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Abstract. The “dry gets drier and wet gets wetter” (DDWW) paradigm has been widely used to summarise the expected trends 7 

of the global hydrologic cycle under climate change. However, the paradigm is largely conditioned by choice of different 8 

metrics and datasets used and is still comprehensively unexplored from the perspective of terrestrial water storage anomaly 9 

(TWSA). Considering the essential role of TWSA in wetting and drying of the land system, here we built upon a large ensemble 10 

of TWSA datasets, including satellite-based products, global hydrological models, land surface models, and global climate 11 

models to evaluate the DDWW hypothesis during the historical (1985-2014) and future (2071-2100) periods under various 12 

scenarios with a 0.05 significance level (for trend estimates). We find that 11.01%-40.84% (range by various datasets) of 13 

global land confirms the DDWW paradigm, while 10.21%-35.43% of the area shows the opposite pattern during the historical 14 

period. In the future, the DDWW paradigm is still challenged with the percentage supporting the pattern lower than 18%, and 15 

both the DDWW-validated and DDWW-opposed proportion increase along with the intensification of emission scenarios. We 16 

show that the different choices of data sources can reasonably influence the test results up to a four-fold difference. Our 17 

findings will provide insights and implications for global wetting and drying trends from the perspective of TWSA under 18 

climate change. 19 

1 Introduction 20 

The global hydrological cycle has experienced considerable changes due to climate change and anthropogenic 21 

interventions, exerting a tremendous impact on agriculture, ecological environment, and freshwater availability globally 22 

(Shugar et al., 2020; Perera et al., 2020; Gampe et al., 2021). Assessing the variations of constituent components of the water 23 

cycle, namely, precipitation (P), evapotranspiration (E), runoff (R), and storage change, are therefore crucial in understanding 24 

the systematic hydrological response and dealing with water-related issues in the context of global change (Moreno-Jimenez 25 

et al., 2019; Zhao et al., 2021; Yin et al., 2022). Under these circumstances, the ‘dry gets drier and wet gets wetter’ (DDWW) 26 

paradigm, firstly introduced by Held and Soden (2006), has become one of the most widely used hypotheses to summarise the 27 

long-term trends in the global hydrological cycle (Roderick et al., 2014; Yang et al., 2019). Initially, it was developed based 28 



2 
 

on the deficit between precipitation and evapotranspiration (𝑃𝑃 − 𝐸𝐸), which is expected to increase due to the enhancement of 29 

atmospheric water vapour in humid regions (i.e., convergence zones) under a warming climate, and decrease over arid regions 30 

(i.e., divergence zones) (Durack et al., 2012). The DDWW paradigm has been used to represent the historical and future trends 31 

in various constituent components of the hydrologic cycle on regional (Chou et al., 2009; Allan et al., 2010; Hu et al., 2019; 32 

Zeng et al., 2019) and global scales (Held and Soden, 2006; Donat et al., 2016). However, the rationale and validity of the 33 

DDWW mechanism are recently questioned at different levels through the growing number of datasets, model simulations, 34 

and indicators (Polson and Hegerl, 2017; Yang et al., 2019; Y. Li et al., 2021b). Byrne and Gorman (2015) used simulations 35 

from 10 climate models to reveal an ocean-land contrast pattern in the response of 𝑃𝑃 − 𝐸𝐸 to global warming in historical (1976-36 

2005) and future (2071-2099) periods, highlighting the DDWW as a more suitable mechanism over ocean than over land. 37 

Given the fact that historical evaluation of the DDWW paradigm was mainly based on oceanic observations, Greve et al. (2014) 38 

adopted 2142 possible combinations of 𝑃𝑃 − 𝐸𝐸 to assess the trends in wetting and drying over global land and discovered merely 39 

10.8% of the area following the DDWW pattern during the period 1948-2005. Roderick et al. (2014) revisited the DDWW 40 

paradigm, cautioned about its interpretation owing to the different behavior of land and ocean with respect to the water cycle, 41 

and showed that the paradigm does not hold true in terms of projected changes in the mean annual water balance over land. 42 

Alternatively, Yang et al. (2019) integrated an ensemble of six hydro-climatic indicators for the global assessment of the 43 

DDWW paradigm between 1982 and 2012, suggesting the catchphrase only occurred over 20% of the global land. In a nutshell, 44 

there are great uncertainties still remaining in the assessments and subsequent interpretation of global trends in dryness and 45 

wetness under climate change (Dai, 2011; Trenberth et al., 2014). 46 

The uncertainties within previous studies are mainly sourced from different choices of metrics adopted and datasets used 47 

for evaluating the changes in dryness and wetness (Vicente-Serrano et al., 2010; Feng and Zhang, 2015; Huang et al., 2016). 48 

Specifically, the widely used metric 𝑃𝑃 − 𝐸𝐸 over the ocean has been proven overwhelmingly positive over land based on both 49 

observations and simulations, revealing an ocean-dominated behavior (Greve et al., 2014; Byrne and O’Gorman, 2015; Greve 50 

and Seneviratne, 2015). Moreover, some meteorological indices derived from precipitation and evapotranspiration, such as the 51 

standardized precipitation evapotranspiration index (SPEI), aridity index (AI), and standardised 52 

precipitation/evapotranspiration index (SPI/SETI), do not capture the integrated response of the land system due to the trade-53 

off between the simplicity of meteorological factors and computational requirements of process-based variables (Huntington, 54 

2006; Dai, 2011; Slette et al., 2020; Barnard et al., 2021). A few indexes like the standardised soil moisture index (SSI), 55 

standardised groundwater index (SGI), and standardised runoff index (SRI), however, focus on a single aspect of the water 56 

cycle and do not describe the integrated status of the terrestrial water storage (TWS) (AghaKouchak, 2014; Wu et al., 2018; 57 

Guo et al., 2021). In the coupled human-natural systems, where the synergistic impacts of natural and anthropogenic drivers 58 

are exceedingly difficult to disentangle, an integrated representation of the land systems is of paramount importance for 59 

policymakers (Rodell et al., 2018).  60 

TWS, consisting of water storage in surface water, soil moisture, groundwater, snow and ice, and canopies, can physically 61 

provide integrated information about the overall status of the land, whose changes are closely linked to the terrestrial wetting 62 
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and drying tendency (Tapley et al., 2019; Pokhrel et al., 2021). Apart from the societal and economic importance, TWS plays 63 

a vital role in Earth system processes, including climate, weather, and biogeochemical cycles (Abhishek et al., 2021; Seyoum 64 

and Milewski, 2017). Change in storage, i.e., the difference between the consecutive TWS values, is a key variable of the 65 

hydrological cycle. Therefore, understanding the spatiotemporal dynamics of past and future TWS is not only essential for 66 

human life but also crucial for assessing the water cycle, planning, policymaking, and other management strategies for water 67 

resources in a changing climate and for a continuously increasing population (Abhishek et al., 2021). There are several studies 68 

dealing with TWS or derived indicators to assess freshwater availability (Rodell et al., 2018), water storage dynamics (Scanlon 69 

et al., 2018), and droughts and floods monitoring (Abhishek et al., 2021; Long et al., 2014), among others. Divergent patterns 70 

of TWS changes have been reported over arid and humid regions under the combined effects of climate change (e.g., global 71 

warming), climatic variability (e.g., ENSO), and human activity (e.g., groundwater pumping) (Chang et al., 2020; An et al., 72 

2021; Hu et al., 2021). However, there is no study to comprehensively examine the global variability and validity of DDWW 73 

paradigm in the past and future in terms of TWS changes. Furthermore, divergent data sets produce different trends in TWS 74 

due to distinctive internal variability and external forcing (from satellites and meteorological stations), especially from 75 

precipitation and evapotranspiration (Chen et al., 2020). For example, Scanlon et al. (2018) conducted comprehensive 76 

comparisons between decadal trends in TWS from seven global models and three Gravity Recovery and Climate Experiment 77 

(GRACE) satellite solutions over major basins globally and showed a large underestimation of the increasing and decreasing 78 

trends of models primarily due to human water use and forcing climate variations.  79 

Therefore, to bridge the aforesaid research gap, we conduct a systematic evaluation of the DDWW paradigm from the 80 

perspective of terrestrial water storage anomalies (TWSA) using an ensemble of five different TWS datasets, including one 81 

GRACE reconstruction, two global hydrological models (GHMs), and two land surface models (LSMs) between 1985 and 82 

2014. Subsequently, an alternative ensemble of eight global climate models (GCMs) from the Coupled Model Intercomparison 83 

