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Abstract 25 

To improve the capacity of watershed modeling, remotely sensed products are frequently used to 26 

reduce the uncertainty resulting from data limitations. Although remotely sensed 27 

evapotranspiration (RS-ET) products are widely used, vegetation parameters governing spatial and 28 

temporal variations in evapotranspiration (ET) are often not constrained by benchmark data. 29 

Recently, remotely sensed leaf area index (RS-LAI) products are becoming increasingly available, 30 

providing an opportunity to assess and improve simulated vegetation dynamics. The objective of 31 

this study is to assess the role of the two remotely sensed products (i.e., RS-ET and RS-LAI) in 32 

improving the accuracy of watershed model predictions. Specifically, we investigated the role of 33 

RS-ET and RS-LAI products in 1) reducing parameter uncertainty and 2) improving model 34 

capacity to predict the spatial distribution of ET and LAI at the sub-watershed level. The 35 

watershed-level assessment of the degree of equifinality (denoted as the number of parameter sets 36 

that produce equally acceptable model simulations) shows that less than half of the acceptable 37 

parameter sets for two constraints (streamflow and RS-ET; 14 parameter sets) are acceptable for 38 

three constraints (streamflow, RS-ET, and RS-LAI; six parameter sets). Among those six 39 

parameter sets, only three can satisfactorily characterize spatial patterns of ET and LAI at the sub-40 

watershed level. Our results suggest that the use of multiple remotely sensed datasets holds great 41 

potential to reduce parameter uncertainty and increase the credibility of watershed modeling, 42 

particularly for characterizing spatial variability of hydrologic fluxes that are relevant to 43 

agricultural management. 44 

 45 
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1. Introduction 48 

One major concern with regard to any hydrological modeling exercise is predictive uncertainty. 49 

Although the reliability of the simulated outcomes is assessed via model calibration and validation 50 

to some degree, predictive uncertainty always exists (Arnold et al., 2012; Yen et al., 2014a). The 51 

lack of observations is one of the primary sources of uncertainty. Majority of hydrological 52 

modeling studies depend solely on water quantity and/or quality measurements collected at 53 

watershed outlets (Arnold et al., 2012; Gassman et al., 2014). To overcome predictive uncertainty 54 

resulting from data shortfalls, the use of soft data (e.g., expert knowledge, literature, remotely 55 

sensed data, and extensive field monitoring) has been suggested as an additional constraint (Arnold 56 

et al., 2015; Lee et al., 2019; Seibert and McDonnell, 2002; Yen et al., 2016). Soft data have been 57 

used to better represent intra-watershed processes, that is hydrological processes that occur 58 

between streams and upland areas (Yen et al., 2014a). The inclusion of soft data has been found 59 

to be efficient in constraining model parameter values, leading to a reduction in predictive 60 

uncertainty (Julich et al., 2012; Lee et al., 2019; Vaché and McDonnell, 2006). 61 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed hydrological model that 62 

commonly encounters predictive uncertainty owing to a lack of observations (Gassman et al., 63 

2014). One way to address this problem is to employ remotely sensed data into  SWAT simulations 64 

to capture plant growth (Strauch and Volk, 2013; Yeo et al., 2014), wetland inundation dynamics 65 

(Lee et al., 2019; Yeo et al., 2019), and soil moisture (Chen et al., 2011). Compared to in-situ 66 

measurements that require intensive labor and high cost, remotely sensed data have the advantage 67 

of providing measurements across landscapes for a long period and reduce the problem of data 68 

deficiency for hydrologic model operations (Jiang and Wang, 2019; Xu et al., 2014). SWAT has 69 

been recently calibrated against remotely sensed evapotranspiration (RS-ET) products, leading to 70 
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improved model predictions (Herman et al., 2018; Parajuli et al., 2018; Rajib et al., 2018; 71 

Wambura et al., 2018). Evapotranspiration (ET) is defined as the sum of evaporation and 72 

transpiration fluxes. It plays a critical role in water and energy cycling by transferring soil moisture 73 

to the atmosphere (Schlesinger and Jasechko, 2014). ET has been known as one of the largest 74 

fluxes of the components of water balance (Ukkola and Prentice, 2013). Thus, improved ET 75 

predictions can increase the overall accuracy of the model outcomes.  76 

RS-ET products are commonly used as calibration data with streamflow to better constrain 77 

hydrologic parameters (Herman et al., 2018; Parajuli et al., 2018; Rajib et al., 2018; Wambura et 78 

al., 2018). The simultaneous use of streamflow and RS-ET products can constrain parameter 79 

values, and reduce the predictive uncertainty (Herman et al., 2018; Parajuli et al., 2018; Rajib et 80 

al., 2018; Wambura et al., 2018). Wambura et al. (2018) demonstrated the usefulness of RS-ET 81 

products in reducing the degree of equifinality, which is the tendency for different parameter sets 82 

