
TS1Global evaluation of the “dry gets drier, and wet gets wetter”
paradigm from a terrestrial water storage change perspective
Jinghua Xiong1, Shenglian Guo1, Abhishek2, Jie Chen1, and Jiabo Yin1

1State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
2School of Environment and Society, Tokyo Institute of Technology, Yokohama 226-8503, Japan

Correspondence: Shenglian Guo (slguo@whu.edu.cn)

Received: 12 May 2022 – Discussion started: 20 May 2022
Revised: 15 October 2022 – Accepted: 5 November 2022 – Published:

Abstract. The “dry gets drier, and wet gets wetter” (DDWW)
paradigm has been widely used to summarize the expected
trends of the global hydrologic cycle under climate change.
However, the paradigm is largely conditioned by choice of
different metrics and datasets used and is still comprehen-5

sively unexplored from the perspective of terrestrial water
storage anomalies (TWSAs). Considering the essential role
of TWSAs in wetting and drying of the land system, here
we built upon a large ensemble of TWSA datasets, including
satellite-based products, global hydrological models, land10

surface models, and global climate models to evaluate the
DDWW hypothesis during the historical (1985–2014) and
future (2071–2100) periods under various scenarios with a
0.05 significance level (for trend estimates). We find that
11.01 %–40.84 % (range by various datasets) of global land15

confirms the DDWW paradigm, while 10.21 %–35.43 % of
the area shows the opposite pattern during the historical pe-
riod. In the future, the DDWW paradigm is still challenged,
with the percentage supporting the pattern lower than 18 %
and both the DDWW-validated and DDWW-opposed pro-20

portion increasing along with the intensification of emission
scenarios. We show that the different choices of data sources
can reasonably influence the test results up to a 4-fold dif-
ference. Our findings will provide insights and implications
for global wetting and drying trends from the perspective of25

TWSA under climate change.

1 Introduction

The global hydrological cycle has experienced considerable
changes due to climate change and anthropogenic interven-
tions, exerting a tremendous impact on agriculture, ecologi- 30

cal environment, and freshwater availability globally (Shugar
et al., 2020; Perera et al., 2020; Gampe et al., 2021). As-
sessing the variations of constituent components of the wa-
ter cycle, namely, precipitation (P ), evapotranspiration (E),
runoff (R), and storage change, is therefore crucial in un- 35

derstanding the systematic hydrological response and deal-
ing with water-related issues in the context of global change
(Moreno-Jimenez et al., 2019; Zhao et al., 2021; Yin et al.,
2022). Under these circumstances, the “dry gets drier, and
wet gets wetter” (DDWW) paradigm, firstly introduced by 40

Held and Soden (2006), has become one of the most widely
used hypotheses to summarize the long-term trends in the
global hydrological cycle (Roderick et al., 2014; Yang et al.,
2019). Initially, it was developed based on the deficit between
precipitation and evapotranspiration (P −E), which is ex- 45

pected to increase due to the enhancement of atmospheric
water vapor in humid regions (i.e., convergence zones) under
a warming climate and decrease over arid regions (i.e., diver-
gence zones) (Durack et al., 2012). The DDWW paradigm
has been used to represent the historical and future trends 50

in various constituent components of the hydrologic cycle on
regional (Chou et al., 2009; Allan et al., 2010; Hu et al., 2019;
Zeng et al., 2019) and global scales (Held and Soden, 2006;
Donat et al., 2016). However, the rationale and validity of
the DDWW mechanism are recently questioned at different 55

levels through the growing number of datasets, model simu-
lations, and indicators (Polson and Hegerl, 2017; Yang et al.,
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2019; Y. Li et al., 2021). Byrne and O’Gorman (2015) used
simulations from 10 climate models to reveal an ocean–land
contrast pattern in the response of P −E to global warming
in historical (1976–2005) and future (2071–2099) periods,
highlighting the DDWW as a more suitable mechanism over5

ocean than over land. Given the fact that historical evalua-
tion of the DDWW paradigm was mainly based on oceanic
observations, Greve et al. (2014) adopted 2142 possible com-
binations of P −E to assess the trends in wetting and drying
over global land and discovered merely 10.8 % of the area10

following the DDWW pattern during the 1948–2005 period.
Roderick et al. (2014) revisited the DDWW paradigm, cau-
tioned about its interpretation owing to the different behav-
ior of land and ocean with respect to the water cycle, and
showed that the paradigm does not hold true in terms of pro-15

jected changes in the mean annual water balance over land.
Alternatively, Yang et al. (2019) integrated an ensemble of
six hydroclimatic indicators for the global assessment of the
DDWW paradigm between 1982 and 2012, suggesting the
phenomenon only occurred over 20 % of the global land. In20

a nutshell, there are great uncertainties still remaining in the
assessments and subsequent interpretation of global trends in
dryness and wetness under climate change (Dai, 2011; Tren-
berth et al., 2014).

The uncertainties within previous studies are mainly25

sourced from different choices of metrics adopted and
datasets used for evaluating the changes in dryness and wet-
ness (Vicente-Serrano et al., 2010; Feng and Zhang, 2015;
Huang et al., 2016). Specifically, the widely used metric
P −E over the ocean has been proven overwhelmingly pos-30

itive over land based on both observations and simulations,
revealing an ocean-dominated behavior (Greve et al., 2014;
Byrne and O’Gorman, 2015; Greve and Seneviratne, 2015).
Moreover, some meteorological indices derived from pre-
cipitation and evapotranspiration, such as the standardized35

precipitation evapotranspiration index (SPEI), aridity index
(AI), and standardized precipitation/evapotranspiration index
(SPI/SETI), do not capture the integrated response of the land
system due to the trade-off between the simplicity of meteo-
rological factors and computational requirements of process-40

based variables (Huntington, 2006; Dai, 2011; Slette et al.,
2020; Barnard et al., 2021). A few indices like the standard-
ized soil moisture index (SSI), standardized groundwater in-
dex (SGI), and standardized runoff index (SRI), however, fo-
cus on a single aspect of the water cycle and do not describe45

the integrated status of the terrestrial water storage (TWS)
(AghaKouchak, 2014; Wu et al., 2018; Guo et al., 2021). In
coupled human–natural systems, where the synergistic im-
pacts of natural and anthropogenic drivers are exceedingly
difficult to disentangle, an integrated representation of the50

land systems is of paramount importance for policymakers
(Rodell et al., 2018).

TWS, consisting of water storage in surface water, soil
moisture, groundwater, snow and ice, and canopies, can
physically provide integrated information about the overall55

status of the land, whose changes are closely linked to the
terrestrial wetting and drying tendency (Tapley et al., 2019;
Pokhrel et al., 2021). Apart from the societal and economic
importance, TWS plays a vital role in Earth system pro-
cesses, including climate, weather, and biogeochemical cy- 60

cles (Abhishek et al., 2021). Change in storage, i.e., the dif-
ference between the consecutive TWS values, is a key vari-
able of the hydrological cycle. Therefore, understanding the
spatiotemporal dynamics of past and future TWS is not only
essential for human life, but also crucial for assessing the 65

water cycle, planning, policymaking, and other management
strategies for water resources in a changing climate and for a
continuously increasing population (Abhishek et al., 2021).
There are several studies dealing with TWS or derived indi-
cators to assess freshwater availability (Rodell et al., 2018), 70

water storage dynamics (Scanlon et al., 2018), and droughts
and flood monitoring (Abhishek et al., 2021; Long et al.,
2014), among others. Divergent patterns of TWS changes
have been reported over arid and humid regions under the
combined effects of climate change (e.g., global warming), 75

climatic variability (e.g., ENSO), and human activity (e.g.,
groundwater pumping) (Chang et al., 2020; An et al., 2021;
Hu et al., 2021). However, there is no study to compre-
hensively examine the global variability and validity of the
DDWW paradigm in the past and future in terms of TWS 80

changes. Furthermore, divergent datasets produce different
trends in TWS due to distinctive internal variability and ex-
ternal forcing (from satellites and meteorological stations),
especially from precipitation and evapotranspiration (Chen
et al., 2020). For example, Scanlon et al. (2018) conducted 85

comprehensive comparisons between decadal trends in TWS
from seven global models and three Gravity Recovery and
Climate Experiment (GRACE) satellite solutions over major
basins globally and showed a large underestimation of the
increasing and decreasing trends of models primarily due to 90

human water use and forcing climate variations.
Therefore, to bridge the aforesaid research gap, we con-

duct a systematic evaluation of the DDWW paradigm
from the perspective of terrestrial water storage anomalies
(TWSAs) using an ensemble of five different TWS datasets, 95

including one GRACE reconstruction, two global hydrolog-
ical models (GHMs), and two land surface models (LSMs)
between 1985 and 2014. Subsequently, an alternative ensem-
ble of eight global climate models (GCMs) from the Coupled
Model Intercomparison Project 6 (CMIP6) is used to further 100

test the paradigm under various scenarios during the future
period (2071–2100). Utilizing the data from these models
and observation-based products, we further establish the met-
ric “P −E−R” in terms of the water balance equation for
intercomparisons with the test results from the aspect of the 105

