables. Yue et al. (1999) used a bivariate Gumbel

mixed model, that is, a bivariate extreme value distribution model with Gumbel marginal distributions, to perform a joint

frequency analysis of flood peak and magnitude. However, they did not stratify the data by season because they focused

their study on a specific regime where all events are uniformly triggered by rain over snowmelt and thus coincide in the

spring. Stedinger et al. (1993) presented a mixed distribution approach for the case of seasonally separable events. Assuming50

independence of summer and winter events, event probabilities are combined using the multiplication rule of statistics. A

similar approach was used by Schumann (2005) to assess the 2002 extreme flood event in the Mulde river basin in Germany.

The concept is straightforward and has gained increasing attention in recent years as the accuracy of flood statistics has come

to the fore. As a result, the mixed probability estimator became the recommended method of the German flood estimation

guideline (Deutsche Vereinigung für Wasserwirtschaft, 2012) for the use of causal information augmentation as it allows the55

user to consider seasonal floods as well.

While mixed distribution approaches have been used for floods, we are not aware of any study that assesses the value of using

mixed distribution approaches for low-flows. Since the methods were originally developed for maxima, some adjustments will

be needed to make the methods suitable for low-flow statistics.
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In this paper we propose a mixed distribution approach for low-flows to perform frequency analysis in catchments with a60

mixed summer/winter regime. The aim of the paper is threefold:

– To formulate the theoretical concept of the mixed distribution approach for low-flows;

– To illustrate the characteristics of the model for archetypal low-flow regimes, from pronounced summer and winter

regimes to flow mixtures with weak seasonality;

– To evaluate the gain in performance from the mixed distribution model.65

The analysis will be performed based of a comprehensive Austrian data set that covers a broad range of low-flow regimes.

2 Mixed distribution approach for low-flows

2.1 Basic concept

The common approach of low-flow frequency analysis is based on classical extreme value theory. It involves (a) the selection of

extreme vents from the flow record, (b) the choice of an appropriate distribution model, (c) the estimation of model parameters,70

and finally (d) the prediction of event probabilities p and return periods T = 1/p. Low-flows are characterised by a time scale

that is much larger than for other hydrological extremes such as floods or heavy precipitation events. It is therefore common to

use the annual minima series

AM = min{X1, ...,Xn} (1)

for low-flow frequency analysis, where X1, ...,Xn is a sequence of independent random variables that have a common dis-75

tribution function F and are sampled on an annual time scale. This is termed the classical AMS-approach for minima in

extreme value statistics (Coles, 2001). Tallaksen and Van Lanen (2004) found the procedure straightforward, but regarding its

uncertainty strongly depending on the basic assumptions of the model adopted. In particular in snow- and ice-affected regions

low-flow can occur in different seasons and are then not homogeneous. In such cases the elements of the AMS are not identi-

cally distributed, so that the general extreme value theory is likely less suitable. Adaptations are required on both the data and80

model side of the approach.

As for the data side, the annual minima series AM can be viewed as the minima of the annual summer minima AMS and

winter minima AMW :

AM = min{AMS ,AMW } (2)

Under the assumption that summer and winter events are independent from each other, the occurrence probability of an event85

with magnitude q is obtained from a multiplication of its respective non-occurrence probabilities in the summer and winter

seasons (Stedinger et al., 1993). This yields to the definition of the mixed probability pmix for minima:

pmix = 1− (1− pS)(1− pW ), (3)
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where pS and pW are the respective occurrence probabilities of the flow characterising the event in the summer and winter

season.90

2.2 Theoretical probability estimator

Equation 3 applies to single event probabilities and can be generalized for the entire distribution. Let FS(q) and FW (q) denote

the marginal extreme value distributions of low-flow occurrence in summer and winter season, respectively. By the notation

F·(q) we make explicit that the same flow (i.e. the event magnitude of interest) is inserted into both marginal distributions.