(referred to as PARs hereafter) to produce equally acceptable model outputs (Beven, 2006). A 83 

study by Rajib et al. (2018) found substantial improvement in the modeled ET predictions by 84 

including vegetation parameters and the utility of RS-ET products in evaluating ET variations 85 

across a landscape, indicating a change in the model performance measure, that is the Kling-Gupta 86 

Efficiency (KGE) from 0.6 to 0.7. Thus, access to RS-ET products enables the assessment of the 87 

model capacity to predict the spatial distribution of hydrologic variables (Becker et al., 2019; Rajib 88 

et al., 2018).  89 

Root uptake of water and subsequent transpiration from leaf areas comprise a significant 90 

portion of the total ET in vegetated areas. Therefore, its parameterization is crucial for ET 91 

simulations. However, previous studies have rarely included vegetation data in the calibration and 92 

validation of ET simulations (Herman et al., 2018; Parajuli et al., 2018; Rajib et al., 2018; 93 
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Wambura et al., 2018). Ha et al. (2018) applied remotely sensed ET and vegetation data to SWAT 94 

modeling, but their study focused only on the usefulness of remotely sensed data for regions 95 

without streamflow observations. ET simulations without model calibration against vegetation 96 

data can be problematic because SWAT estimates of ET may not accurately reflect the contribution 97 

of vegetation. The leaf area index (LAI), referred to as the projected leaf area over a unit of land, 98 

is an important vegetation parameter that is closely related to vegetation transpiration (Bian et al., 99 

2019; Gigante et al., 2009). Several studies have emphasized that LAI should be considered for 100 

ET predictions because of the strong correlation between ET and LAI (Wang et al., 2010; Yan et 101 

al., 2012). The increased availability of remotely sensed LAI (RS-LAI) products provides an 102 

opportunity to apply these data to hydrological modeling studies (Andersen et al., 2002; Stisen et 103 

al., 2008).  104 

The primary goal of this study was to explore the usefulness of the two remotely sensed 105 

datasets, namely RS-ET and RS-LAI, in enhancing watershed model uncertainty for a small 106 

watershed (221 km2) within the coastal plain of the Chesapeake Bay Watershed (CBW). The 107 

hydrologic model chosen for this study was SWAT because remotely sensed data have been widely 108 

incorporated into this model. To achieve this research goal, this study conducted a lumped 109 

parameterization at the watershed level using three constraints: streamflow, RS-ET, and RS-LAI 110 

products. The PARs that resulted in acceptable streamflow and ET simulations (referred to as 111 

“PARs-1,” hereafter) were taken from all PARs explored for calibration. In addition, the PARs 112 

with acceptable model performance measures for streamflow, ET, and LAI (referred to as “PARs-113 

2,” hereafter) were extracted from all explored PARs. The specific objectives of this study were 114 

to: (i) compare the two PARs (i.e., PARs-1 and PARs-2) along with their simulated outputs (e.g., 115 

streamflow, ET, and LAI), and explore the role of vegetation constraints (i.e., RS-LAI products) 116 
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in improving ET simulations and constraining acceptable PARs; and (ii) test whether those 117 

additional constraints (i.e., RS-ET and RS-LAI products) are useful in identifying the PARs that 118 

well represent the spatial distribution of ET and LAI.  119 

 120 

2. Materials and methods 121 

2.1. Study area 122 

This study was conducted in the Tuckahoe Creek watershed (TCW), upstream of the U.S. 123 

Geological Survey (USGS) gauge station #01491500. The watershed is situated as a sub-basin of 124 

the Choptank River watershed within the CBW coastal plain (Fig. 1a). The Choptank River 125 

watershed has been the focus of intensive research (McCarty et al., 2008) led by the U.S. 126 

Department of Agriculture-Natural Resources Conservation Service (USDA-NRCS; Duriancik et 127 

al., 2008) and the USDA-Agricultural Research Service (USDA-ARS; Baffaut et al., 2020). The 128 