Project 6 (CMIP6) is used to further test the paradigm under various scenarios during the future period (2071-2100). Utilizing 84 

the data from these models and observation-based products, we further establish the metric “𝑃𝑃 − 𝐸𝐸 − 𝑅𝑅”  in terms of the water 85 

balance equation for intercomparisons with the test results from the aspect of TWSA and for highlighting the governing 86 

mechanisms of the estimated disparities. 87 

2 Data and Methods 88 

2.1 Data pre-processing 89 

We perform the assessment of the DDWW paradigm over global land at both gridded 1° × 1° cell and regional scales 90 

excluding Greenland and Antarctica. One of the global hotspots with significant changes in hydroclimatological conditions 91 

(e.g., precipitation and air temperature) (Liu et al., 2006; Zhang et al., 2017), i.e., the Qinghai-Tibetan Plateau (QTP), is 92 

selected as a typical region for regional analysis because it experienced alarming TWS losses in recent decades and shows 93 

continuing declines under future scenarios (Meng et al., 2019; Li et al., 2022). The QTP and its surroundings which are called 94 
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the world’s “the Third Pole” play a crucial role in the freshwater availability of more than 1.4 billion people (Immerzeel et al., 95 

2010). The QTP is mainly covered by polar tundra and cold and arid steppe climate region (Figure S2), causing the sparse 96 

distribution of in-situ networks there (Wan et al., 2014). Thus, using alternative methods such as remote sensing (e.g., GRACE) 97 

and global model outputs (e.g., GHMs, LSMs, and GCMs) to study the hydrological variations in the QTP is of much 98 

importance. 99 

We use an ensemble of five TWSA data sets to evaluate the DDWW paradigm during the historical period 1985-2014, 100 

which includes one GRACE reconstruction, two global hydrological models (GHMs), and two global land surface models 101 

(LSMs) (see Table 1 and next sections). Please note that some studies may use the term GHMs to represent both global 102 

hydrological and water resource models (GHWRMs) and LSMs together (Scanlon et al., 2018), while we use it only for the 103 

former one for distinction and simplicity. Since no dataset presents the absolutely ‘true’ value, we demonstrate the individual 104 

results of each member to avoid the uncertainty derived from different TWSA definitions in various models/products (Table 105 

S1). The missing months (12% of the months, i.e., June 2002, July 2002, June 2003, January 2011, June 2011, May 2012, 106 

October 2012, March 2013, August 2013, September 2013, February 2014, July 2014, December 2014) of GRACE 107 

measurements have been filled using a linear interpolation method. In addition, an ensemble of eight TWSA simulations from 108 

CMIP6 GCMs is used to examine the DDWW paradigm in the future period (2071-2100). The members of the CMIP6 109 

ensemble and all of the historical datasets have been resampled to 1° × 1° scale using a bilinear interpolation approach for 110 

consistency and better comparison in the spatial domain. The ensemble mean of CMIP6 models has been estimated using 111 

simple averaging because they have the same simulation objects (Table S1). All the historical datasets and CMIP6 members, 112 

as well as their ensemble, are represented as the long-term anomaly relative to the baseline between 1985 and 2014. We also 113 

calculate the metric P-E-R based on the water balance equation for cross-comparison with the test results from the TWSA 114 

perspective. This metric is estimated using P, ET, and R from the same models as those of TWSA (e.g., GHMs, LSMs, and 115 

GCMs) for consistency. Moreover, an observation-based combination is also derived as benchmarking subset based on 116 

precipitation (P) from the Climatic Research Unit gridded Time Series (CRU TS-v4.06, Harris et al., 2020), evapotranspiration 117 

(E) from the Global Land Evaporation Amsterdam Model (GLEAM-v3.6, Martens et al., 2017), and runoff (R) from the G-118 

RUN ensemble (Ghigg et al., 2021) (Table 1). 119 

 120 
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 129 
Table 1. Datasets used in this study. 130 

Type Data URL Selecte
d period 

Raw 
temporal 
resolutio

n 

Raw spatial 
resolution 

(longitude×latitude
) 

GRACE 
reconstructions Li et al., 2021a https://doi.org/10.1029/2021GL093492 1985-

2014 Monthly 0.5°×0.5° 

GRACE 
observations 

GRACE CSR 
RL06 mascons-

v02 
http://www2.csr.utexas.edu/grace/ 2002-

2014 Monthly 0.25°×0.25° 

GHMs 
WGHM-v2.2d https://gmd.copernicus.org/articles/14/1037/

2021/ 
1985-
2014 Monthly 0.25°×0.25° 

GLDAS2.0-VIC https://ldas.gsfc.nasa.gov/gldas 1985-
2014 Monthly 1°×1° 

LSMs 

GLDAS2.0-
Noah https://ldas.gsfc.nasa.gov/gldas 1985-

2014 Monthly 1°×1° 

GLDAS2.0-
CLSM https://ldas.gsfc.nasa.gov/gldas 1985-

2014 Monthly 1°×1° 

GCMs 

ACCESS-CM2 https://esgf-node.llnl.gov/projects/cmip6/ 1985-
2100 Monthly 1.25°×1.875° 

ACCESS-
ESM1-5 https://esgf-node.llnl.gov/projects/cmip6/ 1985-

2100 Monthly 1.24°×1.875° 

CanESM-5 https://esgf-node.llnl.gov/projects/cmip6/ 1985-
2100 Monthly 2.8125°×2.8125° 

GFDL-ESM4 https://esgf-node.llnl.gov/projects/cmip6/ 1985-
2100 Monthly 1°×1.25° 

IPSL-CM6A-
LR https://esgf-node.llnl.gov/projects/cmip6/ 1985-

2100 Monthly 1.2587°×2.5° 

MIROC6 https://esgf-node.llnl.gov/projects/cmip6/ 1985-
2100 Monthly 1.4063°×1.4063° 

MPI-ESM1-2-
HR https://esgf-node.llnl.gov/projects/cmip6/ 1985-

2100 Monthly 0.9375°×0.9375° 

MPI-ESM1-2-
LR https://esgf-node.llnl.gov/projects/cmip6/ 1985-

2100 Monthly 1.875°×1.875° 

Observation-based 
precipitation and 

potential 
evapotranspiration 

CRU TS-v4.06 https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_
4.06/ 

1985-
2014 Monthly 0.5°×0.5° 

Observation-based 
runoff 

G-RUN 
Ensemble https://doi.org/10.1029/2020WR028787 1985-

2014 Monthly 0.5°×0.5° 

Satellite-based 
evapotranspiration GLEAM-v3.6a https://www.gleam.eu/ 1985-

2014 Monthly 0.25°×0.25° 

131 
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2.1.1 GRACE and GRACE Reconstructions 132 

The GRACE (and GRACE Follow-On) missions have provided unprecedented estimates of monthly TWSA worldwide 133 

from April 2002 up to the present, however, with the 33 months missing because of the instrumental issues and mission 134 

interruption (Tapley et al., 2004). We use the GRACE mascon solution from the Center for Space Research at the University 135 

of Texas at Austin (UTCSR) to serve as the benchmarking product from the period 2002-2014 (Watkins et al., 2015). 136 

Compared to conventional GRACE products (e.g., spherical harmonic solutions), mascon solutions do not need spatial (e.g., 137 

smoothing) or spectral (e.g., de-striping) filtering or other empirical scaling and therefore have higher signal-to-noise ratio, 138 

higher spatial resolutions, and eventually reduced errors (Save et al., 2016; Watkins et al., 2015). However, the GRACE 139 

observational products were not adequate to assess the long-term trends of TWSA due to relatively short temporal coverage 140 

(~20 years). Therefore, we obtain the GRACE reconstruction provided by Li et al. (2021a) for evaluation of the DDWW 141 

paradigm, which is generated using state-of-the-art machine learning and statistical methods and is also trained by the 142 

consistent GRACE mascon product from the UTCSR institution. The GRACE reconstruction applies four meteorological 143 

variables (i.e., precipitation, 2 m air temperature, sea surface temperature, and multiple climate indices) and three hydrological 144 

variables (i.e., soil moisture, runoff, and evaporation) to simulate the temporally decomposed GRACE signals (i.e., the seasonal, 145 

inter-annual, and residual components) (Li et al., 2021a). We would like to mention that the linear trend components in GRACE 146 

reconstructions are directly added by the linear GRACE trends, which are mainly caused by glacier melt and anthropogenic 147 

factors (e.g., dam constructions and water abstractions). These factors are difficult to predict using the climatic and hydrologic 148 

inputs and may change over time (e.g., interannual and decadal variability), causing the possible bias in the long-term trend 149 

estimates from GRACE reconstructions. The accuracy and applicability of the GRACE reconstruction have been fully 150 

evaluated over global land in several previous studies (Xu et al., 2021; Yi et al., 2021).   151 

