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Abstract. The “dry gets drier and wet gets wetter” (DDWW) paradigm has been widely used to summarise the expected 8 

trends of the global hydrologic cycle under climate change. However, the paradigm is challenged over land due to the choice 9 

of different metrics and datasets used and is still unexplored from the perspective of terrestrial water storage anomaly 10 

(TWSA). Considering the essential role of TWSA in wetting and drying of the land system, here we built upon a large 11 

ensemble of TWSA datasets, including satellite-based products, global hydrological models, land surface models, and global 12 

climate models to evaluate the DDWW hypothesis during the historical (1985-2014) and future (2071-2100) periods under 13 

various scenarios with a 0.05 significance level. We find that 28.1% of global land confirms the DDWW paradigm, while 14 

23.3% of the area shows the opposite pattern during the historical period. In the future, the DDWW paradigm is still 15 

challenged with the percentage supporting the pattern lower than 20%, and both the DDWW-validated and DDWW-opposed 16 

proportion increase along with the intensification of emission scenarios. The different choices of data sources and varying 17 

significance levels (0.01-0.1) have subtle influences on the evaluation results of the DDWW paradigm. Our findings will 18 

provide insights and implications for global wetting and drying trends from the perspective of TWSA under climate change. 19 

1 Introduction 20 

The hydrological conditions of the land surface have experienced considerable changes due to climate change and 21 

anthropogenic interventions, exerting a tremendous impact on regional agriculture, ecological environment, and freshwater 22 

availability globally (Shugar et al., 2020; Gampe et al., 2021). Assessing the variations of terrestrial wetness and dryness is 23 

crucial in understanding the hydrological response and dealing with water-related issues in the context of global change 24 

(Moreno-Jimenez et al., 2019; Zhao et al., 2021). Under these circumstances, the ‘dry gets drier and wet gets wetter’ 25 

(DDWW) paradigm is one of the most widely used hypotheses to summarise the long-term trends in the global hydrological 26 

cycle (Yang et al., 2019). Initially, it was developed based on the deficit between precipitation and evapotranspiration (𝑃𝑃 −27 

𝐸𝐸), which is expected to increase due to the enhancement of atmospheric water vapour in humid regions (i.e., convergence 28 

zones) under a warming climate, and decrease over arid regions (i.e., divergence zones) (Durack et al., 2012). The DDWW 29 

paradigm has been used to represent the historical and future trends in various constituent components of the hydrologic 30 
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cycle on regional (Chou et al., 2009; Allan et al., 2010; Hu et al., 2019; Zeng et al., 2019) and global scales (Held and Soden, 31 

2006; Donat et al., 2016). However, the rationale and validity of the DDWW mechanism are recently questioned at different 32 

levels through the growing accessibility of datasets, models, and indicators (Polson and Hegerl, 2017; Yang et al., 2019; Y. 33 

Li et al., 2021). Byrne and Gorman (2015) used simulations from 10 climate models to reveal an ocean-land contrast pattern 34 

in the response of 𝑃𝑃 − 𝐸𝐸  to global warming in historical (1976-2005) and future (2071-2099) periods, highlighting the 35 

DDWW mechanism as more suitable over ocean than over land. Given the fact that historical evaluation of the DDWW 36 

paradigm is mainly based on oceanic records, Greve et al. (2014) adopted 2142 possible combinations of 𝑃𝑃 − 𝐸𝐸 to assess the 37 

trends in wetting and drying over global land and discovered merely 10.8% of the area following the DDWW pattern during 38 

the period 1948-2005. Alternatively, Yang et al. (2019) integrated an ensemble of six hydro-climatic indicators for the global 39 

assessment of the DDWW paradigm between 1982 and 2012, suggesting the catchphrase only occurred over 20% of the 40 

global land. In short, there are great uncertainties still remaining in the assessments of global trends in dryness and wetness 41 

under climate change (Dai, 2011; Trenberth et al., 2014). 42 

The uncertainties within previous studies are mainly sourced from different choices of metrics adopted and datasets 43 

used for evaluating the changes in dryness and wetness (Vicente-Serrano et al., 2010; Feng and Zhang, 2015; Huang et al., 44 

2016). Specifically, the widely used metric 𝑃𝑃 − 𝐸𝐸 over the ocean has been proven overwhelmingly positive over land based 45 

on both observations and simulations (Greve et al., 2014; Byrne and O’Gorman, 2015; Greve and Seneviratne, 2015). 46 

Moreover, some meteorological indices derived from precipitation and evapotranspiration, such as the standardised 47 

precipitation evapotranspiration index (SPEI), aridity index (AI), and standardised precipitation/evapotranspiration index 48 

(SPI/SETI), do not capture the integrated response of the land system due to the trade-off between the simplicity of 49 

meteorological factors and computational requirements of process-based variables (Huntington, 2006; Dai, 2011; Slette et al., 50 

2020; Barnard et al., 2021). A few indexes like the standardised soil moisture index (SSI), standardised groundwater index 51 

(SGI), and standardised runoff index (SRI), however, focus on a single aspect of the water cycle and do not describe the 52 

integrated status of the terrestrial water storage (TWS) (AghaKouchak, 2014; Wu et al., 2018; Guo et al., 2021). In the 53 

coupled human-natural systems, where the synergistic impacts of natural and anthropogenic drivers are exceedingly difficult 54 

to disentangle, an integrated representation of the land systems is of paramount importance for policymakers (Abhishek et al., 55 

2021; Rodell et al., 2018). TWS, consisting of water storage in surface water, soil moisture, groundwater, snow and ice, and 56 

canopies, can physically provide integrated information about the overall status of the land, whose changes are closely linked 57 

to the terrestrial wetting and drying tendency (Tapley et al., 2019; Pokhrel et al., 2021). Apart from the societal and 58 

economic importance, TWS plays a vital role in Earth system processes, including climate, weather, and biogeochemical 59 

cycles (Abhishek et al., 2021, Seyoum and Milewski, 2017). Therefore, understanding the past and future TWS trends 60 

dynamics is not only essential for human life but also crucial for assessing the water cycle, planning, policymaking, and 61 

other management strategies for water resources in a changing climate and for a continuously increasing population 62 

(Abhishek et al., 2021). There are several studies dealing with TWS or derived indicators to assess freshwater availability 63 