TCW is predominantly covered by croplands (54%), followed by forest (32.8%), pasture (8.4%), 129 

urban land (4.2%), and water bodies (0.6%, Fig. 1b). The main crops in the watershed include corn, 130 

soybeans, and winter wheat. According to the soil classification system illustrated in the USDA-131 

NRCS, soils are mainly composed of moderately well (Hydrologic Soil Group (HSG) – B, 55.8%) 132 

and poorly (HSG – D%, 41.7%) drained soils (Fig. 1c). A detailed description of HSGs is presented 133 

in Fig. 1. Based on long-term weather observations from three meteorological stations operated by 134 

the National Climate Data Center (NCDC) and the National Oceanic and Atmospheric 135 

Administration (NOAA) (Fig. 1a), the annual mean precipitation and daily average temperature 136 

for the past 30 years (1985 – 2014) are estimated to be 1166 mm (± 228 mm) and 13 °C (± 1 °C), 137 

respectively. The study has a humid subtropical climatic condition affected by the Chesapeake Bay 138 
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and the Atlantic Ocean, resulting in fairly uniform precipitation over the course of the year (Fisher 139 

et al., 2010). The study site is characterized by flat topography (0 - 32 m above sea level). Irrigation 140 

for corn and soybean production during the summer season has seen a substantial increase in this 141 

region (Wolman, 2008), which amplifies water loss by ET during the summer season. Water 142 

balance cycling in this region is greatly affected by seasonal variations in ET. Thus, an accurate 143 

ET simulation for this region is crucial for advancing predictions from hydrological models. 144 

 145 

 146 
Fig. 1. Characteristics of the study area (Tuckahoe Creek Watershed): (a) location, (b) land use 147 
type, and (c) hydrologic soil groups (adapted from Lee et al., 2018a) Note: hydrologic soil groups 148 
(HSGs) are characterized as follows: Type A – well-drained soils with 7.6–11.4 mm·h-1 water 149 
infiltration rate; B – moderately well-drained soils with 3.8–7.6 mm·h-1; C – moderately poorly-150 
drained soils with 1.3–3.8 mm·h-1; and D – poorly-drained soils with 0–1.3 mm·h-1 (Neitsch et al., 151 
2011). HSG–A, B, C, and D account for 0.3, 55.8, 2.2, and 41.7% of TCW, respectively. 152 

 153 

https://doi.org/10.5194/hess-2022-187
Preprint. Discussion started: 28 June 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

2.2. Soil and Water Assessment Tool 154 

 The SWAT model is a watershed-scale model designed to study the impacts of 155 

environmental and anthropogenic changes on hydrological processes within an agricultural 156 

watershed (Neitsch et al., 2011). The SWAT includes several components that account for climate, 157 

hydrology, nutrients/pesticides, erosion, land cover/plant, management practices, and channel 158 

processes (Neitsch et al., 2011). The model partitions a given watershed into sub-watersheds and 159 

hydrological response units (HRUs). The HRU is the basic modeling unit and is characterized as 160 

a unique combination of land use, soil, and slope within individual sub-watersheds. Hydrologic 161 

variables are determined at the individual HRU level, after which outputs are combined at the sub-162 

watershed and watershed levels through channel processes (Neitsch et al., 2011). The cumulative 163 

water balance of each HRU is computed using Eq. 1: 164 

𝑆𝑆𝑊𝑊𝑡𝑡 = 𝑆𝑆𝑊𝑊0 + ∑ (𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑎𝑎 −𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑔𝑔𝑔𝑔)𝑡𝑡
𝑖𝑖=1                                                                                (1) 165 

Where, 𝑆𝑆𝑆𝑆𝑡𝑡 is the final soil water content (mm H2O), 𝑆𝑆𝑆𝑆0 is the initial soil water content (mm 166 

H2O), t is the time (days), 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 is the amount of precipitation on day i (mm H2O), 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the 167 

amount of surface runoff on day i (mm H2O), 𝐸𝐸𝑎𝑎 is the amount of ET on day i (mm H2O), 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 168 

is the amount of percolation and bypass flow at the bottom of the soil profile on day i (mm H2O), 169 

and 𝑄𝑄𝑔𝑔𝑔𝑔 is the amount of groundwater flow on day i (mm H2O). In SWAT, the surface runoff 170 

volume is computed using a modified SCS curve number (USDA-SCS, 1972) or the Green and 171 