2.1.2 Global Hydrological Models 152 

We use two global hydrological models, including the Variable Infiltration Capacity macroscale model (VIC-v4.1.2) and 153 

the WaterGAP hydrological model (WGHM-v2.2d), to estimate TWS and P-E-R for independent evaluation of the DDWW 154 

paradigm. The physically-based, semi-distributed, and grid-based VIC model is managed by the NASA Global Land Data 155 

Assimilation System Version 2.0 (GLDAS-v2.0) (Liang et al., 1994; Syed et al., 2008). Forced by the Global Data Assimilation 156 

System atmospheric analysis fields (Derber et al., 1991) and the Air Force Weather Agency’s AGRicultural METeorological 157 

modeling system radiation fields, the VIC model can effectively capture the terrestrial water cycle by simulating the water 158 

stored in the canopies, snow, and soil moisture within three soil layers up to a depth of 200 cm. The VIC model has been 159 

widely used to analyze terrestrial water storage changes at regional and global scales (Hao and Singh, 2015; Hao et al., 2018). 160 

The WGHM is a grid-based global hydrological model quantifying the human water use and continental water fluxes for all 161 

land areas excluding Antarctica (Müller Schmied et al., 2021). Unlike most global hydrological models, the WGHM forced 162 

by the ERA40 and ERA-Interim reanalysis can simulate groundwater storage by coupling with global water use models like 163 
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the Groundwater-Surface Water Use, suggesting a comparably better representation of TWS (Döll et al., 2014). Several 164 

frequently-used model outputs such as TWS, discharge, and water use have been evaluated against global observations (Wan 165 

et al., 2021). E and R from the VIC and WGHM models are also extracted for the calculation of the variable “P-ET-R” by 166 

combining the P from their meteorological inputs of GLDAS2.0. 167 

2.1.3 Land Surface Models 168 

We use two land surface models consisting of the Noah (v3.6) and Catchment (CLSM-vF2.5) models to calculate TWS 169 

and P-E-R globally for parallel assessment of the DDWW paradigm. Similar to the VIC model, both Noah and CLSM models 170 

are managed by GLDAS (v-2.0) from the NASA GSFC institute. GLDAS is a composite of global hydrological and land 171 

surface models that simulate the optimal fields of the land  by using state-of-the-art data assimilation and land surface 172 

simulation techniques (Rodell et al., 2004). GLDAS has been widely used to compare with GRACE TWSA in data-sparse 173 

regions such as Africa and Qinghai-Tibetan Plateau (Ogou et al., 2021; Xing et al., 2021). The Noah-modelled TWS is 174 

considered as the sum of canopy water storage, snow water equivalent, and soil moisture of four layers with a total depth of 175 

200 cm. Different from that, the CLSM simulates shallow groundwater and the vertical levels of soil moisture are not explicitly 176 

divided within the depth of 100 cm. Similarly, we used the E and R modelled by the CLSM and Noah models to calculate the 177 

index P-E-R. We note that the three GLDAS models (i.e., VIC, CLSM, and Noah) share the same P estimations due to the 178 

consistent meteorological inputs, which might reduce the bias in the estimates of the metric P-E-R. 179 

2.1.4 Global Climate Models 180 

We use a suite of eight global climate models belonging to the ensemble “r1i1p1f1” of CMIP6 to evaluate the DDWW 181 

paradigm under climate change. The CMIP6 serves as a category of experiments of GCMs coupled to the dynamic ocean, 182 

simple land surface, and thermodynamic sea ice (Eyring et al., 2016). We choose these eight models out of the 34 CMIP6 183 

models because they are the only models for which TWSA outputs are available in both the historical and future periods under 184 

multiple emission scenarios (see Table 1). The CMIP6 TWSA represents the sum of total soil moisture and snow equivalent 185 

water, which has been comprehensively validated with the GRACE data, though with embedded uncertainties, over global 186 

major river basins (Freedman et al., 2014; Wu et al., 2021). The CMIP6 comparisons have become a diagnostic tool to better 187 

understand climate change in past, present, and future periods (Eyring et al. 2016), which includes a total of five Shared Socio-188 

economic Pathways (SSPs) representing global economic and demographic changes under different greenhouse gas emissions. 189 

We select three out of five SSP scenarios, including SSP126, SSP245, and SSP585, representing the green roads, middle of 190 

the road, and the highway road, respectively (Iqbal et al., 2021). Since the GCMs have different TWSA definitions from the 191 

“actual” TWSA observed by GRACE (Table S1), we employ a trend-preserving method to perform bias correction combined 192 

with historical GRACE data. The trend-preserving method initially developed by Hempel et al. (2013) modifies the monthly 193 

means of the simulated data to match the observed data using a constant offset between simulations and observations and has 194 

been widely used in the Intersectoral Model Intercomparison Project (ISIMIP2b). The detailed procedure of the bias correction 195 
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for CMIP6 TWSA has been described in detail in a recent study (Xiong et al., 2022a). To show the difference before and after 196 

the bias correction, we select two typical regions (i.e., Amazon and Mekong River basins) with abundant surface and 197 

groundwater resources (Pham et al., 2019). Of the two selected basins, the Mekong River basin experiences severe human 198 

interventions such as groundwater pumping, dam constructions, and urbanization, while the Amazon River basin is considered 199 

as one of the largest natural river basins with low impacts of human activities (Xiong et al., 2022b). It is discovered that the 200 

GCM simulations without bias correction show obvious underestimations over two regions with large uncertainty, which have, 201 

however, significantly reduced after bias correction along with a lower spread range (Figure S16). The amplitudes of the GCM 202 

series are adjusted to nearly the same as GRACE data, with the long-term trends unaffected. It is noteworthy that the trend-203 

preserving method would not affect the long-term trends of the GCM TWSA, and, therefore, not influence our current DDWW 204 

evaluation results. In addition to the TWSA, we also derive the predictions of P, E, and R for the construction of the P-E-R to 205 

compare with TWSA similar to those from GHMs and LSMs. 206 

2.2 Detection of Wetting and Drying 207 

TWSA, consisting of the water volume stored in the land surface and subsurface, is applied to define the “wetting” and 208 

“drying” conditions of the landmass in this study. The non-dimensional TWS drought severity index (TWS-DSI) is established 209 

at both 1° × 1° grid cell and regional/global scales, which is normalised by the regional hydroclimatological variability 210 

because a given magnitude of TWS deficit could indicate different dryness/wetness conditions in different climate regions. 211 

TWS-DSI has clear classification categories based on U.S. Drought Monitor (USDM) and is suitable for comparing 212 

dryness/wetness status for different locations and periods (Table S2). It has been widely used in hydrology and climate fields 213 

due to its simple structure and effective ability to capture drying and wetting conditions (Pokhrel et al., 2021). The monthly 214 

TWS-DSI is calculated for all ensemble members and their mean from CMIP6 as follows (Zhao et al., 2017): 215 

TWS-DSIi,j =
𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗−𝜇𝜇𝑗𝑗

𝜎𝜎𝑗𝑗
                                                                    (1) 216 

where 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑗𝑗 is the TWS value in year 𝑖𝑖 and month 𝑗𝑗; 𝜇𝜇𝑗𝑗 and 𝜎𝜎𝑗𝑗 denote the mean and standard deviation of the annual TWS 217 

in month 𝑗𝑗, respectively. We convert the monthly TWS-DSI into annual means to calculate the long-term trends using the 218 

linear regression method. We examine the first-order autocorrelation of each TWSA dataset using the Durbin-Watson test 219 

(Durbin and Watson, 1950, 1951). We find a total of 20% (GRACE reconstruction), 43% (WGHM), 41% (VIC), 23% (CLSM), 220 

29% (Noah), and 20% (GCM) of the grid cells not presenting autocorrelation during 1985-2014, respectively (Figure S1). For 221 

the future period, the percentage is 25%, 26%, and 22% under the SSP126, SSP245, and SSP585 scenarios, respectively. In 222 

this case, the significance of the long-term trends is evaluated using the modified Mann-Kendall trend test at a 5% level to 223 

avoid autocorrelation (Hamed and Rao, 1998). The modified Mann-Kendall method uses the lag-1 autocorrelation coefficients 224 

to perform the bias correction for the data variance, in which only the significant lags (at a 0.05 level) are selected. However, 225 

the original Mann-Kendall method would be used if the selected lags cannot well facilitate the variance correction. Similarly, 226 

we also estimate the long-term trends of the index P-E-R for comparison with TWS-DSI using the same methods. The area 227 