Then, if summer and winter low-flows are statistically independent, the cumulative distribution function (cdf) of the annual95

low-flow is

F (q) = Fmix(q) = FS(q)FW (q). (4)

Following the Fisher-Tippett-Gnedenko theorem of extreme value theory, the annual low-flow follows a Weibull-distribution,

with marginal summer distribution

GS(q) = 1− exp

[
−

(
q− ζS

βS

)δS
]

, (5)100

and marginal winter distribution

GW (q) = 1− exp

[
−

(
q− ζW

βW

)δW
]

. (6)

The ζ·, β· and δ· are the location, scale and shape parameters of summer (index S) and winter (index W ) distributions,

respectively. Inserting the marginal Weibull-distributions into Eq. 4 leads to the mixed Weibull-model for minima, which can

be written as105

Gmix(q) = 1−
{

1− exp

[
−

(
q− ζS

βS

)δS
]}{

1− exp

[
−

(
q− ζW

βW

)δW
]}

. (7)

By the model, the event probability is calculated from the product of the marginal (counter) Weibull-distributions with different,

summer and winter parametrizations. Both are evaluated at the discharge value q, the event magnitude of interest.

2.3 Empirical probability estimator

Process heterogeneity leads to a violation of the homogeneity assumption for all statistics derived from the annual series. The110

empirical probability estimator, used for plotting the annual low-flow series, is no exception. Let q be an element of an annual

minima series with n observations, and m its rank in increasing order. Then, the common empirical probability estimator from

a (homogeneous) sample is

pm(q) =
m

n + 1
. (8)
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For mixed low-flow regimes the annual minima are heterogeneous and the calculation of empirical probabilities should be115

based on the summer- and winter series instead. When defining mS as the rank of q in the AMS and mW its rank in the AMW

the mixed empirical probability estimator can be written as

pmix(q) = 1−
[
(1− mS

nS + 1
)(1− mW

nW + 1
)
]
. (9)

Unlike for the common empirical probability estimator, the value q of the annual series may be missing in the marginal series

and its empirical probability need to be approximated in this case. Such approximation can be obtained by taking the average120

rank of next smaller and bigger element to q in the considered marginal series.

2.4 Demonstration of model behaviour

Using archetypal examples, we demonstrate how the model behaves for a range of low-flow regimes: from weakly seasonal ones

where summer and winter occurrences are equally likely, to strongly seasonal ones where low-flows in one season predominate.

Our first example is gauge Ebensee at river Langbathbach situated in the northern foothills of the Alps in the federal country125

Upper Austria. It represents the case of a fully mixed low-flow regime resulting from tributaries draining alpine parts and

lowland parts of the catchment equally. It has a mixture rate of MR = 0.57, which means that about half (57 % to be exact) of

the events in the annual minima series are summer events and the other half are winter events. This is also reflected by a very

weak seasonality, such as indicated by a low variability measure of the circular seasonality index (r = 0.49), and a seasonality

ratio close to one (SR = 1.09) (for the definition of indices see Laaha and Blöschl, 2006b). In such case we can expect that130

there is a large difference between the annual distribution fitted to the heterogeneous annual series, and the mixture distribution

resulting from the distributions fitted to the homogeneous seasonal series. Figure 1a shows that this is indeed the case for

the considered catchment. Three interesting areas can be distinguished in the graph. At the lower tail the mixed distribution

coincides with the summer distribution, as the lowest values occur in summer and make the summer distribution fall much

below the winter distribution. In the central part the mixture distribution follows the annual distribution, as summer and winter135

distributions coincide in this part. At the upper tail the mixed distribution deviates from the annual distribution which reflects

the divergence of summer and winter distributions in the upper part. In low-flow frequency analysis, we are most interested in

the lower tail, at return periods of 20 years and more. Figure 1a shows that there is a large difference between the distributions

in this area, so we can expect a large gain in accuracy from using the mixed distribution approach for strongly mixed low-flow

regimes. In the case of gauge Ebensee the mixed distribution falls below the annual distribution so the mixed distribution140

approach will yield lower discharge quantiles.