(Rodell et al., 2018), water storage dynamics (Abhishek et al., 2021, Scanlon et al., 2018), droughts and floods monitoring 64 
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(Long et al., 2014), among others. Divergent patterns of TWS changes have been reported over arid and humid regions under 65 

the combined effects of climate change (e.g., global warming), climatic variability (e.g., ENSO), and human activity (e.g., 66 

groundwater pumping) (Chang et al., 2020; An et al., 2021; Hu et al., 2021). However, there is no study to examine the 67 

global variability and validity of DDWW paradigm in the past and future in terms of TWS changes. Furthermore, divergent 68 

data sets produce different trends in TWS due to distinctive internal variability and external forcing (from satellites and 69 

meteorological stations), especially from precipitation and evapotranspiration (Chen et al., 2020). For example, Scanlon et al. 70 

(2018) conducted comprehensive comparisons between decadal trends in TWS from seven global models and three Gravity 71 

Recovery and Climate Experiment (GRACE) satellite solutions over major basins globally and showed a large 72 

underestimation of the increasing and decreasing trends of models primarily due to human water use and forcing climate 73 

variations.  74 

Therefore, we conduct a systematic re-examination of the DDWW paradigm from the perspective of terrestrial water 75 

storage anomalies (TWSA) using a large ensemble of nine different TWS datasets from the GRACE reconstructions, global 76 

hydrological models, and land surface models to examine the DDWW paradigm over the global land between 1985 and 2014. 77 

Subsequently, an alternative ensemble of eight global climate models (GCMs) from the Coupled Model Intercomparison 78 

Project 6 (CMIP6) is used to further test the paradigm under various scenarios during the future (2071-2100) period. 79 

2 Data and Methods 80 

2.1 Data 81 

We used an ensemble of nine data sets (hereinafter “DATASET”) to evaluate the DDWW paradigm during the 82 

historical period 1985-2014, which includes three of GRACE reconstructions, global hydrological models (GHMs), and 83 

global land surface models (LSMs) each (see Table 1). Since no dataset presents the absolutely ‘true’ value, the ensemble 84 

mean was estimated using a simple average method to avoid the uncertainty implicit in any individual dataset. All of the 85 

members and their mean have been resampled to 1° × 1° grid cell to compare the average value of three GRACE mass 86 

concentrations (mascon) solutions between June 2002 and December 2014. The missing months of GRACE data have been 87 

filled using a linear interpolation method. Alternatively, an ensemble of eight simulations from CMIP6 was used to examine 88 

the DDWW paradigm in the future period (2071-2100). All the ensemble members have been resampled to 1° × 1° scale 89 

using a bilinear interpolation approach for consistency and better comparison in the spatial domain. Similarly, the ensemble 90 

mean of CMIP6 models has been estimated using simple averaging. All the DATASET and CMIP6 members and their 91 

ensemble are represented as the long-term anomaly relative to the baseline between 1985 and 2014 to be consistent with 92 

reconstructed GRACE data. 93 

https://doi.org/10.5194/hess-2022-190
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



4 
 T

ab
le

 1
: D

at
as

et
s u

se
d 

in
 th

is
 st

ud
y 

94
 

Ty
pe

 
D

at
as

et
 n

am
e 

D
O

I/U
R

L 
Se

le
ct

ed
 

pe
rio

d 
Te

m
po

ra
l r

es
ol

ut
io

n 
Sp

at
ia

l r
es

ol
ut

io
n 

G
R

A
C

E 

R
ec

on
st

ru
ct

io
ns

 

Li
 e

t a
l.,

 2
02

1 
D

oi
: 1

0.
10

29
/2

02
1G

L0
93

49
2 

19
85

-2
01

4 
M

on
th

ly
 

0.
5°

 

H
um

ph
re

y 
an

d 

G
ud

m
un

ds
so

n,
 2

01
9 

D
oi

: 1
0.

51
94

/e
ss

d-
11

-1
15

3-
20

19
 

19
85

-2
01

4 
M

on
th

ly
 

0.
5°

 

G
R

A
C

E 

C
SR

 R
L0

6 
m

as
co

ns
-v

02
 

ht
tp

://
w

w
w

2.
cs

r.u
te

xa
s.e

du
/g

ra
ce

/ 
20

02
-2

01
4 

M
on

th
ly

 
0.

25
° 

JP
L 

R
L0

6 
m

as
co

ns
-v

02
 

ht
tp

://
po

da
ac

.jp
l.n

as
a.

go
v/

gr
ac

e 
20

02
-2

01
4 

M
on

th
ly

 
0.

5°
 

G
SF

C
 R

L0
6 

m
as

co
ns

-v
02

 
ht

tp
s:

//e
ar

th
.g

sf
c.

na
sa

.g
ov

/g
eo

/d
at

a/
 

20
02

-2
01

4 
M

on
th

ly
 

0.
5°

 

G
lo

ba
l H

yd
ro

lo
gi

ca
l 

M
od

el
s 

W
G

H
M

-v
2.

2d
 

ht
tp

s:
//g

m
d.

co
pe

rn
ic

us
.o

rg
/ 

19
85

-2
01

4 
M

on
th

ly
 

0.
25

° 

G
LD

A
S2

.0
-V

IC
 

ht
tp

s:
//l

da
s.g

sf
c.

na
sa

.g
ov

/g
ld

as
 

19
85

-2
01

4 
M

on
th

ly
 

1°
 

PC
R

-G
LO

B
W

B
 

ht
tp

s:
//g

lo
ba

lh
yd

ro
lo

gy
.n

l/r
es

ea
rc

h/
 

19
85

-2
01

4 
M

on
th

ly
 

0.
5°

 

La
nd

 S
ur

fa
ce

 M
od

el
s 

G
LD

A
S2

.0
-N

oa
h 

ht
tp

s:
//l

da
s.g

sf
c.

na
sa

.g
ov

/g
ld

as
 

19
85

-2
01

4 
M

on
th

ly
 

1°
 

C
PC

-v
2 

ht
tp

s:
//w

w
w

.p
sl

.n
oa

a.
go

v/
da

ta
/ 

19
85

-2
01

4 
M

on
th

ly
 

0.
5°

 

G
LD

A
S2

.0
-C

LS
M

 
ht

tp
s:

//l
da

s.g
sf

c.
na

sa
.g

ov
/g

ld
as

 
19

85
-2

01
4 

M
on

th
ly

 
1°

 

G
lo

ba
l C

lim
at

e 

M
od

el
s 

A
C

C
ES

S-
C

M
2 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

1.
25

°×
1.

87
5°

 

A
C

C
ES

S-
ES

M
1-

5 
ht

tp
s:

//e
sg

f-n
od

e.
lln

l.g
ov

/p
ro

je
ct

s/ 
19

85
-2

10
0 

M
on

th
ly

 
1.