9 
 

having a significant trend of increasing/decreasing TWS-DSI or P-E-R is considered to be undergoing wetting/drying; 228 

otherwise, it is defined as a region with a non-significant trend.  229 

To evaluate the DDWW paradigm over global land, the effective Aridity index (AI) is used to classify a grid cell as an 230 

arid, humid, and transitional region following Yang et al. (2019) because TWS-DSI/TWSA approximates zero for the long-231 

term mean. The AI is calculated as the ratio of annual precipitation to potential evapotranspiration provided by the CRU TS-232 

v4.06 during the same period as TWS-DSI (i.e., 1985-2014). The global distribution of multi-year average AI and the 233 

classifications during the period 1985-2014 is presented in Figure S3, which is also highly consistent with the widely used 234 

Köppen-Geiger climate classification maps (Beck et al. 2018) (Figure S2). It can be seen that most of the arid regions (AI<0.5) 235 

are located in southwestern America, north and south Africa, central Asia, Arabian regions, and Australia, accounting for 39.3% 236 

of the land. The percentage of humid areas (AI>0.65) that are mainly located in east America, the Amazon region, central 237 

Africa, south China, west Europe, and Russia reaches 52.8% of the land. An approximate 7.9% of the land area is defined as 238 

the transitional region, referring to an intermediate between arid and humid climates. The transitional region generally lies in 239 

the shared boundaries of the humid and arid regions (e.g., western America, northern Canada, central Asia, western Africa, 240 

East Russia, and Australia). The DDWW paradigm is evaluated at a 5% significance level (trend estimates) in this study, 241 

combined with the standard AI-derived climate classifications. We calculate the global mean trends of TWS-DSI using a 242 

spatially weighted method to account for the changing area of grid cells with latitudes. The percentage of different change 243 

patterns (e.g., DD and WW) are calculated as the ratio of the corresponding land area to the global sum. Thus a few missing 244 

grid cells in datasets (6%, 1%, 3% and 1% for GRACE reconstruction, WGHM, GLDAS, and GCMs, respectively) may 245 

marginally affect our final results. 246 

3 Results and Discussion 247 

3.1 Global Trends of Dryness and Wetness 248 

We firstly assess the reliability of the GRACE reconstruction, GHMs, and LSMs by comparing them with the GRACE 249 

observations. Figure S4 presents the global distribution of the normalized root mean square error (NRMSE) between the mean 250 

GRACE TWSA and the ensemble means of CMIP6 datasets after bias correction during the period April 2002-December 2014, 251 

with the NRMSE calculated as the ratio of RMSE to the differences between the maximum and minimum GRACE TWSA. 252 

The GRACE reconstruction shows the best performance over five TWSA datasets, with the NRMSE generally lower than 0.2 253 

(for 97.4% of the global land area), of which 48.0% of the land area shows NRMSE below 0.1. In particular, NRMSE ranging 254 

from 0.1 to 0.3 occurs in the west and central Asia, North China, South Australia, eastern Russia, north and south Africa, and 255 

central northern and southern America (Fig. S4). Two GHMs (i.e., WGHM and VIC) and two LSMs (CLSM and Noah) present 256 

a similar spatial pattern of NRMSE to the GRACE reconstruction but with a relatively higher bias, among which the VIC 257 

model outperforms the other three models. The CLSM model shows comparatively poor performance, which is also confirmed 258 

by the probability density distributions of NRMSE compared with GRACE (Figure S4). The outperformance of the GRACE 259 
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reconstruction over other data may be because they are directly calibrated with the GRACE measurements during 2002-2017, 260 

while their performances need more validation beyond the GRACE era (i.e., prior to April 2002 and during July 2017-May 261 

2018). A temporal comparison of global average TWSA derived from GHMs, LSMs, GRACE reconstruction, and CMIP6 and 262 

GRACE during 2002-2014 is shown in Figure S5. The GRACE TWSA ranges from roughly −20 to 20 mm and shows obvious 263 

seasonal characteristics. A similar temporal pattern is captured by various models, with the change spread covering the 264 

variations of GRACE data. The NRMSE between multiple datasets and GRACE data ranges from 0.08 (GRACE reconstruction) 265 

and 0.16 (Noah), coinciding with the strong correlation within different datasets (Figures S4 and S6). Moreover, the fluctuation 266 

range of the CMIP6 is generally larger than different historical models/products, highlighting the considerable uncertainty 267 

sourced from different forcing variables and model parameterizations. Then, we examine the difference between GCMs-268 

simulated TWSA before and after the trend-preserving bias correction using GRACE. It is discovered their correlation 269 

coefficients improve by comparing with GRACE, while slightly decreasing within the eight GCMs, which can be attributed to 270 

the introduced uncertainty when performing the bias correction (Figure S7). In addition, the spatial distributions clearly show 271 

that the ensemble mean of eight GCMs outperforms each member globally, particularly in Australia, southern Africa, and 272 

North America (Figures S8 and S9). The outperformance becomes more obvious after bias correction. An overall decrease in 273 

NRMSE is also observed according to the probability density functions after performing bias correction, which is also detected 274 

from the Taylor diagram results (see Figure S10). We also provide the evaluation of the bias-corrected TWSA changes (i.e., 275 

TWSC) using the water balance estimates (i.e., P-E-R=TWSC) during 1985-2014 (Figures S11 and S12). The observation-276 

based water balance estimates correlate well with GRACE TWSA and GCM-modelled P-E-R with a correlation coefficient of 277 

0.62 and 0.93, respectively. The GCM-simulated changes in TWSA also present a strong correlation with the observed P-E-R 278 

before and after bias correction. The spatial distribution of correlation coefficients between TWSC from observations and 279 

GCMs with and without bias correction shows the performances in regions with good accuracy, like Alaska, western parts of 280 

the Tibetan Plateau, and northern Russia, decrease after bias correction, which might be caused by the simplified treatment of 281 

permafrost in GCMs due to the prevailing uncertainties in, e.g., changes in thermophysical properties of the soil during freezing 282 

and thawing cycles (Burke et al., 2020). On the contrary, the areas with relatively poorer accuracy before bias correction, such 283 

as North Africa and northern South America, slightly improve after bias correction. Notwithstanding the observed differences 284 

in some regions, our trend-preserving method used for bias correction would not influence the long-term trend estimations of 285 

both TWSA and TWS-DSI and therefore does not impact our evaluation of the DDWW paradigm (Hempel et al., 2013). 286 

Although the bias correction has been performed on the CMIP6 TWSA, some biases inherent to the uncertainty in parameters, 287 

hydrometeorological forcing, and internal variability of GCMs still exist, which may influence the assessment of the DDWW 288 

paradigm in the future period (2071-2100) climate change. 289 

We assess the long-term trends TWS-DSI during the historical period 1985-2014 (based on a GRACE reconstruction, 290 

two GHMs (WGHM and VIC), two LSMs (CLSM and Noah), and the ensemble mean of eight GCMs) and the future period 291 

2071-2100 (based on the ensemble mean of eight GCMs) under SPSP126, SSP245, and SSP585 scenarios to provide insights 292 

into the terrestrial water storage changes for the DDWW paradigm (Figures 1 and S14). The GRACE reconstruction, having 293 
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the best accuracy among all other model-based TWSA, is selected for detailed analysis, which also shows the highest 294 

proportion of areas with significant trends. During the historical period, a clear spatial homogeneity (clustered patterns) of 295 

TWS-DSI trends is observed globally and the average TWS-DSI has a significant decreasing slope of −0.11/yr (p<0.05) (Figure 296 

1), similar to the results from SPI, SPEI, and AI (Wang et al., 2018; Yang et al., 2019) together with the results from other 297 

models (WGHM: −0.07/yr, VIC: −0.05/yr, CLSM: −0.06/yr, Noah: −0.04/yr, the ensemble mean of GCMs: −0.05/yr). 298 

Spatially, severe drying (p<0.05) exists in the Gulf of Alaska coast, the Canadian archipelago, Chile, and the QTP with 299 

significant slopes of TWS-DSI ranging from −0.09/yr to −0.12/yr (Figure 1), which is caused by the rapid melt of ice-sheet, 300 

glacier ablation, and increase in the active permafrost layer under a warming climate (Luthcke et al., 2013; Velicogna et al., 301 

2014). Triggered by severe historical droughts and extensive water use from groundwater and surface water over decades, the 302 

drying trends in North Canada, southern California, and Texas can be clearly discovered, with decreasing trend of TWS-DSI 303 

ranging from −0.06/yr to −0.12/yr (p<0.05) (Bouchard et al., 2013; Haacker et al., 2016), so as in the eastern Brazil (Getirana, 304 