Figure 1b gives another example of a highly mixed low-flow regime, albeit with a slightly different behavior. The example

is gauge Weg at river Isen situated in low-hilly terrain in Bavaria, Germany. Now 67 % (MR) of annual low-flows occur

in summer, and the magnitude of summer low-flow is somewhat lower (-10 % on average) than the winter low-flow. This is

indicated by its SR of 0.9. As can be seen from the graph, the summer distribution is always lower than the winter distribution,145

and only summer low-flows occur at the lowest part. The mixed distribution reflects this behavior by following the summer

distribution at the lower tail and combining the probabilities in the range of discharges where low-flows in both seasons can

5
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Figure 1. Probability plots of summer (red), winter (red), annual (black) and mixed (green) distributions for archetypal cases: (a) gauge

Ebensee at river Langbathbach situated in the northern foothills of the Alps of Upper Austria, (b) gauge Weg at river Isen situated in

low-hilly terrain in Bavaria, Germany, (c) gauge Schönenbach at river Subersach representing an alpine catchment of the Bregenzerwald in

Vorarlberg, Austria, and (d) gauge St. Peter-Freienstein at river Vordernberger Bach representing an inner-alpine catchment in Styria, Austria.
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occur. In such a case the mixed distribution is always different to the conventional annual distribution and is expected to lead to

different results at all probabilities. Notably at high return periods (T > 20 years), the mixed probability estimator yields much

higher discharge quantiles than the annual probability estimator.150

The third example (Fig. 1c) is an alpine catchment in the Bregenzerwald in Vorarlberg, Austria, which again has a lower

mixture rate (28 %) and a stronger seasonality (SR = 2.41). This is also reflected in a larger gap between the summer and winter

distributions, indicating a relatively low probability of low-flow events in summer compared to winter. Consequently, summer

low-flows should have little effect on mixing probabilities (Eq. 4), and so should be little difference between the annual and

mixed probability estimators. This assumption is also supported by the data example (Fig. 1c). The annual, mixed and winter155

distributions coincide in the lower part of the distribution reflecting moderate to severe low-flow events. For the upper part

(high magnitudes) summer low-flows can occur but are less likely than winter events. This leads to a slight divergence between

the mixed and the annual distribution, although with little significance for the extreme value analysis.

The fourth, and final example (Fig 1d) is an inner-alpine catchment in Styria, Austria, which has the lowest mixture rate

(MR = 0.11) and again a pronounced seasonality (SR = 1.72). Here five summer low-flow events (between 0.90 m3s−1 for160

the year 2003 and 1.53 m3s−1 fort the year 1976) mix in the annual minima series and should have little effect on the distri-

bution. Figure 1d shows that the mixed distribution in the data example does indeed completely match the annual distribution

for the most interesting area for analysis. Slight divergence occurs only above 0.90 m3s−1, where the summer low-flows are

mixed in.

The examples suggest that the mixed model is a valid generalization of the annual probability, since both models coincide165

for cases when no mixture occurs. In case of mixed series the annual probability model suffers from a violation of the basic

homogeneity assumption and the mixed model should be used. The examples shed light on the errors we need to expect from

the conventional extreme value statistics in a qualitative way. Below, we assess these errors quantitatively.

3 Evaluation using streamflow data

3.1 Dataset170

The mixture model is evaluated based on a comprehensive Austrian data set of natural-like catchments with no or little antro-

pogenic disturbance to the low-flow regime. The data set was already used in a number of low-flow studies, addressing sea-

sonality indices (Laaha and Blöschl, 2006b), catchment classification and regional regression (Laaha and Blöschl, 2006a),

geostatistical methods (Laaha et al., 2014), estimation methods from short records and spot-gauging (Laaha and Blöschl,

2005), the link between meteorological drought indices and streamflow (Haslinger et al., 2014), and climate change (Laaha175

et al., 2016; Parajka et al., 2016; Karanitsch-Ackerl et al., 2019). Most recently, an updated version of the data set was used for

evaluating statistical learning methods (Laimighofer et al., 2022b) and statistical space-time models for low-flow (Laimighofer

et al., 2022a). In this study we use the data set of Laaha et al. (2016) consisting of 329 Austrian stream gauges with measure-

ments from the 1950 to 2010 period (Fig. 2). The data cover catchments from 7 to 7000 km2 with elevations from 159 to 3770

m.a.s.l.. The mean annual low-flow discharges of these catchments range from 0.03 to 1013 m3s−1.180
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Figure 2. Topography and stream gauging network in Austria. Points indicate location of gauges used in this study. Example gauges of Fig.

1 are indicated by red squares. Redrawn from Laaha and Blöschl (2006b).