24
°×

1.
87

5°
 

C
an

ES
M

-5
 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

2.
81

25
°×

2.
81

25
° 

G
FD

L-
ES

M
4 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

1°
×1

.2
5°

 

IP
SL

-C
M

6A
-L

R
 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

1.
25

87
°×

2.
5°

 

M
IR

O
C

6 
ht

tp
s:

//e
sg

f-n
od

e.
lln

l.g
ov

/p
ro

je
ct

s/ 
19

85
-2

10
0 

M
on

th
ly

 
1.

40
63

°×
1.

40
63

° 

M
PI

-E
SM

1-
2-

H
R 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

0.
93

75
°×

0.
93

75
° 

M
PI

-E
SM

1-
2-

LR
 

ht
tp

s:
//e

sg
f-n

od
e.

lln
l.g

ov
/p

ro
je

ct
s/ 

19
85

-2
10

0 
M

on
th

ly
 

1.
87

5°
×1

.8
75

° 

 
95

 

https://doi.org/10.5194/hess-2022-190
Preprint. Discussion started: 20 May 2022
c© Author(s) 2022. CC BY 4.0 License.



5 
 

2.1.1 GRACE and GRACE Reconstructions 96 

A total of three GRACE reconstructions provided by Humphrey and Gudmundsson (2019) and Li et al. (2021) were 97 

selected in the DATASET for evaluation of the DDWW paradigm. The ensemble of GRACE reconstructions is generated 98 

based on state-of-the-art machine learning models using historical and near-real-time meteorological forcing. It is 99 

informative to note that the GRACE reconstructions from Humphrey and Gudmundsson (2019) were calibrated with 100 

GRACE mascon solutions from NASA JPL and NASA Goddard Space Flight Center (GSFC), respectively, and that 101 

supplied by Li et al. (2021) were trained by the GRACE mascon product from Center for Space Research (CSR). The 102 

GRACE reconstructions of JPL and GSFC mascon data (Humphrey and Gudmundsson, 2019) are forced with three different 103 

climatic datasets, including the multisource weighted-ensemble precipitation (MSWEP), the Global Soil Wetness Project 104 

Phase 3 (GSWP3), and the European Centre for Medium-Range Weather Forecasts reanalysis (ERA5). We have 105 

implemented an ensemble of each reconstructed solution to reduce the uncertainties caused by different forcing datasets. The 106 

CSR reconstruction is derived from four kinds of meteorological variables (e.g., precipitation and 2 m air temperature) and 107 

three kinds of hydrological variables (e.g., soil moisture and runoff) (Li et al., 2021a). The accuracy and applicability of 108 

three GRACE reconstructions have been fully evaluated over global land in several previous studies (Xu et al., 2021; Yi et 109 

al., 2021). Correspondingly, the three latest GRACE mascon solutions (RL06-v02) from JPL, GSFC, and CSR were 110 

prepared for comparison purposes. Compared to other GRACE products (e.g., conventional spherical harmonic solutions), 111 

mascon solutions do not need spatial (e.g., smoothing) or spectral (e.g., de-striping) filtering or other empirical scaling and 112 

therefore have higher signal-to-noise ratio, higher spatial resolutions, and eventually reduced errors (Save et al., 2016; 113 

Watkins et al., 2015). 114 

2.1.2 Global Hydrological Models 115 

We used three global hydrological models, including the Variable Infiltration Capacity macroscale model (VIC-v4.1.2), 116 

the WaterGAP hydrological model (WGHM-v2.2d), and PCRaster GLOBal Water Balance model (PCR-GLOBWB-v2.0) to 117 

estimate TWS for evaluation of the DDWW paradigm. The physically-based, semi-distributed, and grid-based VIC model is 118 

managed by the NASA Global Land Data Assimilation System Version 2.1 (GLDAS-v2.1) (Liang et al., 1994; Syed et al., 119 

2008). Forced by the Global Data Assimilation System atmospheric analysis fields (Derber et al., 1991) and the Air Force 120 

Weather Agency’s AGRicultural METeorological modeling system radiation fields, the VIC model can effectively capture 121 

the terrestrial water cycle by simulating the water stored in the canopies, snow, and soil moisture within the depth of 3 soil 122 

layers (200 cm). The VIC model has been widely used to analyze terrestrial water storage changes at regional and global 123 

scales (Hao and Singh, 2015; Hao et al., 2018). The WGHM is a grid-based global hydrological model quantifying the 124 

human water use and continental water fluxes for all land areas excluding Antarctica (Müller Schmied et al., 2021). Unlike 125 

most global hydrological models, the WGHM forced by the ERA40 and ERA-Interim reanalysis is able to simulate 126 

groundwater storage by coupling with global water use models like the Groundwater-Surface Water Use, suggesting a 127 
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comparably better representation of TWS (Döll et al., 2014). Several frequently-used model outputs such as TWS, stream, 128 

and water use have been evaluated against global observations (Wan et al., 2021). The PCR-GLOBWB model is a grid-129 

based global-scale hydrology and water resources model that fully integrates water use, such as water consumption, water 130 

withdrawal, and return flows (Sutanudjaja et al., 2018). Forced with the EC-Earth data, including atmospheric, oceanic, and 131 

land surface variables, the PCR-GLOBWB model can simulate the entire terrestrial system over global land at a daily time 132 

scale. The model performance has been fully evaluated using global discharge measurements and supported by many TWS 133 

studies globally (Scanlon et al., 2018; van der Wiel et al., 2019). 134 

2.1.3 Land Surface Models 135 

We used three land surface models consisting of the Noah (v3.6), Catchment (CLSM-vF2.5), and CPC (v2) models to 136 

calculate TWS globally for assessment of the DDWW paradigm. The Noah and CLSM models are managed by GLDAS (v-137 

2.1) from the NASA GSFC institute. GLDAS is a composite of global hydrological and land surface models that model 138 

optimal fields of land surface by integrating multi-source observations such as in situ stations and satellites based on state-of-139 

the-art data assimilation and land surface simulation techniques (Rodell et al., 2004). GLDAS has been widely used to 140 

compare with GRACE TWSA in data-sparse regions such as Africa and Qinghai-Tibetan Plateau (Ogou et al., 2021; Xing et 141 

al., 2021). The Noah-modelled TWS is considered as the sum of canopy water storage, snow water equivalent, and soil 142 

moisture of four layers with a total depth of 200 cm. Different from that, the CLSM simulates shallow groundwater and the 143 

vertical levels of soil moisture are not explicitly divided within the depth of 100 cm. Developed by the U.S. National 144 

Oceanic and Atmospheric Administration (NOAA), the CPC model provides global soil moisture conditions in 160 cm 145 

column soil forced with observations of different meteorological and hydrological fluxes (e.g., precipitation, temperature, 146 

and humidity) from CPC (Fan, 2004). The reasonably good ability of CPC simulations to capture the TWS dynamics has 147 

been examined over many areas of the globe in spite of its simplicity in the calculation of TWS (Jin et al., 2012; Agutu et al., 148 