2016). Moreover, overwhelming groundwater depletion due to unsustainable human water use such as irrigation is responsible 305 

for the increasing dryness at significant slopes ranging from −0.09/yr to −0.12/yr in southeast and north regions of Africa, 306 

eastern and centre of Europe, central Asia, North China, and northern India (Rodell et al., 2009; Feng et al., 2013; Ramillien 307 

et al., 2014; Peña-Angulo et al., 2020; Xiong et al., 2022c). The decreasing TWS-DSI is also reported over European Russia 308 

because of the decline in the storage of surface and ground waters (Vadim et al., 2018). Additionally, the significant decreases 309 

in TWS-DSI ranging from −0.09/yr to −0.12/yr (p<0.05) over the Caspian and Aral seas are seen to arise from the reductions 310 

of inflow discharge and precipitation as well as evapotranspiration increase (Zmijewski and Becker, 2014). Naturally, a 311 

moderate drying trend in southwestern Africa and central Mediterranean Europe caused by precipitation decrease is detected 312 

by the reduction of TWS-DSI (−0.06/yr to −0.12/yr) (Peña-Angulo et al., 2020). On the contrary, increasing precipitation 313 

dominates the wetting trend in mid-latitude regions, including southern Russia and Canadian, west Africa, southeastern and 314 

southwestern Europe, southeast Asia and northwestern China, with significant slopes roughly ranging from 0.06/yr to 0.12/yr 315 

(Figure 1) (Siebert et al., 2010; Ndehedehe et al., 2017; Peña-Angulo et al., 2020). Some regions, such as the Amazon River 316 

basin, south Africa and eastern Australia, presenting wetting trends, are considered to experience a climatic shift from dry to 317 

the wet period (Chen et al., 2010; Gaughan and Waylen, 2012). When looking at the test results of the GHMs and LSMs, we 318 

notice the regional differences with generally consistent spatial patterns with the GRACE reconstruction. For example, the 319 

WGHM model shows depletion trends in TWS-DSI for the southwest of the South American continent. The three GLDAS 320 

models (i.e., VIC, CLSM, and Noah) do not capture the increasing trends in South China (i.e., Yangtze and Pearl River basins), 321 

of which the VIC model surprisingly shows the increasing trends over the Arab region. We additionally compare the trend 322 

estimations of the GCMs’ ensemble mean during the period 1985-2014 (Figures 2 and S14). Despite the overall similarity to 323 

the above-mentioned datasets, the existing regional differences in western South Africa (drying), South China Sea Islands 324 

(drying), and West Asia (wetting) compared with multiple models provide additional insights, indicating the great potential of 325 

the CMIP6 ensemble in TWSA projections.  326 
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Further, we perform an independent assessment based on the metric P-E-R for comparison with the TWS-DSI results to 327 

reveal the inherent mechanisms of the changes (Figures 2 and S15). The observational product of the variable P-E-R presents 328 

a similar pattern to the test results using TWS-DSI, however, with non-significant trends over most regions. This can be 329 

explained by the fact that the magnitude of the changes in the water storage, i.e., TWSC, in a region are minimal compared to 330 

the TWSA trends (Lv et al., 2021). In particular, the decreasing P-E-R (=TWSC) in southwest South America, North and South 331 

Africa, West Australia, North China, European Russia, and central Asia is observed with trends <–2 mm/yr, while increasing 332 

trends in northern Canada, central America, central Africa, East Australia, South India, and South and East Russia are found 333 

with rates >2 mm/yr. The local differences over the Arab region, south China, and the Caspian Sea might be caused by the 334 

propagated uncertainty in multiple observational datasets, especially for the arid regions (e.g., North Africa and West America), 335 

where accurately estimating E is very challenging (Goyal, 2004). For South China, consisting of the Yangtze and Pearl River 336 

basins, the difference might arise from the extensive reservoir filling, such as the Three Gorges Dam (Zhong et al., 2009), 337 

highlighting the significant role of human activities in the regional variations of TWS. Similarities are also seen over the land 338 

around the Caspian Sea, which is largely affected by the direct diversions and extractions of water from the rivers that sustain 339 

it (e.g., Volga River) instead of the conventionally dominant precipitation/evapotranspiration patterns over the sea surface 340 

(Rodell et al., 2018). It is worth mentioning again that the P-E-R equals the changes in TWSA (TWSC) rather than TWSA in 341 

terms of the water balance equation. Therefore, unlike TWSA, there are no significant trends in P-E-R over most regions of 342 

the world, which is also mentioned by several previous studies (Lv et al., 2019; Lv et al., 2021). Inter-comparisons with the 343 

GHMs and LSMs further confirm our observation-based evaluations, with relatively fewer magnitudes and significance 344 

derived from the substantial uncertainties in simulated E and R. In this case, we find an abnormally wetting trend in 345 

southwestern America, which might be caused by the severe groundwater pumping and water diversion implicitly considered 346 

in the metric P-E-R (Perrone and Jasechko, 2017). Satisfactory consistencies of GHMs and LSMs are also discovered by 347 

comparing each subset of P-E-R to the corresponding test results using TWS-DSI. The historical simulations of P-E-R from 348 

the ensemble mean of eight GCMs also compare reasonably well with different subsets, though showing the spatial differences 349 

over certain regions (e.g., central Europe and south Africa). 350 

Furthermore, we investigate the long-term trends in P, E, and R, respectively, to explain the mechanisms for the changes 351 

in land mass wetness/dryness (Figures S16-S18). Different products and models show consistent spatial patterns for P, in 352 

which significant (p<0.05) increasing trends are detected in eastern North America (5-10 mm/yr), central Amazon (10-20 353 

mm/yr), North Central and Southern Africa (0-5 mm/yr), northern Mediterranean basin (5-10 mm/yr), northwestern China (0-354 

5 mm/yr), East Russia (0-5 mm/yr), North Europe (0-5 mm/yr), and North Australia (0-10 mm/yr). The highest trends are 355 

found in the South China Sea Islands (>20 mm/yr). However, decreasing trends over some areas, including North Canada (–356 

5-0 mm/yr), Southwest parts of the United States (–10-–5 mm/yr), central South America (–15-0 mm/yr), Arab regions (–5-0 357 

mm/yr), and Northeast India (<–20 mm/yr) also exist. In terms of E, multiple datasets illustrate generally similar trend 358 

distributions with the regional variability in specific areas (e.g., central Africa and Amazon River basin). Significant increases 359 

in E are observed over south and north Asia, North Australia, central and northern Europe, eastern North America, and South 360 
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and central North Africa are seen by all the datasets, with the trends mainly ranging from 0 to 6 mm/yr. This increase might 361 

be caused by the warming climate and precipitation changes (Wang et al., 2022). However, we also notice the decreasing 362 

trends in western United States (–4-0 mm/yr), central South America (–8-–4 mm/yr), and Arab regions (–2-0 mm/yr), probably 363 

related to the heavy land-cover changes (Ruscica et al., 2022). Moreover, we discover overall similarities among trend 364 

estimates in R from different datasets, which are mainly dominated by the precipitation changes regionally with relatively 365 

lower amplitudes (roughly between –12-–12 mm/yr) except for arid central Asia and East Europe. In addition. we want to 366 

mention that despite the general agreement with different observational products and models, the GCMs-based historical trends 367 

estimates may have significant uncertainties over some regions, including South Africa, West America, Amazon, and central 368 

Asia (Figures S16-S18), and hence caution should be taken when interpreting the regional wetting/drying trends in the future 369 

scenarios over these regions.  370 

When looking into the respective contributions of P, E, and R to the changes in P-E-R, we find P controls the variations 371 

of P-E-R over the majority of the land, including North America, Australia, East Russia, North Europe, and North Africa. 372 

Because the trends in P over these regions are apparently larger than those of E and R, resulting in good agreement with P-E-373 

R. Similarly, E governs the changes in P-E-R for southern Africa, Northwest India, South China, most of Europe and central 374 

Russia. It is worth noting that P, E, and R jointly cause the changes in P-E-R for South America since P and E/R have opposite 375 

trends based on the observational products. The South China Sea Islands, including Indonesia and Malaysia, present consistent 376 

increasing trends in P, E, and R, thus, the approximately identical contribution of these variables can be attributed. However, 377 

it should be noted that the variability of either of these three water balance components (or their combination) may not always 378 

translate to the changes in TWSA because human interventions such as reservoir impoundment, water diversion, and 379 

groundwater pumping may substantially alter the natural water cycle, as we have discussed previously by taking the Yangtze 380 