Austria covers an area of 84 000 km2 and is climatically, physiographically and hydrologically, highly diverse. In the

lowland east, low-flows mainly occur in the summer and are a result of a seasonal water balance deficit triggering stream flow

recessions. In the Alpine areas in the central and western part of Austria, low-flows mainly occur in the winter and are a result

of snow storage and frost processes. Both areas are characterised either by a pronounced summer or winter seasonality, with

mixture zones of weak seasonality in between. The study area has a very high gauging density and also a high data quality,185

therefore providing an ideal test bed for the the performance of the mixed seasonality estimator.

3.2 Assessment method

3.2.1 Performance measures

The very goal of frequency analysis is to characterise the severity of an event q by its occurrence probability pq or, equivalently,

its return period Tq = 1/(1−pq). When we use a different probability model the return period of an event will change, so we are190

interested in the change of characteristic return periods between the two models. The difference between one model estimate

and the other model estimate is referred to in statistics as deviation. When we can assume that one model is superior to the

8
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other, the change in performance of the superior model compared to the inferior model can be termed the gain in accuracy.

When we place the emphasis on the inferior model, the same quantity can be called an error, or loss in accuracy.

Based on this concept, the evaluation of the performance gain at a station of using the mixed probability estimator over the195

annual probability estimator proceeds in four steps:

– Define the return period of interest (e.g. T = 20,50,100 years);

– Calculate the associated flow quantile qT of the annual distribution model (using the inverse of its distribution, known as

quantile function);

– Insert the value so obtained into the mixed distribution model (Eq. 9) to calculate its probability pmix;200

– Transform the obtained probability into the return period Tmix, which constitutes the improved estimate.

From the assumed input and the obtained output return periods, common deviation statistics are computed. The change of

the return period (d) at a station is simply calculated as

dT = T −Tmix (10)

It can be expressed as a relative deviation (rd), what makes the measure comparable for different return periods:205

rdT =
T −Tmix

Tmix
. (11)

The performance gain of a model is finally assessed based on the absolutes of the relative deviation (rad) which is calculated

as:

radT = |rdT |. (12)

3.2.2 Effect of seasonality210

The purpose of the mixed probability estimator is to enhance frequency analysis for mixed summer/winter regimes. Its use is

based on the assumption that the annual probability estimator suffers from heterogeneity in mixed low-flow regimes and the

mixed seasonality estimator will improve the calculations. Thus, to prove the concept, we test whether, and to what extent, the

performance gain of the mixed seasonality estimator depends on seasonality.

In a first step, we assess the strength of the relationship with common low-flow seasonality indices (Laaha and Blöschl,215

2006b). This is done by correlation analysis using Pearason and Spearman correlation coefficients. Since the percentage gains

have a skewed distribution, we consider both their untransformed and log-transformed values for the analysis. The considered

seasonality indices include the variability measure of the circular seasonality index (r) and the seasonality ratio (SR). The

SR shows a particular distribution that is symmetric around 1 (no seasonality) and has decreasing frequency towards the tails

of the distribution. We therefore examine the untransformed values and the absolutes of the log-transformed values of SR to220

test possible linearizations. The circular seasonality measure r has no particular distribution and enters the correlation analysis

with untransformed values. The correlation coefficients are tested using standard t-tests with a significance level of α = 0.05.
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In a second step, we model the dependency of the performance gain from seasonality using linear regression. Since we

expect log-linear relationships, we linearize the equations to estimate linear models that fit the particular variables. The models

considered are of the following forms:225

log(y)˜x (13)

log(y)˜abs(log(x)) (14)

where y is the relative deviation (rdT ) and x the seasonality measure under consideration (r or SR). The symbol ˜ in our nota-

tion corresponds to the formula syntax of the statistical software R and is used to specify the relationship between predictand

and predictor.230

In a final assessment, we evaluate the spatial cross-correlation of the gain in performance with seasonality patterns in Austria

from Laaha and Blöschl (2006b). This will shed light under what hydrological conditions the mixed estimator is expected to

improve the estimates.

4 Results

4.1 Performance gain of the mixed probability estimator235

The error distribution of the annual probability estimator as compared to the mixed probability estimator is presented in Fig.