TWSA and for highlighting the governing mechanisms of the
estimated disparities.
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2 Data and methods

2.1 Data preprocessing

We perform the assessment of the DDWW paradigm over
global land at both gridded 1◦× 1◦ cell and regional scales,
excluding Greenland and Antarctica. One of the global5

hotspots with significant changes in hydroclimatological
conditions (e.g., precipitation and air temperature) (Liu et al.,
2006; Zhang et al., 2017), i.e., the Qinghai–Tibetan Plateau
(QTP), is selected as a typical region for regional analysis
because it has experienced alarming TWS losses in recent10

decades and shows continuing declines under future scenar-
ios (Meng et al., 2019; Li et al., 2022). The QTP and its sur-
roundings which are called the world’s “Third Pole” play a
crucial role in the freshwater availability of more than 1.4 bil-
lion people (Immerzeel et al., 2010). The QTP is mainly cov-15

ered by polar tundra and is a cold and arid steppe climate re-
gion (Fig. S2 in the Supplement), causing the sparse distribu-
tion of in situ networks there (Wan et al., 2014). Thus, using
alternative methods such as remote sensing (e.g., GRACE)
and global model outputs (e.g., GHMs, LSMs, and GCMs)20

to study the hydrological variations in the QTP is of much
importance.

We use an ensemble of five TWSA datasets to evaluate
the DDWW paradigm during the historical period 1985–
2014, which includes one GRACE reconstruction, two global25

hydrological models (GHMs), and two global land surface
models (LSMs) (see Table 1 and next sections). Please note
that some studies may use the term GHMs to represent
both global hydrological and water resource models (GH-
WRMs) and LSMs together (Scanlon et al., 2018), while30

we use it only for the former one for distinction and sim-
plicity. Since no dataset presents the absolutely “true” value,
we demonstrate the individual results of each member to
avoid the uncertainty derived from different TWSA defi-
nitions in various models/products (Supplement Table S1).35

The missing months (12 % of the months, i.e., June 2002,
July 2002, June 2003, January 2011, June 2011, May 2012,
October 2012, March 2013, August 2013, September 2013,
February 2014, July 2014, and December 2014) of GRACE
measurements have been filled using a linear interpolation40

method. In addition, an ensemble of eight TWSA simula-
tions from CMIP6 GCMs is used to examine the DDWW
paradigm in the future period (2071–2100). The members
of the CMIP6 ensemble and all of the historical datasets
have been resampled to a 1◦× 1◦ scale using a bilinear in-45

terpolation approach for consistency and better comparison
in the spatial domain. The ensemble mean of CMIP6 mod-
els has been estimated using simple averaging because they
have the same simulation objects (Table S1). All the his-
torical datasets and CMIP6 members, as well as their en-50

semble, are represented as the long-term anomaly relative to
the baseline between 1985 and 2014. We also calculate the
metric P −E−R based on the water balance equation for

cross-comparison with the test results from the TWSA per-
spective. This metric is estimated using P , ET, and R from 55

the same models as those of TWSA (e.g., GHMs, LSMs,
and GCMs) for consistency. Moreover, an observation-based
combination is also derived as a benchmarking subset based
on precipitation (P ) from the Climatic Research Unit gridded
Time Series (CRU TS-v4.06; Harris et al., 2020), evapotran- 60

spiration (E) from the Global Land Evaporation Amsterdam
Model (GLEAM-v3.6; Martens et al., 2017), and runoff (R)
from the G-RUN ENSEMBLE (Ghigg et al., 2021) (Table 1).

2.1.1 GRACE and GRACE reconstructions

The GRACE (and GRACE Follow-On) missions have pro- 65

vided unprecedented estimates of monthly TWSAs world-
wide from April 2002 up to the present though with the 33
months missing because of instrumental issues and mission
interruption (Tapley et al., 2004). We use the GRACE mas-
con solution from the Center for Space Research at the Uni- 70

versity of Texas at Austin (UTCSR) to serve as the bench-
marking product from the period 2002–2014 (Watkins et al.,
2015). Compared to conventional GRACE products (e.g.,
spherical harmonic solutions), mascon solutions do not need
spatial (e.g., smoothing) or spectral (e.g., de-striping) filter- 75

ing or other empirical scaling and therefore have a higher
signal-to-noise ratio, higher spatial resolutions, and eventu-
ally reduced errors (Save et al., 2016; Watkins et al., 2015).
However, the GRACE observational products were not ad-
equate to assess the long-term trends of TWSAs due to 80

relatively short temporal coverage (∼ 20 years). Therefore,
we obtain the GRACE reconstruction provided by F. Li et
al. (2021) for evaluation of the DDWW paradigm, which is
generated using state-of-the-art machine learning and statis-
tical methods and is also trained by the consistent GRACE 85

mascon product from the UTCSR institution. The GRACE
reconstruction applies four meteorological variables (i.e.,
precipitation, 2 m air temperature, sea surface temperature,
and multiple climate indices) and three hydrological vari-
ables (i.e., soil moisture, runoff, and evaporation) to sim- 90

ulate the temporally decomposed GRACE signals (i.e., the
seasonal, interannual, and residual components) (F. Li et
al., 2021). We would like to mention that the linear trend
components in GRACE reconstructions are directly added
by the linear GRACE trends, which are mainly caused by 95

glacier melt and anthropogenic factors (e.g., dam construc-
tions and water abstractions). These factors are difficult to
predict using the climatic and hydrologic inputs and may
change over time (e.g., interannual and decadal variability),
causing the possible bias in the long-term trend estimates 100

from GRACE reconstructions. The accuracy and applicabil-
ity of the GRACE reconstruction have been fully evaluated
over global land in several previous studies (Xu et al., 2021;
Yi et al., 2021).
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2.1.2 Global hydrological models

We use two global hydrological models, including the Vari-
able Infiltration Capacity macroscale model (VIC-v4.1.2)
and the WaterGAP hydrological model (WGHM-v2.2d),
to estimate TWS and P −E−R for independent evalua-5

tion of the DDWW paradigm. The physically based, semi-
distributed, and grid-based VIC model is managed by the
NASA Global Land Data Assimilation System Version 2.0
(GLDAS-v2.0) (Liang et al., 1994; Syed et al., 2008). Forced
by the Global Data Assimilation System atmospheric anal-10

ysis fields (Derber et al., 1991) and the Air Force Weather
Agency’s AGRicultural METeorological modeling system
radiation fields, the VIC model can effectively capture the
terrestrial water cycle by simulating the water stored in the
canopies, snow, and soil moisture within three soil layers up15

to a depth of 200 cm. The VIC model has been widely used
to analyze terrestrial water storage changes at regional and
global scales (Hao and Singh, 2015; Hao et al., 2018). The
WGHM is a grid-based global hydrological model quanti-
fying the human water use and continental water fluxes for20

all land areas excluding Antarctica (Müller Schmied et al.,
2021). Unlike most global hydrological models, the WGHM
forced by the ERA40 and ERA-Interim reanalysis can sim-
ulate groundwater storage by coupling with global water
use models and linking model Groundwater-Surface Wa-25

ter Use (GWSWUSE), suggesting a comparably better rep-
resentation of TWS (Döll et al., 2014). Several frequently
used model outputs such as TWS, discharge, and water use
have been evaluated against global observations (Wan et al.,
2021). E and R from the VIC and WGHM models are also30

extracted for the calculation of the variable “P −ET−R”
by combining the P from their meteorological inputs of
GLDAS2.0.