River basin as an example (e.g., filling of the reservoirs). Although these changes can also be included in the climatic and 381 

hydrologic observations in an indirect/implicit way (e.g., increase of E from water impoundment or increase in soil moisture 382 

from infiltration), these signals are very difficult to be captured given the considerable uncertainty in different datasets, causing 383 

the nonclosure of the water balance at global scale (Lehmann et al., 2022). In this case, the assessment of the dryness/wetness 384 

from the TWSA perspective becomes more needful and convincing. 385 

3.2 Future projections using ensemble CMIP6 outputs 386 

We project the multi-model ensemble mean trends under different climate change scenarios (SSP126, SSP245, and 387 

SSP585) during the future period 2071-2100 using both TWS-DSI and P-E-R (Figures 1, 2, S14, and S15). Favorably good 388 

agreement between TWS-DSI and P-E-R is detected, with the latter presenting a less significant trend, similar to the 389 

observations made in previous studies (Lv et al., 2019; Lv et al., 2021). The general consistency might be associated with the 390 

incomplete considerations of human interventions in GCMs. However, we also discover the differences in TWS-DSI and P-391 

E-R over the high-latitude regions such as northern North America and Russia, which shows the wetting trend in P-E-R due 392 

to precipitation increase while drying in TWS-DSI probably because of the snow melt under global warming. GCMs present 393 
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higher spatial heterogeneity than the historical datasets such as GHMs and LSMs, possibly due to the original coarse spatial 394 

resolution of the GCMs and the biases in the models. Specifically, all three scenarios confirm the significant (p<0.05) wetting 395 

trends in North China, South Mongolia, central Asia, northern border of Canada, and South Europe, with the increase in the 396 

intensity and spread along with the enhancement of climate scenarios (Figures 1, 2, S14, and S15). Similarities are found in 397 

the drying trends in the majority of Russia, northern North America, and South Africa. The wetting trends are apparently 398 

caused by the increase in precipitation (Figure S16)  (Milly et al., 2005; Seneviratne et al., 2006). The arid Arab region is also 399 

projected to become wetter because of the increase in precipitation and the decrease in evapotranspiration. On the contrary, 400 

the drying trends are mainly controlled by the rapidly intensifying evapotranspiration in a warming climate (Figure S17) (Allen 401 

et al., 2010; Vicente-Serrano et al., 2010), with the precipitation and runoff slightly increasing (Figures S16 and S18). The 402 

obvious drying trend around Canada’s subarctic lakes is attributed to the high vulnerability to droughts when snow cover 403 

declines under increasing temperature (Bouchard et al., 2013). However, there exist scenario-variable divergences over the 404 

continents of South America, Australia, India, and the Mediterranean basin, which are generally caused by the various patterns 405 

in precipitation under different scenarios with the increasing evapotranspiration over there. The runoff also follows the patterns 406 

of precipitation but with comparably lesser magnitudes.  407 

We conduct a regional study for the QTP as an indicator for global climate change and to demonstrate the temporal 408 

changes in the regional dryness/wetness during 1985-2100 (Figures S19-20). A significant decrease in TWSA and the derived 409 

TWS-DSI is observed during the reference period 1985-2014 based on different datasets except for the WGHM output. The 410 

depletion trend is consistent with previous studies reporting the sublimation/ablation of glaciers and ice caps due to climate 411 

warming over decades (Huang et al., 2013, 2021). The drying QTP is also evidenced by the metric P-E-R with a non-significant 412 

trend based on various datasets, in which both precipitation and evapotranspiration increase. In addition, the QTP is expected 413 

to undergo continuous drying trends based on TWSA and TWS-DSI stemming from a warming climate, which can be more 414 

intensive under higher climate scenarios from SSP245 and SSP585 conditions (Figure S19). Similarly, regional precipitation 415 

and evapotranspiration also show increasing patterns, with the runoff generally unchanged (except during the end of the 21st 416 

century under the SSP585 scenario). However, the variable P-E-R does not present the decreasing trends as TWSA (and TWS-417 

DSI). The differences might be attributable to the biases in the projected evapotranspiration and runoff, which might 418 

underestimate some key components such as an increase in sublimation and surface runoff due to warming-induced melt of 419 

ice, snow, and glaciers. Despite this, it is worth noting that the modelled TWS-DSI-based evaluation can also overestimate the 420 

true trend of the land mass because the important surface water is not physically considered, especially in the context of 421 

significantly growing lake volume over the QTP (Zhang et al., 2021). 422 
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 423 

Figure 1. Global distribution of the classification in long-term trends in TWS-DSI during (a-f) the historical (1985-2014) and future (2071-424 
2100) period under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note: The historical results are based on the (a) GRACE 425 
reconstruction, (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The future results are based 426 
on the ensemble of eight GCMs. “D” and “W” indicate regions with drying and wetting trends, respectively. 427 

 428 
Figure 2. Global distribution of the classification in long-term trends in P-E-R during (a-f) the historical (1985-2014) and future (2071-2100) 429 
period under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note: The historical results are based on the (a) observation-based products 430 
(i.e., CRU P, GLEAM E, and GRUN R), (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. 431 
The future results are based on the ensemble of eight GCMs. “D” and “W” indicate regions with drying and wetting trends, respectively. 432 

 433 
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3.3 Assessment of the DDWW Paradigm 434 

Combined with the climate regions classified by AI, we further test the DDWW paradigm at a 5% significance level using 435 

both TWS-DSI and P-E-R over global land in the past and future (Figures 3 and 4). We observe apparent consistency in the 436 

spatial distribution of the test results based on different indices except for the high-latitude regions under future projections, in 437 

line with the long-term trend estimations. While the land area having significant patterns from TWS-DSI is more than that 438 

from P-E-R as investigated previously. In addition, different datasets (e.g., GHMs and LSMs) produce reasonably consistent 439 

spatial distributions except for the regional variabilities over certain regions such as North Africa. We also note that relatively 440 

larger biases could occur in several regions including western United States and central Asia, highlighting the uncertainties in 441 

the future projections based on the CMIP6 GCMs. As reported in Table S3, limited proportions (<10%) of area illustrating the 442 

“transition gets drier” (TD) and “transition gets wetter” (TW) patterns are estimated in both past and future periods. Much of 443 

the land area over the Arab regions, East Asia, and southwest United States show the “dry gets drier” (DD) phenomenon. In 444 

contrast to that, a substantial portion of area over the arid regions of the north and south of Africa, Australia, and central Asia 445 

shows the “dry gets wetter” (DW) hypothesis. Moreover, the “wet gets wetter” (WW) paradigm is confirmed mainly in East 446 

Russia, north Amazon, South China, and East United States, with the “wet gets drier” (WD) pattern happening in central Africa, 447 

eastern Amazon, middle Europe. western Canada, and North Asia. The differences between test results from TWS-DSI and P-448 

E-R are mainly in South China and northern lands of the Caspian Sea, which are caused by the divergent meanings in the 449 

metrics. For example, a significant increase in E over South China is shown as the drying trends of P-E-R, instead of the 450 

wetting trends of TWS-DSI induced by the extensive reservoir impoundment (e.g., Three Gorges Dam). The differences are 451 

highlighted by the future projections over high-latitude regions such as northern Russia and North America as well as central 452 

Africa, especially under the SSP585 scenario. Despite this, a similar pattern revealed by both variables under the SSP126 453 

scenario shows the continued tendency when compared with the historical results (Figures 3 and 4). However, some regions 454 

like South Europe and southeastern South America present strong wetting trends due to an increase in precipitation (Coppola 455 

et al., 2021), the opposite changes are discovered over northern South America.  Nevertheless, the SSP245 scenario presents 456 

a slightly different distribution from historical results, with many regions in the north and center of Asia and central Europe 457 

showing DW and WW situations instead of DD and WD. In addition to that, the south and northeast parts of China, together 458 

with the majority of Russia show the WD situation, while the DD paradigm is gradually dominating Australia. This difference 459 

is further confirmed based on the results under the SSP585 scenario (Figures 3 and 4). These results correspond well with the 460 

climatic and hydrologic fluxes such as P, E, and R as well as their residuals (P-E-R), indicating the consistency between the 461 

atmospheric and terrestrial conditions under climate change.  462 

Global statistics of the regions with various patterns during the historical (1985-2014) and future periods (2071-2100) are 463 

shown in Figure 5. During the period 1985-2014, a percentage of as high as 82.8% of the land area shows significant trends in 464 

either wetting or drying (p<0.05) based on the GRACE reconstruction. Further, 40.84% of the area shows the DDWW 465 

paradigm, in which 20.17% and 20.67% of the area is drying and wetting, respectively. 35.43% of the area, however, shows 466 
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the opposite pattern of DW (16.13%) and WD (19.30%), respectively. The percentages of the global land supporting/opposing 467 

the DDWW paradigm from the GHMs and LSMs are relatively lower than those from the GRACE reconstruction using TWS-468 