Ampt infiltration method (Green and Ampt, 1911). The former was used in this study. 172 

The SWAT model first calculates potential ET (PET) and then estimates actual ET (AET). 173 

Three calculation methods for potential evapotranspiration (PET) are available in the SWAT 174 

model (Neitsch et al., 2011): Penman–Monteith (Monteith, 1965), Priestley–Taylor (Priestley and 175 
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Taylor, 1972), and Hargreaves (Hargreaves et al., 1985). After computing PET, AET is estimated 176 

by considering evaporation on the canopy, soil evaporation, and plant transpiration, which are 177 

computed depending on the applied PET method (Neitsch et al., 2011). The actual soil evaporation 178 

is determined as a function of soil depth and soil water content. The actual plant transpiration is 179 

computed as the reduced optimal plant transpiration due to the limited soil water available for 180 

plants. 181 

This study used the Penman–Monteith method, which is expressed in Eq. (2), as follows:  182 

𝜆𝜆𝐸𝐸 =
∆∙(Hnet − G)+ρair∙cp∙[ez

0 − ez]/ra

∆+γ∙(1+rc/ra)
                                                                                             (2) 183 

Where, 𝜆𝜆E is the latent heat of vaporization (MJ kg−1), 𝐸𝐸 the depth rate evaporation (mm d-1), Δ 184 

the slope of the saturation vapor pressure-temperature curve (kPa ◦C −1), 𝐻𝐻𝑛𝑛𝑛𝑛𝑛𝑛 the net radiation 185 

(MJ m−2 d−1), G the ground heat flux density (MJ m−2 d−1), 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎 the air density (kg m−3), 𝑐𝑐𝑝𝑝 the 186 

specific heat at constant pressure (MJ kg−1 ◦C −1), 𝑒𝑒𝑧𝑧0 the saturation vapor pressure of air at height 187 

z (kPa), e𝑧𝑧 the water vapor pressure of air at height z (kPa), γ the psychrometric constant (kPa ◦C 188 

−1), rc  the plant canopy resistance (s m−1) and ra  the diffusion resistance of the air layer 189 

(aerodynamic resistance) (s m−1).  190 

 In SWAT, dynamic LAI estimates are generated as a function of the optimal leaf area 191 

development curve.  This curve controls LAI growth through accumulated potential heat units. A 192 

daily potential heat unit is computed as the difference between the daily average temperature and 193 

base temperature. The base temperature is the minimum temperature for vegetation growth, and 194 

its default value is set to 0 °C. If the base temperature is greater than the daily average temperature, 195 
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the daily heat unit is zero. During the initial growth period, leaf area development is simulated as 196 

a function of the optimal leaf area development curve.  197 

𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃

𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑒𝑒𝑒𝑒𝑒𝑒 �ℓ
1
− ℓ

2
∙ 𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃�

                                                                                             (3) 198 

Where, 𝑓𝑓𝑓𝑓𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is the fraction of the plant’s maximum leaf area index corresponding to a given 199 

fraction of potential heat units for the plan, 𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃  is the fraction of potential heat units 200 

accumulated for the plant on a given day in the growing season, and ℓ
1
 and ℓ

2
 are the shape 201 

coefficients. In the leaf area development curve, once the LAI reaches its (vegetation type-specific) 202 

maximum value, the maximum LAI is maintained until leaf senescence begins, after which it was 203 

linearly decreased before dormancy (Neitsch et al., 2011). 204 

 205 

2.3. Input data and model set-up 206 

 The SWAT model requires climate and geospatial data as inputs for simulations (Table 1). 207 

Daily precipitation and temperature records from 2008 to 2014 were downloaded from NOAA 208 

NCDC monitoring stations (Fig. 1a). Daily solar radiation, relative humidity, and wind speed were 209 

prepared using the SWAT model’s built-in weather generator (Neitsch et al., 2011) because the 210 

three climate data points were not observed by monitoring stations in this region. The nearest 211 

station at Greensboro only collected daily precipitation; thus, daily temperature records were 212 

obtained from the next closest station at Chestertown from January 2008 to May 2011. As the 213 

station at Chestertown collected temperature data only until May 2011, the third nearest station at 214 

Royal Oak was chosen to obtain data from June 2011 to December 2014. The calculation of daily 215 

solar radiation, relative humidity, and wind speed via weather generator is described in the Text 216 
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A2. Digital elevation model (DEM) data was collected by the Maryland Department of Natural 217 