2020). 149 

2.1.4 Global Climate Models 150 

We used a suite of eight global climate models belonging to the ensemble “r1i1p1f1” of CMIP6 to evaluate the DDWW 151 

paradigm under climate change. The CMIP6 serves as a category of experiments of GCMs coupled to a dynamic ocean, a 152 

simple land surface, and thermodynamic sea ice (Eyring et al., 2016). We chose these eight models out of the 34 CMIP6 153 

models because, as we write, they are the only models for which TWSA results are available in both the historical and future 154 

periods under multiple emission scenarios (see Table 1). The CMIP6 TWSA represents the sum of total soil moisture and 155 

snow equivalent water, which has been comprehensively validated, with embedded uncertainties, over global major river 156 

basins compared with the GRACE data (Freedman et al., 2014; Wu et al., 2021). The CMIP6 comparisons have become a 157 

diagnostic tool to better understand climate change in past, present, and future periods (Krishnan and Bhaskaran, 2020), 158 

which includes a total of five Shared Socio-economic Pathways (SSPs) representing global economic and demographic 159 
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changes under different greenhouse gas emissions. We selected three out of five SSP scenarios, including SSP126, SSP245, 160 

and SSP585, representing the green roads, middle of the road, and the highway road, respectively (Iqbal et al., 2021). In 161 

specific, the monthly average TWS from CMIP6 is estimated as the sum of total soil moisture and snow water, which has 162 

been proven reliable to assess the TWS changes (Wu et al., 2021). To avoid the considerable uncertainties in TWS of 163 

different CMIP6 models, a trend-preserving method was employed to perform bias correction combined with historical 164 

GRACE data. The trend-preserving method initially developed by Hempel et al. (2013) modifies the monthly means of the 165 

simulated data to match the observed data using a constant offset between the simulations and observations and has been 166 

widely used in the Intersectoral Model Intercomparison Project (ISIMIP2b). The detailed procedure of the bias correction for 167 

CMIP6 TWSA has been described in detail in a recent study (Xiong et al., 2022). 168 

2.2 Detection of Wetting and Drying 169 

The non-dimensional TWS drought severity index (TWS-DSI) was adopted to reflect the long-term trends in terrestrial 170 

dryness and wetness at both 1° × 1° grid cell and regional scales over global land (see Figure S1 and Table S1). TWS-DSI 171 

has been widely used in hydrology and climate fields due to its simple structure and effective ability in capturing drying and 172 

wetting conditions (Pokhrel et al., 2021). Monthly TWS-DSI was calculated for all ensemble members and their mean from 173 

DATASET and CMIP6 as follows (Zhao et al., 2017): 174 

                                                                        TWS-DSIi,j =
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗−𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗
                                                                   (1) 175 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ,𝑗𝑗 is the TWS value in year 𝑖𝑖 and month 𝑗𝑗; 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 denote the mean and standard deviation of the annual 176 

TWS in month 𝑗𝑗, respectively. Long-term trends in TWS-DSI were estimated using the linear regression method and the 177 

significant trend values were evaluated using the t-test at a 5% significance level (Greve et al., 2014). The area having a 178 

significant trend of increasing/decreasing TWS-DSI is considered to be undergoing wetting/drying; otherwise, it is defined 179 

as an uncertain region. We calculated the regional/global mean trends of TWS-DSI using a spatially weighted method to 180 

account for the changing area of grid cells with latitudes. 181 

2.3 Selected Regions 182 

We performed the assessment of the DDWW paradigm over global land at both gridded 1° × 1° cell and regional scales 183 

excluding Greenland and Antarctica. A total of 43 regions are selected based on the Special Report on Managing the Risks 184 

of Extreme Events and Disasters to Advance Climate Adaptation (SREX) from the Intergovernmental Panel on Climate 185 

Change (IPCC) Sixth Assessment Report (AR6), which covers all the land area except for the Greenland and Antarctica (see 186 

Figure S1). Their basic information is summarised in Table S1. 187 
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3 Results and Discussion 188 

3.1 Global Trends of Dryness and Wetness 189 

Prior to the detection of the DDWW paradigm, we performed the evaluation of TWSA derived from the ensemble mean 190 

of the DATASET and CMIP6 archive. Figure S2 presents the global distribution of the normalized root mean square error 191 

(NRMSE) between GRACE TWSA and that from DATASET and CMIP6 data after bias correction during the period April 192 

2002-December 2014, which is calculated as the ratio of RMSE to the change range of TWSA. The NRMSE between 193 

GRACE and DATASET is generally lower than 0.3 (for 95.7% of the area), of which 12.9% of the land area shows NRMSE 194 

below 0.1 and the percentage is 77.0% for the NRMSE lower than 0.2. Relatively larger NRMSE ranging from 0.3 to 0.4 195 

occurs in east and central Asia, south Australia, north Africa, and north-eastern America, indicating the relatively poorer 196 

performance of GHMs and LSMs. Results over central America, east Europe and west Asia are mostly below 0.1. However, 197 

the NRMSE between GRACE and CMIP6 is generally lower than that of DATASET, most (98.7%) of which change from 198 

0.1 to 0.3. Approximately 76.9% of the land area shows NRMSE<0.2 and 8.6% has NRMSE<0.1. Spatially, there are some 199 

extreme values as high as 0.3 to 0.4 located in north and east Asia, south Africa, and central America, probably arising from 200 

the uncertainties in the CMIP6 simulations even undergoing the bias correction. Figure S3 further presents the regional 201 

results over the 43 selected SREX regions. Most of the mid-latitude regions like the WCE, EEU, WSB, ESB, and RFE 202 

present relatively lower NRMSE (0-0.1) between GRACE and DATASET, suggesting better performance than that in the 203 

NZ, ECA, NEU, and NEN. For CMIP6 data, a similar pattern can be found with most mid-latitude regions having relatively 204 

lower NRMSE values from 0.1 and 0.2, while higher values (0.2-0.3) are located in NEN, ECA, SSA, and EAU. Although 205 

the bias correction has been performed to the CMIP6 TWSA, a comparatively large bias still exists owing to the uncertainty 206 

in parameters, hydrometeorological forcing, and internal variability of GCMs. Such biases can potentially influence the 207 

assessment of the DDWW paradigm in the future period (2071-2100) climate change. 208 

A temporal comparison of global average TWSA derived from DATASET/CMIP6 and GRACE during the period 209 

2002-2014 is shown in Figure S4. The GRACE TWSA changing from −20 to 20 mm shows obvious seasonal characteristics 210 

with relatively higher uncertainty in the dry season than that in the wet season. A similar change pattern is captured by the 211 