DSI, which are reflected by the fewer proportions with significant trends. For example, the percentage of the land area showing 469 

the DDWW paradigm ranges from 11.01% (VIC) to 18.95% (Noah), and from 10.21% (WGHM) to 16.4% (VIC) for the 470 

opposite pattern. The test results based on P-E-R indicate a similar mismatch of the DDWW paradigm with 12.54% and 6.62% 471 

of the land area validating and combating the DDWW paradigm, respectively based on the observational products (Figure S21 472 

and Table S4). Nevertheless, GHMs and LSMs report non-significant trends (p>0.05) over more than 90% of land area. In 473 

short, the confirmed percentage for the DDWW paradigm (11.01% to 40.84%) for the land mass (represented by TWS-DSI) 474 

in our study is higher than that for the land surface (represented by precipitation, evaporation, and aridity) in a previous study 475 

(10.8%) (Greve et al., 2014). Feng and Zhang (2015) used soil moisture to conclude a proportion of 15.12% followed the 476 

DDWW pattern while a percentage of 7.7% of the land showed an opposite pattern between 1979 and 2013, which is relatively 477 

lower than our study. Yang et al. (2019) applied a combined measure employing six different drought indices to evaluate the 478 

DDWW paradigm and discovered the percentage following and opposing the DDWW paradigm is 29% and 20%, respectively, 479 

during the period 1982-2012, typically consistent with our study. Cheng et al. (2020) utilized the GRACE data during 2002-480 

2017 and reported the area having the DDWW pattern reached 11.2% except for the 4.7% of cold regions over global land, 481 

which is comparatively lower than our study. Observed differences among various studies are attributed to the differences in 482 

datasets used, metrics employed for assessment and their governing mechanisms, and the study period.  483 

In climate model projections, the proportion of areas supporting the DDWW paradigm is 14.66%, 14.26%, and 17.08% 484 

under SSP126, SSP245, and SSP585 scenarios, respectively for TWS-DSI. Alternatively, the fraction of the global land area 485 

having the opposite DDWW pattern achieves 13.84%, 18.72%, and 26.64%, respectively. The percentage of areas with 486 

significant wetting and drying trends slightly increases over the enhancement of emission scenarios, consistent with the 487 

increase of DDWW-validated areas from SSP126 to SSP585 scenarios (Figures 3 and 4). The evaluation results from the 488 

perspective of P-E-R are generally lower than 5% because of the non-significant trends in the variable, highlighting the 489 

unsupported DDWW paradigm in this regard. However, as we have mentioned previously, the internal variability of climate 490 

models might affect the potential agreement with the DDWW pattern (Kumar et al., 2015), which is also reflected by the 491 

differences between the GCMs and different models/products during the historical period (Tables S3-S4). Greve and 492 

Senevirtne (2015) used climate projections from CMIP5 to establish the measure 𝑃𝑃 − 𝐸𝐸 for the assessment of the DDWW 493 

paradigm and discovered the hypothesis was validated over 19.5% of land area between 2080 and 2100 under the RCP8.5 494 

scenario, which is close to our result (17.08%). Moreover, Li et al. (2021a) further applied the P-E index to test the DDWW 495 

theory based on GCMs from the third phase of Paleoclimate Modelling Intercom-parison Project (PMIP3) simulations, 496 

concluding a similar proportion of 22.8% of the global land to our study that held the DDWW paradigm. This similarity reveals 497 

the consistent terrestrial responses to the atmospheric variations under future warming for both metrics. 498 

 499 
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 500 

Figure 3. Global assessment of the DDWW paradigm based on TWS-DSI during the (a-f) historical (1985-2014) and (g-i) future (2071-501 
2100) period under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note: The historical results are based on the (a) GRACE 502 
reconstruction, (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The future results are based 503 
on the ensemble of eight GCMs. DD indicates the dry gets drier; DW indicates the dry gets wetter; WW indicates the wet gets wetter; WD 504 
indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the transition gets wetter. 505 

 506 

Figure 4. Global assessment of the DDWW paradigm based on P-E-R during the (a-f) historical (1985-2014) and future (2071-2100) period 507 
under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios. Note: The historical results are based on the (a) observation-based products (i.e., 508 
CRU P, GLEAM E, and GRUN R), (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The 509 
future results are based on the ensemble of eight GCMs. DD indicates the dry gets drier; DW indicates the dry gets wetter; WW indicates 510 
the wet gets wetter; WD indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the transition gets wetter. 511 
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 512 

 513 
Figure 5. Fraction of the global land area (in percentage) with different patterns during the (a-f) historical (1985-2014) and (g-i) future 514 
(2071-2100) period under (g) SSP126, (h) SSP245, and (i) SSP585 scenarios based on TWS-DSI. Note: The historical results are based on 515 
the (a) GRACE reconstruction, (b) WGHM, (c) VIC, (d) CLSM, (e) Noah, and (f) ensemble mean of eight GCMs, respectively. The future 516 
results are based on the ensemble of eight GCMs. DD indicates the dry gets drier; DW indicates the dry gets wetter; WW indicates the wet 517 
gets wetter; WD indicates the wet gets drier; TD indicates the transition gets drier; TW indicates the transition gets wetter; Non-significant 518 
indicates the regions showing non-significant (p>0.05) trends in TWS-DSI. 519 

3.4 Uncertainties, Implications, and Way Forward 520 

Each ensemble member of the datasets used in this study has embedded uncertainties inherently originating from one or 521 

more forcing variables, simplified assumptions of complex processes in the models and their physical structure, retrieval 522 

algorithms, and systematic biases, which might have inevitably propagated to the results presented herein. For example, the 523 

original GRACE mascon observations contain the measurement error and signal leakage at the gridded scale, which persists 524 

in the reconstruction of TWSA when training via statistical methods (Li et al., 2021a). Unlike observed GRACE and 525 

reconstructed GRACE-like data, simulations from the models (GHMs, LSMs, and GCMs) are inherently featured by 526 

incomplete TWSA representation (Table S1). They are generally based on simplified hydrological processes, resulting in the 527 

lack of certain TWSA components. For example, the widely used Noah and VIC models lack surface water and groundwater 528 

storage in TWSA (Scanlon et al., 2018). Similarly, GCMs can only simulate the snow water and soil moisture within a limited 529 
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depth from 2 to 10 m below the land surface (Xiong et al., 2022a). This inadequate representation of TWSA (and hence TWS-530 

DSI) in these global models can lead to regional bias in some aquifers with overexploitation of the particular TWSA 531 

components (e.g., groundwater depletion in North China Plain) and therefore should be cautioned especially dealing with the 532 

seasonal analyses. Overall, the models with completed TWS components are more suitable for assessing the TWSA changes 533 

at the global scale for future research, such as the continuously developing hyper-resolution global hydrological models (e.g., 534 

WGHM), which can help to avoid the uncertainty associated with the lack of key TWSA elements in most LSMs (e.g., surface 535 

water and groundwater) (Pokhrel et al., 2021).  536 

Moreover, the eight CMIP6 GCMs are forced with the future projections of many meteorological variables such as 537 

precipitation and air temperature, which have been reported to show variable-specific biases over the global land (Eyring et 538 

al., 2016; Kim et al., 2020). Despite employing bias correction with GRACE data, uncertainty from the forcing and models 539 

can influence the accuracy of TWSA simulations (Xiong et al., 2022a). Advanced bias-correction methods (e.g., Lange, 2019 540 

and Francois et al., 2020) might play critical roles in reducing such errors in meteorological variables for future hydrologic 541 

impact studies, especially when combined with the start-of-the-art GHMs and LSMs as mentioned above. The inclusion of 542 

more GCMs can also help to estimate the uncertainties in the meteorological inputs in climate change scenarios. Although it 543 

is challenging to explicitly attribute and quantify these uncertainties in the absence of a ‘true’ reference observation dataset, 544 

the ensemble averaging method has been used to integrate the multi-source TWSA data. Moreover, since the meaning and 545 

hence the results and interpretation of the 'dry' and 'wet' varies across disciplines, land or ocean, target variable(s), and the 546 

problem in question (Roth et al., 2021), future studies may focus on various spatial (e.g., local, regional, basin, zonal averages) 547 

and temporal (monthly, seasonal, annual) scales using our processed data with additional model outputs (e.g., more number of 548 