2.1.3 Land surface models

We use two land surface models consisting of the Noah35

(v3.6) and Catchment (CLSM-vF2.5) models to calculate
TWS and P −E−R globally for parallel assessment of the
DDWW paradigm. Similar to the VIC model, both Noah
and CLSM models are managed by GLDAS (v-2.0) from
the NASA GSFC institute. GLDAS is a composite of global40

hydrological and land surface models that simulate the op-
timal fields of the land by using state-of-the-art data as-
similation and land surface simulation techniques (Rodell et
al., 2004). GLDAS has been widely used to compare with
GRACE TWSA in data-sparse regions such as Africa and45

the Qinghai–Tibetan Plateau (Ogou et al., 2022; Xing et al.,
2021). The Noah-modeled TWS is considered the sum of
canopy water storage, snow water equivalent, and soil mois-
ture of four layers with a total depth of 200 cm. Different
from that, the CLSM simulates shallow groundwater, and50

the vertical levels of soil moisture are not explicitly divided
within the depth of 100 cm. Similarly, we used the E and R

modeled by the CLSM and Noah models to calculate the in-
dex P −E−R. We note that the three GLDAS models (i.e.,
VIC, CLSM, and Noah) share the same P estimations due to 55

the consistent meteorological inputs, which might reduce the
bias in the estimates of the metric P −E−R.

2.1.4 Global climate models

We use a suite of eight global climate models belonging to
the ensemble “r1i1p1f1” of CMIP6 to evaluate the DDWW 60

paradigm under climate change. The CMIP6 serves as a cate-
gory of experiments of GCMs coupled to the dynamic ocean,
simple land surface, and thermodynamic sea ice (Eyring
et al., 2016). We choose these eight models out of the 34
CMIP6 models because they are the only models for which 65

TWSA outputs are available in both the historical and fu-
ture periods under multiple emission scenarios (see Table 1).
The CMIP6 (CMIP5) TWSA represents the sum of total soil
moisture and snow water equivalent, which has been compre-
hensively validated with the GRACE data, though with em- 70

bedded uncertainties, over global major river basins (Freed-
man et al., 2014; Wu et al., 2021). The CMIP6 comparisons
have become a diagnostic tool to better understand climate
change in past, present, and future periods (Eyring et al.,
2016), which includes a total of five Shared Socioeconomic 75

Pathways (SSPs) representing global economic and demo-
graphic changes under different greenhouse gas emissions.
We select three SSP scenarios including SSP126, SSP245,
and SSP585, representing the green roads, middle of the
road, and the highway road, respectively (Iqbal et al., 2021). 80

Since the GCMs have different TWSA definitions from the
“actual” TWSA observed by GRACE (Table S1), we em-
ploy a trend-preserving method to perform bias correction
combined with historical GRACE data. The trend-preserving
method initially developed by Hempel et al. (2013) modi- 85

fies the monthly means of the simulated data to match the
observed data using a constant offset between simulations
and observations and has been widely used in the Intersec-
toral Model Intercomparison Project (ISIMIP2b). The de-
tailed procedure of the bias correction for CMIP6 TWSA 90

has been described in detail in a recent study (Xiong et al.,
2022a). To show the difference before and after the bias
correction, we select two typical regions (i.e., Amazon and
Mekong River basins) with abundant surface and groundwa-
ter resources (Pham-Duc et al., 2019). Of the two selected 95

basins, the Mekong River basin experiences severe human
interventions such as groundwater pumping, dam construc-
tions, and urbanization, while the Amazon River basin is
considered one of the largest natural river basins with low
impacts of human activities (Xiong et al., 2022b). It is dis- 100

covered that the GCM simulations without bias correction
show obvious underestimations over two regions with large
uncertainty, which have, however, significantly reduced after
bias correction along with a lower spread range (Fig. S13).
The amplitudes of the GCM series are adjusted to nearly the 105
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same as GRACE data, with the long-term trends unaffected.
It is noteworthy that the trend-preserving method would not
affect the long-term trends of the GCM TWSA and, there-
fore, not influence our current DDWW evaluation results. In
addition to the TWSA, we also derive the predictions of P ,5

E, and R for the construction of the P −E−R to compare
with TWSAs similar to those from GHMs and LSMs.

2.2 Detection of wetting and drying

The TWSA, consisting of the water volume stored in the land
surface and subsurface, is applied to define the “wetting”10

and “drying” conditions of the landmass in this study. The
nondimensional TWS drought severity index (TWS-DSI) is
established at both 1◦× 1◦ grid cell and regional and global
scales, which is normalized by the regional hydroclimato-
logical variability because a given magnitude of TWS deficit15

could indicate different dryness and wetness conditions in
different climate regions. TWS-DSI has clear classification
categories based on the US Drought Monitor (USDM) and
is suitable for comparing the dryness and wetness status for
different locations and periods (Table S2). It has been widely20

used in hydrology and climate fields due to its simple struc-
ture and effective ability to capture drying and wetting condi-
tions (Pokhrel et al., 2021). The monthly TWS-DSI is calcu-
lated for all ensemble members and their mean from CMIP6
as follows (Zhao et al., 2017):25

TWS−DSIi,j =
TWSi,j −µj

σj
, (1)

where TWSi,j is the TWS value in year i and month j ,
and µj and σj denote the mean and standard deviation of
the annual TWS in month j , respectively. We convert the
monthly TWS-DSI into annual means to calculate the long-30

term trends using the linear regression method. We exam-
ine the first-order autocorrelation of each TWSA dataset
using the Durbin–Watson test (Durbin and Watson, 1950,
1951). We find a total of 20 % (GRACE reconstruction),
43 % (WGHM), 41 % (VIC), 23 % (CLSM), 29 % (Noah),35

and 20 % (GCM) of the grid cells not presenting autocorre-
lation during 1985–2014, respectively (Fig. S1). For the fu-
ture period, the percentage is 25 %, 26 %, and 22 % under the
SSP126, SSP245, and SSP585 scenarios, respectively. In this
case, the significance of the long-term trends is evaluated us-40

ing the modified Mann–Kendall trend test at a 5 % level to
avoid autocorrelation (Hamed and Rao, 1998). The modified
Mann–Kendall method uses the lag 1 autocorrelation coeffi-
cients to perform the bias correction for the data variance, in
which only the significant lags (at a 0.05 level) are selected.45

However, the original Mann–Kendall method would be used
if the selected lags cannot facilitate the variance correction
well. Similarly, we also estimate the long-term trends of the
index P −E−R for comparison with TWS-DSI using the
same methods. The area with a significant trend of increas-50

ing/decreasing TWS-DSI or P −E−R is considered to be

undergoing wetting/drying; otherwise, it is defined as a re-
gion with a nonsignificant trend.

To evaluate the DDWW paradigm over global land, the
effective aridity index (AI) is used to classify a grid cell 55

as an arid, humid, and transitional region following Yang
et al. (2019) because TWS-DSI/TWSA approximates zero
for the long-term mean. The AI is calculated as the ratio of
annual precipitation to potential evapotranspiration provided
by the CRU TS-v4.06 during the same period as TWS-DSI 60

(i.e., 1985–2014). The global distribution of multiyear aver-
age AI and the classifications during the 1985–2014 period
is presented in Fig. S3, which is also highly consistent with
the widely used Köppen–Geiger climate classification maps
(Beck et al., 2018) (Fig. S2). It can be seen that most of the 65

arid regions (AI< 0.5) are located in southwestern America,
north and south Africa, central Asia, Arabian regions, and
Australia, accounting for 39.3 % of the land. The percent-
age of humid areas (AI> 0.65) that are mainly located in
eastern America, the Amazon region, central Africa, south- 70

ern China, western Europe, and Russia reaches 52.8 % of
the land. An approximate 7.9 % of the land area is defined
as the transitional region, referring to an intermediate be-
tween arid and humid climates. The transitional region gen-
erally lies in the shared boundaries of the humid and arid re- 75

gions (e.g., western America, northern Canada, central Asia,
western Africa, eastern Russia, and Australia). The DDWW
paradigm is evaluated at a 5 % significance level (trend esti-
mates) in this study, combined with the standard AI-derived
climate classifications. We calculate the global mean trends 80

of TWS-DSI using a spatially weighted method to account
for the changing area of grid cells with latitudes. The per-
centage of different change patterns (e.g., DD, dry gets drier,
and WW, wet gets wetter) is calculated as the ratio of the
corresponding land area to the global sum. Thus, a few miss- 85

ing grid cells in datasets (6 %, 1 %, 3 %, and 1 % for GRACE
reconstruction, WGHM, GLDAS, and GCMs, respectively)
may marginally affect our final results.