DATASET, with the change range covering the variations of GRACE data. The NRMSE between the ensemble mean of 212 

DATASET and GRACE data is 0.11, equaling to that (0.11) between the ensemble mean of CMIP6 and GRACE results. 213 

Moreover, the fluctuation range of DATASET data is generally greater than the CMIP6 before 2010 and slightly 214 

underestimate that and GRACE measurements after the year with increasing range, highlighting the considerable uncertainty 215 

sourced from different forcing variables and model parameterizations. 216 

To provide insights into the aspect of terrestrial water storage changes for the evaluation of the DDWW paradigm, 217 

TWS-DSI is estimated to determine the terrestrial wetness and dryness. Figure 1 shows the global distribution of long-term 218 

trends in TWS-DSI over the historical period 1985-2014 and the future period 2071-2100 under SPSP126, SSP245, and 219 

SSP585 scenarios. During the historical period, a clear spatial divergence is observed globally and the average TWS-DSI has 220 
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a significant decreasing slope of −0.07/a (p<0.05), similar to the results from SPI, SPEI, and AI (Wang et al., 2018; Yang et 221 

al., 2019). Spatially, severe drying exists in the Gulf of Alaska coast and the Canadian archipelago with significant slopes of 222 

TWS-DSI ranging from −0.08/a to −0.12/a, which is caused by rapid ice-sheet and glacier ablation under a warming climate 223 

(Luthcke et al., 2013; Velicogna et al., 2014). Triggered by severe historical droughts over decades, the drying trends in 224 

central Canada, southern California, and Texas can be clearly discovered, with decreasing trend of TWS-DSI ranging from 225 

−0.04/a to −0.12/a (p<0.05) (Bouchard et al., 2013; Haacker et al., 2016), so as the eastern Brazil (Getirana, 2016). Moreover, 226 

overwhelming groundwater depletion due to unsustainable human water use such as irrigation is responsible for the 227 

declining dryness at significant slopes ranging from −0.12/a to −0.16/a in southeast and north Africa, south Europe, North 228 

China Plain, and northern India (Rodell et al., 2009; Feng et al., 2013; Ramillien et al., 2014). Naturally, a moderate drying 229 

trend in southwestern Africa caused by precipitation decrease is detected by the reduction of TWS-DSI. On the contrary, 230 

increasing precipitation dominates the wetting trend in mid-latitude regions, including southern Russia and Canadian, west 231 

Africa, southeast Asia and Qinghai-Tibetan Plateau, with significant slopes ranging from 0.04/a to 0.12/a (Siebert et al., 232 

2010; Ndehedehe et al., 2017). Alternatively, some regions, such as the Amazon River basin, south Africa and eastern 233 

Australia, presenting wetting trends are considered to experience progression from wet to dry period (Chen et al., 2010; 234 

Gaughan and Waylen, 2012).  235 

In the future, most of the mid-latitude regions such as north China, south Mongolia, and central Europe are projected to 236 

be wet because of the growth in precipitation under SSP126 scenario (Milly et al., 2005; Seneviratne et al., 2006). Similar 237 

trends can be found in North China Plain and Caspian regions that underwent drying during the historical period, mainly due 238 

to groundwater abstraction and sporadic droughts. Some areas, including northern India and southwestern America are 239 

expected to continue drying under SSP126 scenario in the future owing to the increasing evapotranspiration in a warming 240 

climate (Allen et al., 2010; Vicente-Serrano et al., 2010). Alternatively, the obvious drying trend around Canada’s subarctic 241 

lakes are attributed to the high vulnerability to droughts when snow cover declines under increasing temperature (Bouchard 242 

et al., 2013). Many regions around the Aral Sea and north Russia are prone to experience wet-to-dry transition under climate 243 

change. It is worth noting that a higher emission scenario can be translated to a more intensive trend of either drying or 244 

wetting, the pattern is also revealed by a recent study (Pokhrel et al., 2021). 245 

We further demonstrate the global distribution of the long-term trends in TWS-DSI over 43 selected SREX regions in 246 

Figure 2. During the historical period, 53.5% and 46.5% of land area present drying and wetting trend, respectively, of which 247 

59.4% and 48.4% is significant (p<0.05). NAU has the highest percentage (73.7%) of land area with a significant increasing 248 

trend of TWS-DSI, which is mainly caused by precipitation increase (Rajah et al., 2014). While the ARP has the greatest 249 

percentage of 81.9% of pixels showing a significant drying trend jointly affected by the groundwater depletion and droughts 250 

over the Arabian Peninsula (Lelieveld et al., 2012). During the future period under climate change, the proportion of drying 251 

areas with a significant slope increases from SSP126 (23.6%) to SSP585 (30.1%) scenario. Similar growth is detected in the 252 

percentage with significant wetting trends, which reaches 15.7%, 17.4%, and 23.5% under SSP126, SSP245, and SSP585 253 

scenarios, respectively. Some mid-latitude regions including WCE, EEU, WSB, WNA, and ECA present wetting trends that 254 
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benefit from precipitation increase and become wetter when a high emission scenario is expected to occur. SAS also 255 

illustrates a dry-to-wet transformation and a higher radiative forcing from SSP126 to SSP585. Alternatively, all the regions 256 

in North America and Russia except for WNA are expected to become dry, and so do some regions over south-eastern Africa, 257 

central Asia, and south of Australia. Generally, the percentage of the land area showing significant trends of both wetting 258 

and drying stably increase from the SSP126 to SSP585 scenarios, and the drying is always ~10% higher than the wetting. 259 

 260 
Figure 1: Global distribution of the long-term trends (left panel) and classification (right panel) in TWS-DSI during (a, b) the 261 
historical (1985-2014) and future (2071-2100) period under (c, d) SSP126, (e, f) SSP245, and (g, h) SSP585 scenarios. Note: The 262 
stippling marks regions with a significant trend (p<0.05). “D” and “W” indicate regions with drying and wetting trends, 263 
respectively. 264 

 265 
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 266 
Figure 2: Global distribution of the long-term trends in TWS-DSI in 43 selected IPCC SREX regions during the (a) historical 267 
(1985-2014) and future (2071-2100) periods under (b) SSP126, (c) SSP245, and (d) SSP585 scenarios. Note: The fan shape 268 
represents the regional proportion of area with different trends and the bar plot means the global percentage. “D” and “W” 269 
indicate regions with drying and wetting trends, respectively. Please refer to Figure S1 for abbreviations of the IPCC SREX 270 
regions. 271 