GCMs).  549 

To investigate the influence of different models on the robustness of the evaluation for the DDWW paradigm, we carry 550 

out an independent analysis at the individual member level during the future period 2071-2100 (see Figure S22).  We find the 551 

differences among different members of the CMIP6 archive. The GFDL-ESM4 and MIROC6 models present overestimations, 552 

but the IPSL-CM6A and CanESM5 models underestimate different percentages compared with the ensemble mean. 553 

Specifically, the area dominated by the DDWW paradigm changes from 8.16% (ACCESS-ESM1-5) to 19.36% (MIROC6), 554 

while that showing the opposite pattern ranges from 7.33% (CanESM5) to 14.57% (MPI-ESM1-2-HR) under the SSP126 555 

scenario. For the SSP245 scenario, the DDWW-validated regions account for 6.98% (CanESM5) to 18.54% (GFDL-ESM4); 556 

the opposite pattern occurs over a range from 8.71% (CanESM5) to 12.64% (MPI-ESM1-2-HR) of land. The proportion 557 

supporting the DDWW paradigm varies from 9.71% (CanESM5) to 20.08% (GFDL-ESM4), while that presenting the opposite 558 

pattern ranges from 8.19% (MPI-ESM1-2-LR) to 18.68% (ACCESS-CM2) under the SSP585 scenario. Overall, the 559 

comparatively large difference among various models might source from unforced internal climate variability of distinctive 560 

CMIP6 members and different emission scenarios (Kumar et al., 2015). 561 

Our choice of the significance level (i.e., 0.05) may also affect the rationale of the DDWW examination results. Therefore, 562 

different significance levels are alternatively tested (see Figures S23-S24 and Tables S5-S6). At a significance level of 0.01, a 563 
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decrease in 3.21% (37.63%) of the land area agreeing well with the DDWW theory is detected, with a reduction of 2.65% 564 

(32.78%) in area illustrating the opposite pattern during the period 1985-2014 for the GRACE reconstruction. Similar decreases 565 

in the proportion of the DDWW-dominated area ranging from 5.19% (SSP245) to 7.2% (CLSM) are also discovered in the 566 

GHMs, LSMs, and GCMs. As for the 0.1 significance level, the DDWW-validated regions account for 42.49% (+1.65%) of 567 

the total area, with 36.89% (+1.46%) of land agreeing with the opposite hypothesis compared to those at the 0.05 level. In the 568 

future period, a similar pattern is discovered that both DDWW-confirmed and DDWW-opposed regions are increasing on 569 

account of the enhancement of projected strength of radiative forcing, with the reduction of the area showing non-significant 570 

trends in wetting and drying. However, the magnitudes of results at the 0.01 significance level are generally lower than that at 571 

the 0.1 significance level due to the different thresholds of the detected trends in drying and wetting. Considering the similar 572 

tendency with marginal effects of the varying choices of the p-value (e.g., 4.86% change in DDWW area from 0.01 to 0.1 level 573 

for the GRACE reconstruction during 1985-2014), our adopted significance level (i.e., 0.05) can reasonably and robustly 574 

explain the global trends of dryness/wetness. Given the inherent magnitude bias from various GCMs projections, the ensemble 575 

averaging method has the potential to provide alternative estimates over data-sparse areas globally like Africa and central Asia. 576 

Despite the multisource uncertainties, our study provides important implications for the long-term trends in 577 

dryness/wetness of the global land mass in the past and future from the perspective of TWSA. Compared with other widely 578 

used indexes that are purely derived from the hydrometeorological variables (e.g., SPI, SPEI, and PDSI) or incorporate a single 579 

component of the TWSA (e.g., SSI, SGI, and SRI), our developed TWS-DSI is able to describe the overall status of the land 580 

system, which is jointly influenced by different components including soil moisture, river runoff, and groundwater that play 581 

different roles in the hydrological cycle (Tapley et al., 2019). Although other indices may undoubtedly perform at par for the 582 

specific variable in question, they tend to present equivocal inferences for the total water storage. It can be easily understood 583 

by the example of soil moisture or evapotranspiration-based indices in a highly irrigated area such as the Ganges river basin. 584 

TWS is unremittingly declining due to the overexploitation of groundwater for agriculture in this region (Rodell et al., 2009), 585 

while E or soil moisture may have positive trends, thus attenuating the actual TWS situation. Moreover, the adopted TWS-586 

DSI is suitable and feasible for comparing dryness/wetness status for different locations and periods (Zhao et al., 2017). 587 

Furthermore, the projected changes in global TWSA and associated TWS-DSI improve our understanding of the large-scale 588 

hydrological response to climate change, particularly in regions with strong human interventions, such as the south and east of 589 

Asia.  590 

4 Conclusion 591 

This study performs a global examination for the dry gets dryer wet gets wetter paradigm from terrestrial water storage 592 

perspective in the past and future. The historical TWS-DSI monthly time series over global land during 1985-2014 is calculated 593 

from two GHMs (VIC and WGHM), two LSMs (Noah and CLSM), and one GRACE reconstruction. In addition, future 594 

projections of TWS-DSI from 2071 to 2100 under SSP126, SSP245, and SSP585 scenarios are derived from the average of 595 
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eight selected CMIP6 GCMs after bias-correction using GRACE observations. Further, the DDWW paradigm has been 596 

evaluated with a significance level of 0.05 from the perspective of terrestrial water storage change. We also establish the metric 597 

P-E-R based on multiple observational products and from the same models as the TWS-DSI for comparison. The uncertainty 598 

sourced from different choices of models, methods, and confidence levels has been discussed systematically. The new findings 599 

are summarised as follows. 600 

(1) During the historical period, the percentages of global land area presenting significant (p<0.05) drying and wetting 601 

trends range from 13.06% (WGHM)-43.35% (GRACE reconstruction) and 13.7% (CLSM)-39.43% (GRACE reconstruction), 602 

respectively. The wetting trends are mainly in North Australia, North and South Africa, South and Northwest China, western 603 

South America, central United States, and East  Russia. While the drying trends are found in Arab region, West Brazil, 604 

Northeast Asia, and southern and northern American continent. During the future period under climate change, the proportion 605 

of drying areas (always ~10% higher than wetting) with a significant slope increases from SSP126 (19.52%) to SSP585 606 

(29.04%) scenario. A similar change is detected in the percentage with significant wetting trends, which reaches 11.48%, 607 

13.01%, and 18.42% under SSP126, SSP245, and SSP585 scenarios, respectively. 608 

(2) A total of 11.01% (VIC) to 40.84% (GRACE reconstruction) of the global land area shows the DDWW paradigm 609 

valid, in which the drying and wetting area account for 6.47% (VIC)-20.17% (GRACE reconstruction) and 4.54% (VIC)-610 

20.67% (GRACE reconstruction), respectively during the period 1985-2014. However, the area showing the opposite patterns, 611 

like “dry gets wetter” (DW) or “wet gets drier” (WD), account for the 10.21% (WGHM)-35.43% (GRACE reconstruction) of 612 

the global land, respectively. The proportion of areas supporting (opposing) the DDWW paradigm is 14.66% (16.76%), 14.26% 613 

(18.72%), and 17.08% (26.64%) under SSP126, SSP245, and SSP585 scenarios, respectively. Regional assessment for the 614 

QTP reveals the drying trends of the land mass primarily attributable to the sublimation/ablation of glaciers and ice caps, 615 

together with a continued tendency in future warming climates until the end of the 21st century. 616 

(3) Sensitivity analysis on different choices of significance levels from 0.01 to 0.1 for the long-term trends indicates 617 

similar patterns, in which the maximum decrease (increase) in the DDWW-validated regions reaches –7.4% (4.47% historically 618 

under the 0.01 (0.1) level, respectively. Such consistency is also evidenced by the projected TWS-DSI in the future under 619 

various scenarios. Moreover, independent experiments based on the individual TWSA datasets suggest that the divergent data 620 

sources might lead to model-variable biases for both the DDWW-agreed and DDWW-opposed patterns. The use of distinctive 621 

GCMs also suggests slightly overrated (e.g., GFDL-ESM4) and underrated (e.g., CanESM5) percentages of such patterns in 622 

the future under multiple emission scenarios. 623 

New insights from the TWSA perspective highlight that the widely-used DDWW paradigm is still challenged in both 624 

historical and future periods under climate change. The differences between test results based on P-E-R imply the robustness 625 

of our developed TWS-DSI in capturing the total land water variations induced by climate changes and human activities, 626 

suggesting potentially new knowledge in the land hydrology field.  627 
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