Resources (MD-DNR), and the dataset was post-processed by USDA-ARS, Beltsville, in order to 218 

use the DEM as input to the SWAT model. Soil map information corresponding to the study area 219 

was downloaded from the Soil Survey Geographical Database (SSURGO). A land use map 220 

developed by Lee et al. (2016) was used based on the multiple geospatial sources listed in Table 1 221 

(Lee et al., 2016). This map includes eight representative crop rotations (Table 2) with their 222 

locations determined by multiyear cropland data layers (CDLs) obtained from the USDA National 223 

Agricultural Statistics Service (NASS). Detailed scheduling data are available in Supplementary 224 

Material Table S1.  225 

  226 

Table 1. List of SWAT model input and calibration data  227 

Data Type Source Description Year 
DEM MD-DNR LiDAR-based 10-meter resolution 2006 
Land Use USDA-NASS Cropland Data Layer (CDL) 2008 - 2012 

MRLC National Land Cover Database (NLCD) 2006 
USDA-FSA-
APFO 

National Agricultural Imagery Program 
digital Orthophoto quad imagery 

1998 

US Census 
Bureau 

TIGER road map 2010 

Soils USDA-NRCS Soil Survey Geographical Database 
(SSURGO) 

2012 

Climate NCDC Daily precipitation and temperature 2008 – 2014 
Streamflow USGS Monthly streamflow 2008 – 2014 
RS-ET Sun et al. (2017) Daily ET 2010 – 2014 
RS-LAI NASA 

USDA-ARS 
Daily LAI 2010 – 2014 

MRLC: Multi-Resolution Land Characteristics Consortium, USDA-FSA-APFO: USDA-Farm 228 
Service Agency-Aerial Photography Field Office, and TIGER: Topologically Integrated 229 
Geographic Encoding and Referencing. Detailed values (average, minimum and maximum) of 230 
precipitation, temperature, streamflow, RS-ET and –LAI are available in the Table A1. 231 

 232 
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Table 2. Eight representative cropland rotations used in the SWAT simulations. 233 

Type 2008 2009 2010 2011 2012 2013 2014 Proportion  
1 WW/Soyb Corn WW/Soyb Corn WW/Soyb Corn WW/Soyb 14.5 
2 Corn WW/Soyb Corn WW/Soyb Corn WW/Soyb Corn 21.9 
3 WW/Soyb Corn Soyb Corn WW/Soyb Corn Soyb 7.7 
4 Soyb Corn Soyb Corn Soyb Corn Soyb 11.3 
5 Corn Soyb Corn Soyb Corn Soyb Corn 9.8 
6 Corn Corn Corn Corn Corn Corn Corn 17.1 
7 Corn Soyb Soyb Corn Soyb Soyb Corn 10.2 
8 Soyb Corn Soyb Soyb Corn Soyb Soyb 7.5 
Corn 59 58 49 61 56 51 59 56 
Soyb 41 42 51 39 44 49 41 44 

WW/Soyb and Soyb indicate double-crop winter wheat, soybeans, and soybeans, respectively. The 234 
last column indicates the relative area (%) of each crop rotation applied to the croplands. The 235 
bottom two rows indicate the relative areas (%) of the corn and soybean fields resulting from 236 
different concurrent rotations.  237 

 238 

Daily streamflow records from 2010 to 2014 were obtained from USGS gauging station 239 

#01491500, located at the outlet of the TCW (Fig. 1a). Daily RS-ET products were generated from 240 

the regional Atmosphere-Land Exchange Inverse (ALEXI) model (Anderson et al., 1997, 2007) 241 

and the associated flux spatial-temporal disaggregation scheme (DisALEXI) (Anderson et al., 242 

2004). This multiscale modeling system is based on the two-source energy balance model (Norman 243 

et al., 1995), which uses remotely sensed land surface temperature (LST) observations to partition 244 

the available energy between latent and sensible heat fluxes from the soil and canopy components 245 

of a scene. A data fusion algorithm can be used to fuse 30 m resolution/bi-weekly ET retrievals 246 

from Landsat LST observations with 500 m/daily data from MODIS, which results in fused 247 

datasets with both high spatial and temporal resolutions (Anderson et al., 2018; Cammalleri et al., 248 

2013, 2014). Over the study area, 30 m daily RS-ET products from ALEXI/DisALEXI were 249 

validated against in-situ eddy covariance flux tower measurements with an average relative error 250 

of 10% (Sun et al., 2017). The RS-ET products used in this study covered the period from January 251 