3 Results and discussion

3.1 Global trends of dryness and wetness 90

We firstly assess the reliability of the GRACE reconstruc-
tion, GHMs, and LSMs by comparing them with the GRACE
observations. Figure S4 presents the global distribution of
the normalized root mean square error (NRMSE) between
the GRACE TWSA and different products during the pe- 95

riod April 2002–December 2014, with the NRMSE calcu-
lated as the ratio of RMSE to the differences between the
maximum and minimum GRACE TWSA. The GRACE re-
construction shows the best performance over five TWSA
datasets, with the NRMSE generally lower than 0.2, with 100

nearly half of the land area showing a NRMSE below 0.1.
In particular, NRMSE ranging from 0.1 to 0.3 occurs in
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western and central Asia, northern China, southern Aus-
tralia, eastern Russia, northern and southern Africa, and cen-
tral North and South America (Fig. S4). Two GHMs (i.e.,
WGHM and VIC) and two LSMs (CLSM and Noah) present
a similar spatial pattern of NRMSE to the GRACE recon-5

struction but with a relatively higher bias, among which
the VIC model outperforms the other three models. The
CLSM model shows comparatively poor performance, which
is also confirmed by the probability density distributions of
NRMSE compared with GRACE (Fig. S4). The better per-10

formance of the GRACE reconstruction over other data may
be because they are directly calibrated with the GRACE
measurements during 2002–2017, while their performances
need more validation beyond the GRACE era (i.e., prior to
April 2002 and during July 2017–May 2018). A temporal15

comparison of global average TWSA derived from GHMs,
LSMs, GRACE reconstruction, and CMIP6 and GRACE dur-
ing 2002–2014 is shown in Fig. S5. The GRACE TWSA
ranges from roughly −20 to 20 mm and shows obvious sea-
sonal characteristics. A similar temporal pattern is captured20

by various models, with the change spread covering the
variations of GRACE data. The NRMSE between multiple
datasets and GRACE data ranges from 0.08 (GRACE recon-
struction) and 0.16 (Noah), coinciding with the strong corre-
lation within different datasets (Figs. S4 and S6). Moreover,25

the fluctuation range of the CMIP6 is generally larger than
different historical models/products, highlighting the consid-
erable uncertainty sourced from different forcing variables
and model parameterizations. Then, we examine the differ-
ence between GCMs-simulated TWSA before and after the30

trend-preserving bias correction using GRACE. It is discov-
ered that their correlation coefficients improve by compar-
ing with GRACE, while slightly decreasing within the eight
GCMs, which can be attributed to the introduced uncer-
tainty when performing the bias correction (Fig. S7). In ad-35

dition, the spatial distributions clearly show that the ensem-
ble mean of eight GCMs outperforms each member globally,
particularly in Australia, southern Africa, and North America
(Figs. S8 and S9). The better performance becomes more ob-
vious after bias correction. An overall decrease in NRMSE is40

also observed according to the probability density functions
after performing bias correction, which is also detected from
the Taylor diagram results (see Fig. S10). We also provide the
evaluation of the bias-corrected TWSA changes (i.e., TWSC)
using the water balance estimates (i.e., P −E−R=TWSC)45

during 1985–2014 (Figs. S11 and S12). The observation-
based water balance estimates correlate well with GRACE
TWSA and GCM-modeled P −E−R with a correlation co-
efficient of 0.62 and 0.93, respectively. The GCM-simulated
changes in TWSA also present a strong correlation with the50

observed P−E−R before and after bias correction. The spa-
tial distribution of correlation coefficients between TWSC
from observations and GCMs with and without bias correc-
tion shows that the performances in regions with good accu-
racy, like Alaska, western parts of the Tibetan Plateau, and55

northern Russia, decrease after bias correction, which might
be caused by the simplified treatment of permafrost in GCMs
due to the prevailing uncertainties in, e.g., changes in thermo-
physical properties of the soil during freezing and thawing
cycles (Burke et al., 2020). Conversely, the areas with rela- 60

tively poorer accuracy before bias correction, such as north-
ern Africa and northern South America, slightly improve af-
ter bias correction. Notwithstanding the observed differences
in some regions, our trend-preserving method used for bias
correction would not influence the long-term trend estima- 65

tions of both TWSA and TWS-DSI and therefore does not
impact our evaluation of the DDWW paradigm (Hempel et
al., 2013). Although bias correction has been performed on
the CMIP6 TWSA, some biases inherent to the uncertainty in
parameters, hydrometeorological forcing, and internal vari- 70

ability of GCMs still exist, which may influence the assess-
ment of the DDWW paradigm in the future period (2071–
2100) climate change.

We assess the long-term trends of TWS-DSI during the
historical period 1985–2014 (based on a GRACE reconstruc- 75

tion, two GHMs (WGHM and VIC), two LSMs (CLSM and
Noah), and the ensemble mean of eight GCMs) and the fu-
ture period 2071–2100 (based on the ensemble mean of eight
GCMs) under SPSP126, SSP245, and SSP585 scenarios to
provide insights into the terrestrial water storage changes 80

for the DDWW paradigm (Figs. 1 and S14). The GRACE
reconstruction, having the best accuracy among all other
model-based TWSA, is selected for detailed analysis, which
also shows the highest proportion of areas with significant
trends. During the historical period, a clear spatial homo- 85

geneity (clustered patterns) of TWS-DSI trends is observed
globally, and the average TWS-DSI has a significant decreas-
ing slope of −0.11 yr−1 (p<0.05) (Fig. 1), similar to the re-
sults from SPI, SPEI, and AI (Wang et al., 2018; Yang et al.,
2019), together with the results from other models (WGHM: 90

−0.07 yr−1, VIC: −0.05 yr−1, CLSM: −0.06 yr−1, Noah:
−0.04 yr−1, the ensemble mean of GCMs: −0.05 yr−1).
Spatially, severe drying (p<0.05) exists on the coast of
the Gulf of Alaska, the Canadian archipelago, Chile, and
the QTP, with significant slopes of TWS-DSI ranging from 95

−0.09 to −0.12 yr−1 (Fig. 1), which is caused by the rapid
melt of ice sheet, glacier ablation, and increase in the ac-
tive permafrost layer under a warming climate (Luthcke et
al., 2013; Velicogna et al., 2014). Triggered by severe his-
torical droughts and extensive water use from groundwater 100

and surface water over decades, the drying trends in north-
ern Canada, southern California, and Texas can be clearly
discovered, with a decreasing trend of TWS-DSI ranging
from−0.06 to−0.12 yr−1 (p<0.05) (Bouchard et al., 2013;
Haacker et al., 2016), as in eastern Brazil (Getirana, 2016). 105

Moreover, overwhelming groundwater depletion due to un-
sustainable human water use such as irrigation is responsible
for the increasing dryness at significant slopes, ranging from
−0.09 to −0.12 yr−1 in southeastern and northern regions
of Africa, eastern and central Europe, central Asia, north- 110
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ern China, and northern India (Rodell et al., 2009; Feng et
al., 2013; Ramillien et al., 2014; Peña-Angulo et al., 2020;
Xiong et al., 2022c). The decreasing TWS-DSI is also re-
ported over European Russia because of the decline in the
storage of surface and ground waters (Grigoriev and Frol-5

ova, 2018). Additionally, the significant decreases in TWS-
DSI ranging from −0.09 to −0.12 yr−1 (p<0.05) around
the Caspian and Aral seas are seen, which are from the re-
ductions of inflow discharge and precipitation as well as
evapotranspiration increase (Zmijewski and Becker, 2014).10

Naturally, a moderate drying trend in southwestern Africa
and central Mediterranean Europe caused by precipitation
decrease is detected by the reduction of TWS-DSI (−0.06
to −0.12 yr−1) (Peña-Angulo et al., 2020). Conversely, in-
creasing precipitation dominates the wetting trend in midlat-15

itude regions, including southern Russia and Canada, west-
ern Africa, southeastern and southwestern Europe, south-
east Asia, and northwestern China, with significant slopes
roughly ranging from 0.06 to 0.12 yr−1 (Fig. 1) (Siebert et
al., 2010; Ndehedehe et al., 2017; Peña-Angulo et al., 2020).20