3, and summary statistics are presented in Table 1 and Table 2. The results show a very wide dispersion indicating that the

differences between models are large. This applies to all return periods considered, but some variation can be seen. The

deviations are most pronounced for the 100-year return period and decrease for 50- and 20-year events, as one would expect.

A surprising aspect of the broad distribution is that there must be a large portion of catchments where the mixed distribution240

approach improves performance. In fact, there are only 32 to 34 cases (about 10 % of the catchments) where the deviation

between the models is zero and therefore the use of the improved estimator has no effect on the estimate. For the 100-year

event, 75 % of stations show an (absolute) performance gain of > 10 %, 41 % of stations > 50 % and 25 % of stations > 80.6

(Table 2). This suggests that the mixed distribution approach is not only relevant in cases with a highly mixed low-flow regime,

but also applies to catchments with a rather strong seasonal low-flow regime.245

More details can be seen from Table 1. The results show a range of accuracy gains from -100 to + 1000 %, with a lower

quartile of -35 % and an upper quartile of +44 % for the 100-year event. For the lower return periods, the lower and upper

quartiles are -100 and +461 % for T=50, and -99 and +140 % for T=20 years. The expected value of the deviations is close to

zero for the 20 and 50-year events, indicating that the annual estimator has no systematic bias compared to the mixed estimator

for the lower and intermediate return periods. However, for the 100-year events, the expected deviation is +23 %, indicating a250

substantial overestimation of the return period by the annual estimator.

The effects of using the mixed estimator are most apparent when considering the absolute magnitude of the errors (Table 2).

These make evident that the mixed estimator results in average performance gains of 21, 39, and 63 % in estimating low-flow
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Table 1. Relative deviation between the annual and mixed probability estimator (%)

T Min. 1st Qu. Median Mean 3rd Qu. Max.

100 -100.00 -34.70 0.00 23.20 44.20 1004.40

50 -100.00 -25.70 0.00 4.00 22.40 460.90

20 -99.20 -15.10 0.00 -2.00 11.10 139.60

with T=20, 50, and 100-year return periods, respectively. Overall, the performance gain is much higher and affects a much

larger number of cases than we have expected.255
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Figure 3. Uncertainty of the annual probability estimator as compared to the mixed probability estimator. Full line with blue shaded area

refers to the 100-year event. For comparison the 50-years event (dashed line) and the 20-year event (dotted line) are shown.
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Table 2. Relative absolute deviation (rad) between the annual and mixed probability estimator (%).

T Min. 1st Qu. Median Mean 3rd Qu. Max.

100 0.00 10.00 38.30 63.00 80.60 1004.40

50 0.00 6.50 24.30 38.90 58.30 460.90

20 0.00 3.30 12.30 21.20 33.10 139.60

4.2 Effect of seasonality on performance gain

4.2.1 Correlation with seasonality indices

We first assess the strength of the relationship of the accuracy gain with three seasonality indices: The variability measure of

the circular seasonality index (mean resultant r), the seasonality ratio SR and its absolute logarithm |log(SR)|. The Spearman

and Pearson correlation coefficients are shown in Table 3. All correlations are significant at the α = 0.05 level. The strongest260

relationships can be found for the log-transformed relative absolute deviation. It is, overall, best correlated with the transformed

vales of the seasonality ratio, |log(SR)| according to both the Spearman and Pearson coefficients. For the Pearson coefficients

the relationships are much stronger for the log-transformed than for the untransformed relative absolute deviation. This points

to log-linear relationships that can be linearized using a log-transformation. Here, the untransformed abs(SR) reaches almost

the same correlation as |log(SR)|, and the correlation of r is only slightly lower. For the Spearman coefficients the results265

are insensitive for a log-transformation of the relative absolute error. Overall the performance gain of the mixed estimator is

strongly correlated with seasonality, and a log-transformation can help linearize the relationship.

Table 3. Correlation of relative absolute deviation (rad) and its logarithm (log(rad)) with seasonality indices r, SR, |log(SR)|. All corre-

lations are significant at the α = 0.05 level.