3.2 Assessment of the DDWW Paradigm 272 

To evaluate the DDWW paradigm over global land, the effective Aridity index (AI) is used to classify a grid cell as arid, 273 

humid, and transitional region, following Yang et al. (2019). The AI is calculated as the ratio of annual precipitation to 274 

potential evapotranspiration provided by the Climatic Research Unit Time series (CRU TS-v4.05) during the same period as 275 

TWS-DSI (i.e., 1985-2014). The global distribution of multi-year average AI and the classifications during the period 1985-276 

2014 is presented in Figure S5. It can be seen that most of the arid regions are located in southwestern America, north and 277 

south Africa, central Asia, Arabian regions, and Australia, accounting for 33.6% of the land. The percentage of humid areas 278 

that are mainly located in east America, the Amazon region, central Africa, south China, west Europe, and Russia reaches 279 

58.1% of the land. An approximate 8.3% of the land area is defined as the transitional region. We compare AI and TWSA 280 

derived from DATASET and CMIP6 between 1985 and 2014 in Figure S6, with the latter presenting a similar spatial 281 

distribution to AI. Moreover, the CMIP6 data has a relatively higher amplitude than that of the DATASET, in line with the 282 

temporal results (see Figure S4). 283 

Figure 3 illustrates the test results of DDWW paradigm at a 5% significance level (p=0.05) during the historical and 284 

future periods. Limited proportions (<10%) of area illustrating the “transition gets drier” (TD) and “transition gets wetter” 285 

(TW) patterns are reported in both past and future periods. Much of the land area over north Africa, Arabian regions, east 286 

Asia, and southwest America show the “dry gets drier” (DD) phenomenon. In contrast to that, a substantial portion of area 287 

over the arid regions of the north and south of Africa, Australia, and central Asia shows the “dry gets wetter” (DW) 288 

hypothesis. Moreover, the “wet gets wetter” (WW) paradigm is confirmed mainly in east Russia and north Amazon, with the 289 

“wet gets drier” (WD) pattern happening in central Africa, north-eastern Amazon, and north Asia. Under climate change, a 290 
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similar pattern under the SSP126 scenario is revealed in the historical results. Nevertheless, the SSP245 scenario presents a 291 

slightly different distribution from historical results, with many regions in north Asia and central Europe showing DW and 292 

WW situations instead of DD and WD. In addition to that, the south and northeast of China, together with the majority of 293 

Russia show the WD situation, and the DD paradigm is gradually dominating Australia. This difference is further confirmed 294 

based on the results under the SSP585 scenario. We further conducted the regional analysis as shown in Figure 4. Among 295 

54.9% of land showing significant trends in drying and wetting, 50.5% confirms the DDWW paradigm, of which 30.1% and 296 

20.5% are drying and wetting, respectively, during the historical period (1985-2014). ARP has the highest percentage of 96.3% 297 

of the area with significant trends showing the DD hypothesis, while RFE achieves the highest proportion of 92.1% 298 

presenting the WW theory. During the future period under climate change, multiple SSP scenarios highlight a generally 299 

consistent distribution with some minor differences. Some regions such as WCA, WNA, and MED show a DD paradigm 300 

while others such as WCE, SES, MDC, and NC have a WW paradigm. Apart from that, a lot of regions located in Russia, 301 

Mongolia, and Canada present WD conditions, with few areas like NEAF and ARP showing DW situation. It can be clearly 302 

observed that the proportion of regions showing WD pattern increases from SSP126 to SSP585 scenario, indicating the 303 

comprehensive trend of drying at region scale. 304 

Global statistics of the regions with various patterns during the historical (1985-2014) and future periods (2071-2100) 305 

are shown in Figure 5. During the period 1985-2014, a percentage as high as 54.9% of area shows significant trends in 306 

wetting or drying (p<0.05). Further, 28.1% of the area shows the DDWW paradigm, in which 16.7% and 11.4% of area is 307 

drying and wetting, respectively. 23.3% of the area, however, shows the opposite pattern of DW (8.4%) and WD (14.9%), 308 

respectively. The confirmed percentage for the DDWW paradigm (27.1%) for the land mass (represented by TWSA) in our 309 

study is more than twice as high as that for the land surface (represented by precipitation, evaporation, and aridity) in a 310 

previous study (10.8%) (Greve et al., 2014). Feng and Zhang (2015) used soil moisture to conclude a proportion of 15.12% 311 

followed the DDWW pattern while a percentage of 7.7% of the land showed an opposite pattern between 1979 and 2013, 312 

relatively lower than our study. Yang et al. (2019) applied a combined measure employing six different drought indices to 313 

evaluate the DDWW paradigm and discovered the percentage following and opposing the DDWW paradigm is 29% and 314 

20%, respectively, during the period 1982-2012, typically consistent with our study. Cheng et al. (2020) utilized the GRACE 315 

data during 2002-2017 and reported the area having the DDWW pattern reached 11.2% except for the 4.7% of cold regions 316 

over global land, which is comparatively lower than our study. Observed differences among various studies are attributed to 317 

the differences in datasets used, metrics employed for assessment, and the study period.  318 

Under climate change, the proportion of areas supporting the DDWW paradigm is 18.2%, 17.4%, and 20.7% under 319 

SSP126, SSP245, and SSP585 scenarios, respectively. Alternatively, the area having the opposite DDWW pattern achieves 320 

17.9%, 22.4%, and 28.5%, respectively. The percentage of areas with significant wetting and drying trends slightly increases 321 

over the enhancement of emission scenarios, consistent with the increase of DDWW-validated areas from SSP126 to 322 

SSP585 scenarios. It is worth noting that the internal variability of climate models might affect the potential agreement with 323 

the DDWW pattern (Kumar et al., 2015). Greve and Senevirtne (2015) used climate projections from CMIP5 to establish the 324 
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measure 𝑃𝑃 − 𝐸𝐸 for assessment of the DDWW paradigm and discovered the hypothesis was validated over 19.5% of land 325 

area between 2080 and 2100 under the RCP8.5 scenario, which is close to our result (20.7%). Moreover, Li et al. (2021) 326 

further applied the P-E index to test the DDWW theory based on GCMs from the third phase of Paleoclimate Modelling 327 

Intercom-parison Project (PMIP3) simulations, concluding a similar proportion of 22.8% of the global land to our study that 328 

held the DDWW paradigm. This similarity reveales the similar atmospheric and terrestrial responses under future warming 329 

for both the studies. 330 

 331 
Figure 3: Global assessment of the DDWW paradigm during the (a) historical (1985-2014) and future (2071-2100) period under (b) 332 
SSP126, (c) SSP245, and (d) SSP585 scenarios. Note: DD indicates the dry gets drier; DW indicates the dry gets wetter; WW 333 
indicates the wet gets wetter; WD indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the transition 334 
gets wetter. 335 