Some regions, such as the Amazon River basin, south Africa
and eastern Australia, presenting wetting trends, are consid-
ered to experience a climatic shift from the dry to the wet pe-
riod (Chen et al., 2010; Gaughan and Waylen, 2012). When
looking at the test results of the GHMs and LSMs, we no-25

tice the regional differences with generally consistent spa-
tial patterns with the GRACE reconstruction. For example,
the WGHM model shows depletion trends in TWS-DSI for
the southwest of the South American continent. The three
GLDAS models (i.e., VIC, CLSM, and Noah) do not cap-30

ture the increasing trends in southern China (i.e., Yangtze
and Pearl River basins), of which the VIC model surprisingly
shows the increasing trends over the Arab region. We addi-
tionally compare the trend estimations of the GCMs’ ensem-
ble mean during the 1985–2014 period (Figs. 1 and S14). De-35

spite the overall similarity to the above-mentioned datasets,
the existing regional differences in western southern Africa
(drying) and western Asia (wetting) compared with multiple
models provide additional insights, indicating the great po-
tential of the CMIP6 ensemble in TWSA projections.40

Further, we perform an independent assessment based on
the metric P −E−R for comparison with the TWS-DSI
results to reveal the inherent mechanisms of the changes
(Figs. 2 and S15). The observational product of the variable
P −E−R presents a similar pattern to the test results us-45

ing TWS-DSI though with nonsignificant trends over most
regions. This can be explained by the fact that the magni-
tude of the changes in the water storage, i.e., TWSC, in a
region is minimal compared to that of the TWSA trends (Lv
et al., 2021). In particular, the decreasing P −E−R (i.e.,50

TWSC) in southwestern South America, northern and south-
ern Africa, western Australia, northern China, European Rus-
sia, and central Asia is observed with trends < −2 mm yr−1,
while increasing trends in northern Canada, Central America,
central Africa, eastern Australia, southern India, and south-55

ern and eastern Russia are found with rates>2 mm yr−1. The
local differences over the Arab region, south China, and the
Caspian region might be caused by the propagated uncer-
tainty in multiple observational datasets, especially for the
arid regions (e.g., northern Africa and western America), 60

where accurately estimating E is very challenging (Goyal,
2004). For southern China, consisting of the Yangtze and
Pearl River basins, the difference might arise from the exten-
sive reservoir filling, such as the Three Gorges Dam (Zhong
et al., 2009), highlighting the significant role of human ac- 65

tivities in the regional variations of TWS. Similarities are
also seen over the land around the Caspian Sea, which is
largely affected by the direct diversions and extractions of
water from the rivers that sustain it (e.g., Volga River) instead
of the conventionally dominant precipitation/evapotranspira- 70

tion patterns over the sea surface (Rodell et al., 2018). It is
worth mentioning again that the P−E−R equals the changes
in TWSAs (TWSC) rather than TWSAs in terms of the water
balance equation. Therefore, unlike TWSAs, there are no sig-
nificant trends in P −E−R over most regions of the world, 75

which is also mentioned by several previous studies (Lv et
al., 2019, 2021). Intercomparisons with the GHMs and LSMs
further confirm our observation-based evaluations, with rel-
atively fewer magnitudes and significance derived from the
substantial uncertainties in simulated E and R. In this case, 80

we find an abnormal wetting trend in southwestern America,
which might be caused by the severe groundwater pump-
ing and water diversion implicitly considered in the metric
P−E−R (Perrone and Jasechko, 2017). Satisfactory consis-
tencies of GHMs and LSMs are also discovered by compar- 85

ing each subset of P−E−R to the corresponding test results
using TWS-DSI. The historical simulations of P −E−R
from the ensemble mean of eight GCMs also compare rea-
sonably well with different subsets, though showing the spa-
tial differences over certain regions (e.g., central Europe and 90

south Africa).
Furthermore, we investigate the long-term trends in P ,

E, and R, respectively, to explain the mechanisms for the
changes in land mass wetness/dryness (Figs. S16–S18). Dif-
ferent products and models show consistent spatial patterns 95

for P , in which significant (p<0.05) increasing trends are
detected in eastern North America (5–10 mm yr−1), cen-
tral Amazon (10–20 mm yr−1), northern central and south-
ern Africa (0–5 mm yr−1), northern Mediterranean basin
(5–10 mm yr−1), northwestern China (0–5 mm yr−1), east- 100

ern Russia (0–5 mm yr−1), northern Europe (0–5 mm yr−1),
and northern Australia (0–10 mm yr−1). However, decreas-
ing trends over some areas, including northern Canada (−5–
0 mm yr−1), southwestern parts of the United States (−10
to −5 mm yr−1), central South America (−15–0 mm yr−1), 105

Arab regions (−5–0 mm yr−1), and northeastern India (<−
20 mm yr−1) also exist. In terms of E, multiple datasets il-
lustrate generally similar trend distributions with the regional
variability in specific areas (e.g., central Africa and Amazon
River basin). Significant increases in E are observed over 110
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southern and northern Asia, northern Australia, central and
northern Europe, eastern North America, and southern and
central northern Africa by all the datasets, with the trends
mainly ranging from 0 to 6 mm yr−1. This increase might
be caused by the warming climate and precipitation changes5

(Wang et al., 2022). However, we also notice the decreasing
trends in the western United States (−4–0 mm yr−1), cen-
tral South America (−8 to −4 mm yr−1), and Arab regions
(−2–0 mm yr−1), probably related to the heavy land-cover
changes (Ruscica et al., 2022). Moreover, we discover over-10

all similarities among trend estimates in R from different
datasets, which are mainly dominated by the precipitation
changes regionally with relatively lower amplitudes (roughly
between −12–12 mm yr−1) except for arid central Asia and
eastern Europe. In addition, we want to mention that despite15

the general agreement with different observational products
and models, the GCM-based historical trends estimates may
have significant uncertainties over some regions, including
southern Africa, western America, Amazon, and central Asia
(Figs. S16–S18), and hence caution should be taken when20

interpreting the regional wetting/drying trends in the future
scenarios over these regions.

When looking into the respective contributions of P , E,
and R to the changes in P −E−R, we find P controls the
variations of P −E−R over the majority of the land, in-25

cluding North America, Australia, eastern Russia, northern
Europe, and northern Africa. The trends in P over these re-
gions are apparently larger than those of E and R, result-
ing in good agreement with P −E−R. Similarly, E governs
the changes in P −E−R for southern Africa, northwestern30

India, southern China, the majority of Europe, and central
Russia. It is worth noting that P , E, and R jointly cause the
changes in P −E−R for South America since P and E/R
have opposite trends based on the observational products.
The Malay Archipelago, including Indonesia and Malaysia,35

present consistent increasing trends in P , E, and R; thus,
the approximately identical contribution of these variables
can be attributed. However, it should be noted that the vari-
ability of either of these three water balance components (or
their combination) may not always translate to the changes40

in TWSA because human interventions such as reservoir im-
poundment, water diversion, and groundwater pumping may
substantially alter the natural water cycle, as we have dis-
cussed previously, taking the Yangtze River basin as an ex-
ample (e.g., filling of the reservoirs). Although these changes45

can also be included in the climatic and hydrologic observa-
tions in an indirect/implicit way (e.g., increase of E from
water impoundment or increase in soil moisture from infil-
tration), these signals are very difficult to be captured given
the considerable uncertainty in different datasets, causing the50

nonclosure of the water balance (Lehmann et al., 2022). In
this case, the assessment of the dryness and wetness from the
TWSA perspective becomes more necessary and convincing.