Spearman coefficient Pearson coefficient

r SR |log(SR)| r SR |log(SR)|

rad (T=100) -0.43 -0.35 -0.45 -0.18 -0.12 -0.12

rad (T=50) -0.45 -0.32 -0.45 -0.23 -0.15 -0.19

rad (T=20) -0.50 -0.29 -0.45 -0.33 -0.18 -0.25

log(rad) (T=100) -0.43 -0.35 -0.45 -0.43 -0.47 -0.48

log(rad) (T=50) -0.45 -0.32 -0.45 -0.45 -0.45 -0.48

log(rad) (T=20) -0.50 -0.29 -0.45 -0.49 -0.41 -0.47

12

https://doi.org/10.5194/hess-2022-195
Preprint. Discussion started: 3 June 2022
c© Author(s) 2022. CC BY 4.0 License.



0
20

40
60

80
10

0

Seasonality ratio (SR)

R
el

at
iv

e 
er

ro
r 

(%
)

1 1.5 2 2.5
(1) (0.67) (0.5) (0.4)

0.5 1.0 1.5 2.0

0
20

40
60

80
10

0

Seasonality ratio (SR)

R
el

at
iv

e 
er

ro
r 

(%
)

Figure 4. Performance gain by seasonality ratio (SR). Shown is the log-linear model between relative error and absolute logs of SR (red

lines refer to the expected values, blue to their 95 % confidence bounds). Black points are the observations. In panel (a) SR < 1 are plotted

as inverted values (1/SR) and labeled by the numbers in parentheses. Panel (b) shows the relationship for the original values of SR.

4.2.2 Expected performance gain by seasonality

As a second step of the analysis we model the dependency of the performance gain from seasonality using log-linear regression.

Despite there is a large variability in the data the regression model appears well suited as it is able to represent the decline of270

variability with increasing seasonality. Table 4 shows the expected gains from the regression model for various return periods.

For the 100-year event, the expected gain is about 70 % for SR = 1.0, 20 % for SR = 1.5, and 10 % for SR = 2.0. For the

50-year event the expected gain is about two-thirds as large, and for the 20-year event the gain is almost half as large. The

results show that the gain of using the mixed probability estimator is not only limited to highly mixed regimes but also applies

to strongly seasonal ones. The gain is particular large for high return periods where results are expected to differ strongly for a275

wide range of regimes. For low return periods such as T=20 years strong effects can be found for highly mixed regimes (say,

SR < 1.5) whereas there is little gain for highly seasonal regimes.

4.2.3 Spatial cross-correlation with seasonality patterns in Austria

In the final step of the analysis, the errors are compared with the spatial patterns of SR in the study area to shed light on the

hydrological and topographic relevance of the mixed probability estimator. Figure 5 from Laaha and Blöschl (2006b) presents280

a map of seasonality index SR. The patterns correlate strongly with the topography of the study area, with strong winter
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Table 4. Expected performance gains from the regression model for various return periods

Seasonality ratio (SR)

T 1 1.5 2 2.5

100 69.30 20.80 8.70 4.30

50 44.70 14.30 6.20 3.10

20 24.30 8.50 3.90 2.00

Figure 5. Ratio of summer and winter low flow discharges (SR) for 325 subcatchments in Austria. SR > 1 indicates a winter low flow regime;

SR < 1 indicates a summer low flow regime. From Laaha and Blöschl (2006b)

seasonality in the high Alps, strong summer seasonality in the lowlands, and mixed regimes in between. Figure 6 shows the

relative gain by seasonality ratio using the same classes as used in the map. The lowest gains can be observed for strong

winter seasonality (SR > 2) where the mixed estimator is almost identical with the annual estimator. For all other classes the

differences are considerable as the have an expected value of at least 25 %. Importantly, this also includes the highly summer285

dominated catchments where one would expect the annual estimator well suited. This is because in cold temperate climate, low-

flow relevant frost events can also occur in the lower catchments in some years, which are then mixed in the annual low-flow

distribution. The highest gain is observed for mild summer low-flow regimes (SR between 1.1 and 1.25) which correspond to

typical mid-mountain catchments where the frost events are enhanced by the slightly higher altitude and the mixture between

summer and winter events is particularly strong. The results suggest that the mixed estimator is relevant not only for catchments290

in mountainous regions. It is relevant for most catchments, except for the high alpine ones.
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Figure 6. Performance gain by seasonality ratio classes of Laaha and Blöschl (2006b). The colour coding is those of Fig. 5.