 336 
Figure 4: Global assessment of the DDWW paradigm in 43 selected IPCC SREX regions during the (a) historical (1985-2014) and 337 
future (2071-2100) period under (b) SSP126, (c) SSP245, and (d) SSP585 scenarios. Note: The fan shape represents the regional 338 
proportion of area with different patterns to the total area with significant (p<0.05) patterns and the bar plot means the global 339 
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percentage. “D” and “W” indicate regions with drying and wetting trends, respectively. DD indicates the dry gets drier; DW 340 
indicates the dry gets wetter; WW indicates the wet gets wetter; WD indicates the wet gets drier; TD indicates the transition gets 341 
drier; TW indicates the transition gets wetter. Please refer to Figure S1 for abbreviations of the IPCC SREX regions. 342 

 343 
Figure 5: Global statistics of the regions with different patterns during the historical (1985-2014) and future (2071-2100) period 344 
under SSP126, SSP245, and SSP585 scenarios. Note: DD indicates the dry gets drier; DW indicates the dry gets wetter; WW 345 
indicates the wet gets wetter; WD indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the transition 346 
gets wetter; Uncertain indicates the regions showing insignificant (p>0.05) trends in TWS-DSI. 347 

3.3 Uncertainties and Implications 348 

Each ensemble member of the DATASET has embedded uncertainties inherently originating from one or more forcing 349 

variables, simplified assumptions of complex processes in the models and their physical structure, retrieval algorithms, and 350 

systematic biases, which might have inevitably propagated to the results presented herein. For example, the original GRACE 351 

mascon observations contain the measurement error and signal leakage at the gridded scale, which persists in the 352 

reconstruction of TWSA when training via the statistical methods (Humphrey and Gudmundsson, 2019; Li et al., 2021a). 353 

Unlike observed GRACE and reconstructed GRACE-like data, simulations from the models (GHMs, LSMs, and GCMs) are 354 

inherently featured by incomplete TWSA representation (Table S2). They are generally based on simplified hydrological 355 

processes, resulting in the lack of certain TWSA components. For example, the widely used Noah and VIC models lack 356 

surface water and groundwater storage in TWSA (Scanlon et al., 2018). Similarly, GCMs can only simulate the snow water 357 

and soil moisture within a limited depth from 2 to 10 m below the land surface (Xiong et al., 2022). This inadequate 358 

representation of the land mass (and hence TWSA) in these global models can lead to regional bias in some aquifers with 359 

overexploitation of the particular TWSA components (e.g., groundwater depletion in North China Plain). Despite the noted 360 
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inevitable uncertainties, a satisfactory accuracy in simulating TWS over large basins worldwide provides confidence in our 361 

results (Freedman et al., 2014; Pokhrel et al., 2021; Wu et al., 2021).  362 

Moreover, the eight CMIP6 GCMs are forced with the future projections of many meteorological variables such as 363 

precipitation and air temperature, which have been reported to show underestimation or overestimation over the global land 364 

(Eyring et al., 2016; Kim et al., 2020). Despite employing bias correction with GRACE data, uncertainty from the forcing 365 

and models can influence the accuracy of TWSA simulations (Xiong et al., 2022). Although it is challenging to explicitly 366 

attribute and quantify these uncertainties in the absence of a ‘true’ reference observation dataset, the ensemble averaging 367 

method has been used to integrate the multi-source TWSA data. The global distributions of NRMSE between GRACE 368 

observations and each ensemble member and their mean during April 2002-December 2014 show improved performance of 369 

the latter (Figure S7). Three GRACE reconstructions present relatively lower error than the GHMs and LSMs, especially in 370 

the high-latitude northern hemisphere, where snow, ice, and glaciers contribute more to TWS than other regions, which is 371 

not considered in most of the global models. The ensemble-mean solution illustrates reasonably good accuracy with the 372 

NRMSE generally below 0.2, highlighting the reduced uncertainty compared with the individual solution. The GRACE 373 

reconstructions compare better than other data because they are directly calibrated with the GRACE measurements during 374 

2002-2017, while their performances need more validation beyond the GRACE era (i.e., prior to April 2002 and during July 375 

2017-June 2018). Similar patterns are also evident from the probability density functions of NRMSE, of which there is an 376 

overall negative deviation in the ensemble-mean relative to other solutions except for the CSR reconstruction (see Figure S8). 377 

This outperformance of the ensemble dataset is ascertained by the increased correlation and decreased standard deviation as 378 

shown by the Taylor diagram (Figure S8). In addition, the comparison between GCM-modelled and GRACE-derived TWSA 379 

before and after bias correction in the past (April 2002-December 2014) is conducted (see Figure S9 and S10). The spatial 380 

distributions clearly show that the ensemble mean of eight GCMs outperforms each member globally, particularly in 381 

Australia, southern Africa, and North America. The outperformance become more obvious after bias coeection. An overall 382 

decrease in NRMSE is also observed according to the probability density functions after performing bias correction, which is 383 

also detected from the Taylor diagram results (see Figure S11). The largely reduced bias after bias correction and ensemble 384 

averaging give us condifence for the future projection of TWSA. 385 

To investigate the influence of different models and datasets on the robustness of the re-examination for the DDWW 386 

paradigm, we carried out an independent analysis at the individual member level (see Figure S12). For the historical period 387 

(1985-2014), a clear overestimation of the CSR reconstructions is detected, with 42.4% of the area agreeing with the 388 

DDWW pattern and 36.6% showing the opposite situation. Moreover, the modeled results from VIC and WGHM illustrate 389 

the underestimation of the area validating the DDWW paradigm, reaching 15.6% (WGHM) and 12.2% (VIC), respectively. 390 

Their proportion with the opposite DDWW paradigm is 10.2% (WGHM) and 17.8% (VIC), respectively. Therefore, it can be 391 

concluded that the differences among different members of DATASET limitedly affect the evaluation of the DDWW during 392 

the historical period. In the future (2071-2100), the GFDL-ESM4 model presents overestimation but the IPSL-CM6A and 393 

CanESM5 models have underestimation for different percentages compared with the ensemble mean. Specifically, the area 394 
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dominated by the DDWW paradigm changes from 8.9% (CanESM5) to 21.9% (GFDL-ESM4), while that showing the 395 

opposite pattern ranges from 7.8% (CanESM5) to 14.8% (GFDL-ESM4) under the SSP126 scenario. For the SSP245 396 

scenario, the DDWW-validated regions account for 7.4% (CanESM5) to 21.5% (GFDL-ESM4), the opposite pattern occurs 397 

over a range from 9.7% (CanESM5) to 16.0% (GFDL-ESM4) of land. The proportion supporting the DDWW paradigm 398 

varies from 10.4% (CanESM5) to 24.0% (GFDL-ESM4), while that presenting the opposite pattern ranges from 8.4% 399 