3.2 Future projections using ensemble CMIP6 outputs

We project the multimodel ensemble mean trends under 55

different climate change scenarios (SSP126, SSP245, and
SSP585) during the future period 2071–2100 using both
TWS-DSI and P −E−R (Figs. 1, 2, S14, and S15). Favor-
ably good agreement between TWS-DSI and P −E−R is
detected, with the latter presenting a less significant trend, 60

similar to the observations made in previous studies (Lv et
al., 2019, 2021). However, we also discover the differences
between TWS-DSI and P −E−R over a few high-latitude
regions such as northern North America and Russia, which
show the wetting trend in P −E−R due to precipitation 65

increase while drying in TWS-DSI probably because of the
snowmelt under global warming. GCMs present higher spa-
tial heterogeneity than the historical datasets such as GHMs
and LSMs, possibly due to the original coarse spatial res-
olution of the GCMs and the biases in the models. Specif- 70

ically, all three scenarios confirm the significant (p<0.05)
wetting trends in northern China, southern Mongolia, cen-
tral Asia, the northern border of Canada, and southern Eu-
rope, with the increase in the intensity and spread along
with the enhancement of climate scenarios (Figs. 1, 2, S14, 75

and S15). Similarities are found in the drying trends in the
majority of Russia, northern North America, and southern
Africa. The wetting trends are apparently caused by the in-
crease in precipitation (Fig. S16) (Milly et al., 2005; Senevi-
ratne et al., 2006). The arid Arab region is also projected 80

to become wetter based on TWS-DSI, possibly because of
the increase in precipitation. Conversely, the drying trends
are mainly controlled by the rapidly intensifying evapo-
transpiration in a warming climate (Fig. S17) (Allen et al.,
2010; Vicente-Serrano et al., 2010), with the precipitation 85

and runoff slightly increasing (Figs. S16 and S18). The ob-
vious drying trend around Canada’s subarctic lakes might
be related to the high vulnerability to droughts when snow
cover declines under increasing temperature (Bouchard et
al., 2013). However, there are scenario-variable divergences 90

over the regions of South America, Australia, India, and the
Mediterranean basin, which are generally caused by the var-
ious patterns in precipitation under different scenarios with
the decreasing/increasing evapotranspiration over there. The
runoff also follows the patterns of precipitation but with com- 95

parably lesser magnitudes.
We conduct a regional study for the QTP as an indicator

for global climate change and to demonstrate the temporal
changes in the regional dryness and wetness during 1985–
2100 (Figs. S19–S20). A significant decrease in the TWSA 100

and the derived TWS-DSI is observed during the reference
period 1985–2014 based on different datasets except for the
WGHM output. The depletion trend is consistent with previ-
ous studies reporting the sublimation/ablation of glaciers and
ice caps due to climate warming over decades (Huang et al., 105

2013, 2021). The drying QTP is also evidenced by the met-
ric P −E−R with a nonsignificant trend based on various
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Figure 1. Global distribution of the classification in long-term trends in TWS-DSI during (a–f) the historical (1985–2014) and future (2071–
2100) periods under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note that the historical results are based on the (a) GRACE recon-
struction, (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The future results are based on
the ensemble of eight GCMs. “D” and “W” indicate regions with drying and wetting trends, respectively.

Figure 2. Global distribution of the classification in long-term trends in P −E−R during (a–f) the historical (1985–2014) and future (2071–
2100) periods under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note that the historical results are based on the (a) observation-based
products (i.e., CRU P , GLEAM E, and GRUN R), (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs,
respectively. The future results are based on the ensemble of eight GCMs. “D” and “W” indicate regions with drying and wetting trends,
respectively.

datasets, in which both precipitation and evapotranspiration
increase. In addition, the QTP is expected to undergo con-
tinuous drying trends based on TWSA and TWS-DSI stem-
ming from a warming climate, which can be more intensive
under higher climate scenarios from SSP245 and SSP5855

conditions (Fig. S19). Similarly, regional precipitation and
evapotranspiration also show increasing patterns, with the
runoff generally unchanged (except during the end of the 21st

century under the SSP585 scenario). However, the variable
P−E−R does not present decreasing trends like the TWSA 10

(and TWS-DSI). The differences might be attributable to the
biases in the projected evapotranspiration and runoff, which
might underestimate some key components such as an in-
crease in sublimation and surface runoff due to warming-
induced melt of ice, snow, and glaciers. Despite this, it is 15

worth noting that the modeled TWS-DSI-based evaluation
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can also overestimate the true trend of the land mass because
the important surface water is not physically considered in
several models (e.g., Noah), especially in the context of sig-
nificantly growing lake volume over the QTP (Zhang et al.,
2021).5

3.3 Assessment of the DDWW paradigm

Combined with the climate regions classified by AI, we fur-
ther test the DDWW paradigm at a 5 % significance level us-
ing both TWS-DSI and P−E−R over global land in the past
and future (Figs. 3 and 4). We observe apparent consistency10

in the spatial distribution of the test results based on different
indices except for the high-latitude regions under future pro-
jections, in line with the long-term trend estimations, while
the land area having significant patterns from TWS-DSI is
more than that from P −E−R as investigated previously. In15

addition, different datasets (e.g., GHMs and LSMs) produce
reasonably consistent spatial distributions except for the re-
gional variabilities over certain regions such as North Africa.
We also note that relatively larger biases could occur in sev-
eral regions including the western United States and central20

Asia, highlighting the uncertainties in the future projections
based on the CMIP6 GCMs. As reported in Table S3, lim-
ited proportions (< 10 %) of area illustrating the “transition
gets drier” (TD) and “transition gets wetter” (TW) patterns
are estimated in both past and future periods. Much of the25

land area over the Arab regions, eastern Asia, and the south-
western United States shows the “dry gets drier” (DD) phe-
nomenon. In contrast to that, a substantial portion of area
over the arid regions of northern and southern Africa, Aus-
tralia, and central Asia shows the “dry gets wetter” (DW) hy-30

pothesis. Moreover, the “wet gets wetter” (WW) paradigm
is mainly confirmed in eastern Russia, northern Amazon,
southern China, and the eastern United States, with the “wet
gets drier” (WD) pattern happening in central Africa, east-
ern Amazon, middle Europe, western Canada, and north-35

ern Asia. The differences between test results from TWS-
DSI and P −E−R are mainly in southern China and lands
north of the Caspian Sea, which are caused by the divergent
meanings in the metrics. For example, a significant increase
in E over southern China is shown as the drying trends of40

P −E−R, instead of the wetting trends of TWS-DSI in-
duced by the extensive reservoir impoundment (e.g., Three
Gorges Dam). The differences are highlighted by the future
projections over high-latitude regions such as northern Rus-
sia and North America as well as central Africa, especially45

under the SSP585 scenario. Despite this, a similar pattern re-
vealed by both variables under the SSP126 scenario shows
the continued tendency when compared with the historical
results (Figs. 3 and 4). However, some regions like south-
ern Europe and southeastern South America present strong50

wetting trends due to an increase in precipitation (Coppola et
al., 2021); the opposite changes are discovered over northern
South America. Nevertheless, the SSP245 scenario presents

a slightly different distribution from historical results, with
many regions in northern and central Asia and central Europe 55

showing DW and WW situations instead of DD and WD.
In addition to that, the southern and northwestern parts of
China, together with the majority of Russia, show the WD
situation, while the DD paradigm is gradually dominating
Australia. This difference is further confirmed based on the 60

results under the SSP585 scenario (Figs. 3 and 4). These re-
sults correspond with the climatic and hydrologic fluxes such
as P ,E, andR as well as their residuals (P−E−R), indicat-
ing the consistency between the atmospheric and terrestrial
conditions under climate change. 65

Global statistics of the regions with various patterns dur-
ing the historical (1985–2014) and future (2071–2100) peri-
ods are shown in Fig. 5. During the 1985–2014 period, a per-
centage of as high as 82.8 % of the land area shows signifi-
cant trends in either wetting or drying (p<0.05) based on the 70

GRACE reconstruction. Further, 40.84 % of the area shows
the DDWW paradigm, in which 20.17 % and 20.67 % of the
area is drying and wetting, respectively; 35.43 % of the area,
however, shows the opposite pattern of DW (16.13 %) and
WD (19.30 %), respectively. The percentages of the global 75

land supporting/opposing the DDWW paradigm from the
GHMs and LSMs are relatively lower than those from the
GRACE reconstruction using TWS-DSI, which are reflected
by the fewer proportions with significant trends. For exam-
ple, the percentage of the land area showing the DDWW 80

paradigm ranges from 11.01 % (VIC) to 18.95 % (Noah)
and from 10.21 % (WGHM) to 16.4 % (VIC) for the oppo-
site pattern. The test results based on P −E−R indicate
a similar mismatch of the DDWW paradigm with 12.54 %
and 6.62 % of the land area validating and combating the 85