5 Discussion and conclusions

This paper has proposed a mixed distribution approach to perform frequency analysis in catchments with mixed summer/winter

low-flow regime. We formulated the theoretical basis of the mixed distribution approach for the lower extremes based on annual

minima series. The performance of the model was evaluated based on a comprehensive Austrian data set. Results indicate that295

the model performs well for a range of low-flow regimes, from distinct winter and summer regimes to mixed regimes where

seasonal occurrence in summer and winter is equally likely. This finding goes far beyond our expectation that the mixed

estimator would be relevant only for highly mixed regimes, and that its application would be limited mainly to mountain

forelands. On average, for the study area, the error is reduced by 21, 39 and 63 % when the low-flow with a return period of

20, 50 and 100 years is estimated, respectively.300

The performance gain depends on the degree of mixture, or the seasonality ratio, as on would expect. For the 100-year event,

the expected gain is about 70 % for SR = 1.0, 20 % for SR = 1.5, and 10 % for SR = 2.0. For the 50-year event the expected

gain is about two-thirds as large, and for the 20-year event the gain is almost half as large. The gain is substantial for high

return periods where results are expected to differ strongly for nearly all seasonal regimes. For low return periods such as T=20

years strong effects can be found for highly mixed regimes (say, SR < 1.5) whereas the gain for strongly seasonal regimes is305

quite low.
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As illustrated by archetypal examples, the mixed estimator has very favorable properties: If no mixture occurs, both ap-

proaches provide the same results. This means that the mixed estimator is a valid generalisation of the common annual estima-

tor. If mixture occurs, the seasonally differentiated statistics can better take it into account. The mixed distribution approach is

therefore a more efficient estimator for seasonally mixed low flow series. An additional strength of the model is that it allows310

the user to estimate return periods of summer low-flows, winter low-flows and annual return periods in a theoretically sound

and consistent manner, resulting in coherent seasonal and annual statistics. This supports the estimates of seasonal statistics

that are increasingly needed, such as for assessing environmental flows, or hydropower production capacity.

Similar advantages of the mixed seasonality estimator have been found for high flows, such as by Schumann (2005) when

assessing the extreme 2005 event at the Mulde river basin in Germany. The study also found the seasonal statistics more robust315

with respect to single extreme values than statistics based on annual values. The same effect can be seen from our example in

Fig. 1b, where the annual statistic largely underestimates the magnitude of extreme events. The mixed distribution, however,

coincides with the seasonal distributions in an intuitive way, and thus offers the plausible estimator in such case.

Despite there is a high degree of similarity between flood and low-flow applications, some important differences exist. Fis-

cher et al. (2016) noted that distinguishing between summer and winter floods is not always as easy when seasonal series con-320

tain events with different genesis. Indeed, the published examples of mixed flood distributions (e.g. Deutsche Vereinigung für

Wasserwirtschaft, 2012) are less clear, as they do not show a similar clear separation between the seasonal distributions as the

examples for low-flow in our paper (Fig. 1). Floods are generated by a wide range of process combinations (Merz and Blöschl,

2003) that are not confined to a season to the same extent as low-flow events. This leads to some limitation of seasonal flood

statistics, or in other words, makes seasonal low-flow statistics even more relevant. As a remedy, Fischer et al. (2016) proposed325

to further subdivide summer floods into groups of long and short events based on their time scale to improve the separation of

processes. However, they had to consider overlapping events because the events they identified were not independent anymore.

Although such statistical dependence exists to a much lesser extent for summer and winter low-flow events, there may be

cases where the assumption of independence is not entirely fulfilled. This may for example occur in very large watersheds with

a high storage capacity and, therefore, a particularly long time of recession and recovery at the end of the drought. In such330

cases, the estimate could be further improved by considering the correlation structure of events. Such an approach appears to

be a natural extension of the mixed probability estimator and will be explored in the companion paper to this study.

Overall, the mixed distribution approach provides one consistent approach for summer, winter, and annual probabilities.

Because of all its beneficial properties, it should be used in the analysis of low-flow frequencies in climates with warm summer

and cold winter seasons, under conditions where mixed seasonal low flows regimes occur.335

Code availability. The code will be made available in an updated version of R software package ’lfstat’ via the CRAN repository.
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