(CanESM5) to 22.3% (GFDL-ESM4) under the SSP585 scenario. Overall, the comparatively large difference among various 400 

models might source from unforced internal climate variability of distinctive CMIP6 members and different emission 401 

scenarios (Kumar et al., 2015). 402 

Our choice of the significance level (i.e., 0.05) may also affect the rationale of the DDWW examination results, thus 403 

different significance levels are alternatively tested (see Figure S13). At a significance level of 0.01, 22.2% of land area 404 

agrees well with the DDWW theory, while the 17.1% of area illustrates the opposite pattern during the period 1985-2014. As 405 

for the 0.1 significance level, the DDWW-validated regions account for 30.6% of the total area, with 25.4% of land agreeing 406 

with the opposite hypothesis. In the future period, a similar pattern is discovered that both DDWW-confirmed and DDWW-407 

opposed regions are increasing on account of the enhancement of projected strength of radiative forcing, with the reduction 408 

of the area showing insignificant trends in wetting and drying. However, the magnitudes of results at the 0.01 significance 409 

level are generally lower than that at the 0.1 significance level due to the different thresholds of detected trends in drying and 410 

wetting. Considering the similar tendency with marginal effects of the varying choices of the p-value (e.g., 8.4% change in 411 

DDWW area from 0.01 to 0.1 level), our adopted significance level (i.e., 0.05) can reasonably explain the global trends of 412 

dryness/wetness. 413 

Despite the multisource uncertainties, our study provides important implications for the long-term trends in 414 

dryness/wetness over global land in the past and future from the perspective of TWSA. Compared with other widely used 415 

indexes that are purely derived from the hydrometeorological variables (e.g., SPI, SPEI, and PDSI) or incorporate a single 416 

component of the TWSA (e.g., SSI, SGI, and SRI), our developed TWS-DSI describes the overall status of the land system, 417 

which is jointly influenced by different components including soil moisture, river runoff, and groundwater that play different 418 

roles in the hydrological cycle (Tapley et al., 2019). Furthermore, the projected changes in global TWSA and associated 419 

TWS-DSI improve our understanding of the large-scale hydrological response to climate change, particularly in regions with 420 

strong human interventions, such as the south and east of Asia. Despite the magnitude bias from satellite products, 421 

simulations of LSMs and GHMs, and GCMs projections, the ensemble averaging method has presented an effective and 422 

efficient ability to alleviate the multi-source uncertainty, which can be further applied over data-sparse areas globally with 423 

limited in-situ observations like Africa and central Asia. In addition, the regional aggregation of the analysis based on the 424 

IPCC AR6 SREX references regions provides an improved understanding of the TWSA dynamics in the past and valuable 425 

inferences for policymakers and stakeholders for better water resources management in a changing environment (Iturbide et 426 

al., 2020). 427 
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4 Conclusion 428 

In this study, the historical TWSA series over global land during 1985-2014 was calculated from the ensemble mean of 429 

nine model outputs, including three each from GHMs (VIC, WGHM, PCR-GLOBWB), LSMs (Noah, CLSM, CPC), and 430 

GRACE reconstructions (CSR, JPL, GSFC). Future TWSA projections from 2070 to 2100 under SSP126, SSP245, and 431 

SSP585 scenarios were derived from the average of eight selected CMIP6 GCMs after bias-correction using GRACE 432 

observations. Subsequently, TWS-DSI was estimated to detect the long-term trends in dryness/wetness in the past and future 433 

periods. Further, the DDWW paradigm has been re-examined with a significance level of 0.05 from the perspective of 434 

terrestrial water storage change. The uncertainty sourced from different choices of models, methods, and confidence levels 435 

has been discussed systematically. The new findings are summarised as follows. 436 

(1) During the historical period, 32.9% and 22.1% of land area present significant (p<0.05) drying and wetting trends, 437 

respectively. During the future period under climate change, the proportion of drying areas (always ~10% higher than 438 

wetting) with a significant slope increases from SSP126 (23.6%) to SSP585 (30.1%) scenario. A similar change is detected 439 

in the percentage with significant wetting trends, which reaches 15.7%, 17.4%, and 23.4% under SSP126, SSP245, and 440 

SSP585 scenarios, respectively. 441 

(2) A total of 28.1% of the global land area shows the DDWW paradigm valid, in which 16.7% and 11.4% of the area is 442 

drying and wetting, respectively during the period 1985-2014. 23.3% of the area, however, shows the opposite pattern like 443 

“dry gets wetter” (DW, 8.4%) or “wet gets drier” (WD, 14.9%), respectively. The proportion of areas supporting the DDWW 444 

paradigm is 18.2%, 17.4%, and 20.7% under SSP126, SSP245, and SSP585 scenarios, respectively. Alternatively, the area 445 

opposing the DDWW paradigm achieves 17.9%, 22.4%, and 28.5%, respectively. 446 

(3) The ensemble mean of TWSA generally compares better with GRACE observations during 2002-2014 than the 447 

individual solution, especially for the eight bias-corrected CMIP6 GCMs. Independent experiments based on the individual 448 

TWSA dataset suggest that the divergent choices of data source might lead to reasonable overestimations (CSR mascon) and 449 

underestimations (WGHM and VIC) for both the DDWW-agreed and DDWW-opposed patterns. Moreover, the use of 450 

distinctive GCMs suggests slightly overrated (GFDL-ESM4) and underrated (CanESM5) percentages of DDWW-pro and 451 

DDWW-con area in the future under multiple emission scenarios. 452 

(4) Sensitivity analysis on different choices of significance levels from 0.01 to 0.1 indicate similar patterns, in which 453 

22.2% (17.1%) of the land area supports (opposes) the DDWW theory historically under the 0.01 level, and the DDWW-454 

validated regions account for the 30.6% of total area with 25.4% of land agreeing with the opposite hypothesis under the 0.1 455 

level. Such consistency is also evidenced by the projected TWS-DSI in the future under various scenarios. 456 

New insights from the TWSA perspective highlight that the widely-used DDWW paradigm is still challenging in both 457 

historical and future periods under climate change. In addition, our developed ensemble-mean method can effectively and 458 

efficiently alleviate the uncertainty sourced from different data sources, implying an alternative way to assess the TWSA 459 

variations over major basins globally. The regional aggregation of our study based on IPCC SREX reference regions can 460 
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provide important inferences for decision-makers and stakeholders for the sustainable management and efficient utilization 461 

of water resources under global change. 462 
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