DDWW paradigm, respectively, based on the observational
products (Fig. S21 and Table S4). Nevertheless, GHMs and
LSMs report nonsignificant trends (p>0.05) over more than
90 % of land area. In short, the confirmed percentage for the
DDWW paradigm (11.01 % to 40.84 %) for the land mass 90

(represented by TWS-DSI) in our study is higher than that for
the land surface (represented by precipitation, evaporation,
and aridity) in a previous study (10.8 %) (Greve et al., 2014).
Feng and Zhang (2015) used soil moisture to conclude that a
proportion of 15.12 % followed the DDWW pattern, while a 95

percentage of 7.7 % of the land showed an opposite pattern
between 1979 and 2013, which is relatively lower than our
study. Yang et al. (2019) applied a combined measure em-
ploying six different drought indices to evaluate the DDWW
paradigm and discovered the percentage following and op- 100

posing the DDWW paradigm is 29 % and 20 %, respectively,
during the 1982–2012 period, typically consistent with our
study. Chang et al. (2020) utilized the GRACE data during
2002–2017 and reported that the area having the DDWW
pattern reached 11.2 % except for 4.7 % of cold regions over 105

global land, which is comparatively lower than our study.
Observed differences among various studies are attributed to
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Figure 3. Global assessment of the DDWW paradigm based on TWS-DSI during the (a–f) historical (1985–2014) and (g–i) future (2071–
2100) periods under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note that the historical results are based on the (a) GRACE recon-
struction, (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The future results are based on the
ensemble of eight GCMs. DD indicates the dry gets drier, DW indicates the dry gets wetter, WW indicates the wet gets wetter, WD indicates
the wet gets drier, TD indicates the transition gets drier, and TW indicates the transition gets wetter.

Figure 4. Global assessment of the DDWW paradigm based on P −E−R during the (a–f) historical (1985–2014) and future (2071–2100)
periods under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note that the historical results are based on the (a) observation-based
products (i.e., CRU P , GLEAM E, and GRUN R), (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs,
respectively. The future results are based on the ensemble of eight GCMs. DD indicates the dry gets drier, DW indicates the dry gets wetter,
WW indicates the wet gets wetter, WD indicates the wet gets drier, TD indicates the transition gets drier, and TW indicates the transition
gets wetter.

the differences in datasets used, metrics employed for assess-
ment and their governing mechanisms, and the study period.

In climate model projections, the proportion of areas
supporting the DDWW paradigm is 14.66 %, 14.26 %, and
17.08 % under SSP126, SSP245, and SSP585 scenarios,5

respectively, for TWS-DSI. Alternatively, the fraction of

the global land area having the opposite DDWW pattern
achieves 13.84 %, 18.72 %, and 26.64 %, respectively. The
percentage of areas with significant wetting and drying trends
slightly increases over the enhancement of emission scenar- 10

ios, consistent with the increase of DDWW-validated areas
from SSP126 to SSP585 scenarios (Figs. 3 and 4). The evalu-
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Figure 5. Fraction of the global land area (in percentage) with
different patterns during the (a–f) historical (1985–2014) and (g–
i) future (2071–2100) periods under (g) SSP126, (h) SSP245, and
(i) SSP585 scenarios based on TWS-DSI. Note that the historical
results are based on the (a) GRACE reconstruction, (b) WGHM,
(c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight
GCMs, respectively. The future results are based on the ensemble
of eight GCMs. DD indicates the dry gets drier, DW indicates the
dry gets wetter, WW indicates the wet gets wetter, WD indicates the
wet gets drier, TD indicates the transition gets drier, and TW indi-
cates the transition gets wetter. Nonsignificant indicates the regions
showing nonsignificant (p>0.05) trends in TWS-DSI.

ation results from the perspective of P −E−R are generally
lower than 5 % because of the nonsignificant trends in the
variable, highlighting the unsupported DDWW paradigm in
this regard. However, as we have mentioned previously, the
internal variability of climate models might affect the poten-5

tial agreement with the DDWW pattern (Kumar et al., 2015),
which is also reflected by the differences between the GCMs
and different models/products during the historical period
(Tables S3–S4). Greve and Seneviratne (2015) used climate
projections from CMIP5 to establish the measure P −E for10

the assessment of the DDWW paradigm and discovered the
hypothesis was validated over 19.5 % of land area between
2080 and 2100 under the RCP8.5 scenario, which is close
to our result (17.08 %). Moreover, Y. Li et al. (2021) further
applied the P −E index to test the DDWW theory based on15

GCMs from the third phase of Paleoclimate Modelling Inter-
comparison Project (PMIP3) simulations, concluding a sim-
ilar proportion of 22.8 % of the global land to our study that
reflected the DDWW paradigm. This similarity reveals the
consistent terrestrial responses to the atmospheric variations20

under future warming for both metrics.

3.4 Uncertainties, implications, and way forward

Each ensemble member of the datasets used in this study
has embedded uncertainties inherently originating from one
or more forcing variables, simplified assumptions of com- 25

plex processes in the models and their physical structure, re-
trieval algorithms, and systematic biases, which might have
inevitably propagated to the results presented herein. For ex-
ample, the original GRACE mascon observations contain the
measurement error and signal leakage at the gridded scale, 30

which persists in the reconstruction of TWSA when train-
ing via statistical methods (F. Li et al., 2021). Unlike ob-
served GRACE and reconstructed GRACE-like data, simu-
lations from the models (GHMs, LSMs, and GCMs) are in-
herently featured by incomplete TWSA representation (Ta- 35

ble S1). They are generally based on simplified hydrologi-
cal processes, resulting in the lack of certain TWSA com-
ponents. For example, the widely used Noah and VIC mod-
els lack surface water and groundwater storage in TWSA
(Scanlon et al., 2018). Similarly, GCMs can only simulate 40

the snow water and soil moisture within a limited depth from
2 to 10 m below the land surface (Xiong et al., 2022a). This
inadequate representation of TWSA (and hence TWS-DSI)
in these global models can lead to regional bias in some
aquifers with overexploitation of the particular TWSA com- 45

ponents (e.g., groundwater depletion in North China Plain)
and therefore should be cautioned, especially dealing with
the seasonal analyses. Overall, the models with completed
TWS components are more suitable for assessing the TWSA
changes at the global scale for future research, such as the 50

continuously developing hyper-resolution global hydrologi-
cal models (e.g., WGHM), which can help to avoid the un-
certainty associated with the lack of key TWSA elements in
most LSMs (e.g., surface water and groundwater) (Pokhrel
et al., 2021). 55

Moreover, the eight CMIP6 GCMs are forced with the
future projections of many meteorological variables such
as precipitation and air temperature, which have been re-
ported to show variable-specific biases over the global land
(Eyring et al., 2016; Kim et al., 2020). Despite employing 60

bias correction with GRACE data, uncertainty from the forc-
ing and models can influence the accuracy of TWSA simula-
tions (Xiong et al., 2022a). Advanced bias-correction meth-
ods (e.g., Lange, 2019; François et al., 2020) might play
critical roles in reducing such errors in meteorological vari- 65

ables for future hydrologic impact studies, especially when
combined with the start-of-the-art GHMs and LSMs as men-
tioned above. The inclusion of more GCMs can also help to
estimate the uncertainties in the meteorological inputs in cli-
mate change scenarios. Although it is challenging to explic- 70

itly attribute and quantify these uncertainties in the absence
of a “true” reference observation dataset, the ensemble av-
eraging method has been used to integrate the multisource
TWSA data. Moreover, since the meaning, and hence the re-
sults and interpretation of “dry” and “wet”, varies across dis- 75
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ciplines, land or ocean, target variable(s), and the problem in
question (Roth et al., 2021), future studies may focus on var-
ious spatial (e.g., local, regional, basin, and zonal averages)
and temporal (monthly, seasonal, and annual) scales using
our processed data with additional model outputs (e.g., more5

GCMs).
To investigate the influence of different models on the

robustness of the evaluation for the DDWW paradigm, we
carry out an independent analysis at the individual mem-
ber level during the future period 2071–2100 (see Fig. S22).10

We find the differences among different members of the
CMIP6 archive. The GFDL-ESM4 and MIROC6 models
present overestimations, but the IPSL-CM6A and CanESM5
models underestimate different percentages compared with
the ensemble mean. Specifically, the area dominated by the15

DDWW paradigm changes from 8.16 % (ACCESS-ESM1-
5) to 19.36 % (MIROC6), while that showing the opposite
pattern ranges from 7.33 % (CanESM5) to 14.57 % (MPI-
ESM1-2-HR) under the SSP126 scenario. For the SSP245
scenario, the DDWW-validated regions account for 6.98 %20

(CanESM5) to 18.54 % (GFDL-ESM4); the opposite pattern
occurs over a range from 8.71 % (CanESM5) to 12.64 %
(MPI-ESM1-2-HR) of land. The proportion supporting
the DDWW paradigm varies from 9.71 % (CanESM5) to
20.08 % (GFDL-ESM4), while that presenting the opposite25

pattern ranges from 8.19 % (MPI-ESM1-2-LR) to 18.68 %
(ACCESS-CM2) under the SSP585 scenario. Overall, the
comparatively large difference among various models might
source from unforced internal climate variability of distinc-
tive CMIP6 members and different emission scenarios (Ku-30

mar et al., 2015).
Our choice of the significance level (i.e., 0.05) may also af-

fect the rationale of the DDWW examination results. There-
fore, different significance levels are alternatively tested (see
Figs. S23–S24 and Tables S5–S6). At a significance level of35

0.01, a decrease in 3.21 % (37.63 %) of the land area agree-
ing well with the DDWW theory is detected, with a reduction
of 2.65 % (32.78 %) in area illustrating the opposite pattern
during the 1985–2014 period for the GRACE reconstruction.
Similar decreases in the proportion of the DDWW-dominated40

area ranging from 5.19 % (SSP245) to 7.2 % (CLSM) are
also discovered in the GHMs, LSMs, and GCMs. As for
the 0.1 significance level, the DDWW-validated regions ac-
count for 42.49 % (+1.65 %) of the total area, with 36.89 %
(+1.46 %) of land agreeing with the opposite hypothesis45

compared to those at the 0.05 level. In the future period,
a similar pattern is discovered that both DDWW-confirmed
and DDWW-opposed regions are increasing on account of
the enhancement of projected strength of radiative forcing,
with the reduction of the area showing nonsignificant trends50

in wetting and drying. However, the magnitudes of results at
the 0.01 significance level are generally lower than those at
the 0.1 significance level due to the different thresholds of the
detected trends in drying and wetting. Considering the simi-
lar tendency with marginal effects of the varying choices of55

the p value (e.g., 4.86 % change in DDWW area from 0.01 to
0.1 level for the GRACE reconstruction during 1985–2014),
our adopted significance level (i.e., 0.05) can reasonably and
robustly explain the global trends of dryness and wetness.
Given the inherent magnitude bias from various GCMs pro- 60

jections, the ensemble averaging method has the potential to
provide alternative estimates over data-sparse areas globally
like Africa and central Asia.

Despite the multisource uncertainties, our study provides
important implications for the long-term trends in dryness 65

and wetness of the global land mass in the past and future
from the perspective of TWSA. Compared with other widely
used indices that are purely derived from hydrometeorolog-
ical variables (e.g., SPI, SPEI, and PDSI (Palmer Drought
Severity Index)) or incorporate a single component of the 70

TWSA (e.g., SSI, SGI, and SRI), our developed TWS-DSI is
able to describe the overall status of the land system, which
is jointly influenced by different components including soil
moisture, river runoff, and groundwater that play different
roles in the hydrological cycle (Tapley et al., 2019). Although 75

other indices may undoubtedly perform similarly for the spe-
cific variable in question, they tend to present equivocal in-
ferences for the total water storage. It can be easily under-
stood by the example of soil moisture or evapotranspiration-
based indices in a highly irrigated area such as the Ganges 80

River basin. TWS is unremittingly declining due to the over-
exploitation of groundwater for agriculture in this region
(Rodell et al., 2009), while E or soil moisture may have
positive trends, thus attenuating the actual TWS situation.
Moreover, the adopted TWS-DSI is suitable and feasible for 85

comparing dryness and wetness status for different locations
and periods (Zhao et al., 2017). Furthermore, the projected
changes in the global TWSA and associated TWS-DSI im-
prove our understanding of the large-scale hydrological re-
sponse to climate change, particularly in regions with strong 90

human interventions, such as the south and east of Asia.

4 Conclusion

This study performs a global examination for the dry gets
drier, wet gets wetter paradigm from a terrestrial water stor-
age perspective in the past and future. The historical TWS- 95

DSI monthly time series over global land during 1985–2014
is calculated from two GHMs (VIC and WGHM), two LSMs
(Noah and CLSM), and one GRACE reconstruction. In ad-
dition, future projections of TWS-DSI from 2071 to 2100
under SSP126, SSP245, and SSP585 scenarios are derived 100

from the average of eight selected CMIP6 GCMs after bias
correction using GRACE observations. Further, the DDWW
paradigm has been evaluated with a significance level of 0.05
from the perspective of terrestrial water storage change. We
also establish the metric P −E−R based on multiple ob- 105

servational products and from the same models as the TWS-
DSI for comparison. The uncertainty sourced from different
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choices of models, methods, and confidence levels has been
discussed systematically. The new findings are summarized
as follows.

1. During the historical period, the percentage of global
land area presenting significant (p<0.05) drying and5

wetting trends ranges from 13.06 % (WGHM) to
43.35 % (GRACE reconstruction) and 13.7 % (CLSM)
to 39.43 % (GRACE reconstruction), respectively. The
wetting trends are mainly in northern Australia, north-
ern and southern Africa, southern and northwestern10

China, western South America, the central United
States, and eastern Russia, while drying trends are
found in the Arab region, western Brazil, northeast-
ern Asia, and the South and North American conti-
nent. During the future period under climate change,15

the proportion of drying areas (always ∼ 10 % higher
than wetting) with a significant slope increases from
the SSP126 (19.52 %) to SSP585 (29.04 %) scenario. A
similar change is detected in the percentage with signif-
icant wetting trends, which reaches 11.48 %, 13.01 %,20

and 18.42 % under SSP126, SSP245, and SSP585 sce-
narios, respectively.

2. A total of 11.01 % (VIC) to 40.84 % (GRACE recon-
struction) of the global land area shows the DDWW
paradigm valid, in which the drying and wetting area25

account for 6.47 % (VIC) to 20.17 % (GRACE recon-
struction) and 4.54 % (VIC) to 20.67 % (GRACE recon-
struction), respectively, during the 1985-2014 period.
However, the area showing opposite patterns, like “dry
gets wetter” (DW) or “wet gets drier” (WD), account for30

10.21 % (WGHM) to 35.43 % (GRACE reconstruction)
of the global land, respectively. The proportion of areas
supporting (opposing) the DDWW paradigm is 14.66 %
(16.76 %), 14.26 % (18.72 %), and 17.08 % (26.64 %)
under SSP126, SSP245, and SSP585 scenarios, respec-35

tively. Regional assessment for the QTP reveals the dry-
ing trends of the land mass primarily attributable to the
sublimation/ablation of glaciers and ice caps, together
with a continued tendency in future warming climates
until the end of the 21st century.40

3. Sensitivity analysis on different choices of significance
levels from 0.01 to 0.1 for the long-term trends indicates
similar patterns, in which the maximum decrease (in-
crease) in the DDWW-validated regions reaches−7.4 %
(4.47 %) historically under the 0.01 (0.1) level, respec-45

tively. Such consistency is also evidenced by the pro-
jected TWS-DSI in the future under various scenarios.
Moreover, independent experiments based on the indi-
vidual TWSA datasets suggest that the divergent data
sources might lead to model-variable biases for both50

the DDWW-agreed and DDWW-opposed patterns. The
use of distinctive GCMs also suggests slightly overrated
(e.g., GFDL-ESM4) and underrated (e.g., CanESM5)

percentages of such patterns in the future under multiple
emission scenarios. 55

New insights from the TWSA perspective highlight that
the widely used DDWW paradigm is still challenged in both
historical and future periods under climate change. The dif-
ferences between test results based on P −E−R imply the
robustness of our developed TWS-DSI in capturing the total 60

land water variations induced by climate change and human
activities, suggesting potentially new knowledge in the land
hydrology field.
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