2010 to December 2014.  252 

https://doi.org/10.5194/hess-2022-187
Preprint. Discussion started: 28 June 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

The daily LAI with 500 m spatial resolution was generated from the MODIS Version 6 253 

LAI/FPAR products (MCD15A3H). MCD15A3H is a combined LAI product from two satellites 254 

(Terra and Aqua) at a 4-day temporal frequency. For this study, MODIS LAI data products were 255 

downloaded from the National Aeronautics and Space Administration (NASA) and reprocessed to 256 

the daily LAI in the USDA-ARS, Beltsville. The daily LAI values were obtained in two steps. 257 

First, MODIS LAI quality control (QC) layers (FparLai_QC and FparExtra_QC) were used to 258 

exclude LAI retrievals from partial clouds, cloud shadows, and dead detectors. Furthermore, LAI 259 

retrievals from the physical radiative-transfer model (main algorithm) and empirical model 260 

(backup algorithm) (Myneni et al., 2002) were separated. Second, the 4-day MODIS LAI data 261 

from the first step were smoothed and interpolated to daily LAI values using the Savitzky–Golay 262 

(SG) filter approach (Savitzky and Golay, 1964) with a flexible fitting strategy (Gao et al., 2020). 263 

Daily LAI values at a 500 m spatial resolution from 2010 to 2014 were generated for this study. 264 

RS-ET and RS-LAI samples are shown in Fig. S1 of the Supplementary Material. 265 

The study watershed was divided into 19 sub-watersheds that ranged between 0.09 and 32 266 

km2. In the HRU generation process, the threshold area values of land use, soil, and slope were set 267 

to >10%, >15%, and >15%, respectively. There were 542 HRUs (312 cropland HRUs and 39 forest 268 

HRUs) in TCW. The size of the HRUs ranged from 10-6 to 7.21 km2, with an average size of 0.41 269 

km2.  270 

 271 

2.4. Model calibration/validation and spatial evaluation 272 

Model simulations were performed at a daily time step from 2008 to 2014, given the 273 

availability of RS-ET (2010–2014). The SWAT model was calibrated against three datasets: 274 

observed streamflow, watershed-level RS-ET, and RS-LAI. The first two years (2008–2009) were 275 
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used as the spin-up periods. Three years (2010–2012) were set aside for the model calibration. 276 

Model validation was performed for the remaining two years (2013–2014). At the watershed level, 277 

model calibration was performed using streamflow, watershed-level RS–ET and RS–LAI, after 278 

which PARs-1 (acceptable for streamflow and RS-ET) and PARs-2 (acceptable for streamflow, 279 

RS-ET, and RS-LAI) were determined (Section 2.4.1). Then, a spatial evaluation was conducted 280 

at the sub-watershed (section 2.4.2) using simulations from PARs-2.  281 

 282 

2.4.1. Watershed-level calibration 283 

Numerous studies have applied the SWAT in this study area (Lee et al., 2019; Sharifi et 284 

al., 2016; Shirmohammadi et al., 2006; Yeo et al., 2019). These studies showed sensitive 285 

parameters with ranges and optimal values satisfying acceptable performance measures, as 286 

summarized by Moriasi et al., 2007). Based on previous studies, we selected 13 hydrologic 287 

parameters that were shown to be sensitive in this region. In addition to the hydrologic parameters, 288 

seven vegetation parameters were selected to calibrate the LAI values of corn, soybean, and forest; 289 

these vegetation parameters were derived from previous studies that calibrated crops and forests 290 

(Yang and Zhang, 2016; Yeo et al., 2014). The tree vegetation types were considered in calibration 291 

because they accounted for more than 90% of the watershed. In addition, corn and soybean 292 

parameters were adjusted because the distribution and rotation of the two crops were well captured 293 

by the land use map used in this study. The detailed practice schedules (e.g., the application timing 294 

and amount of fertilizer, planting, and harvesting timings) of the two crops were developed by 295 

local experts (Lee et al., 2016). Thus, the growth dynamics of corn and soybean were depicted in 296 

our simulations. The double crop soybean was not calibrated as all the information described above 297 

was made for summer crops. Table 3 lists the calibrated parameters and allowable ranges. 298 
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Table 3. Description and ranges of calibrated parameters 299 

Parameter Description (units) Range 

CN! SCS runoff curve number -20 – 20% 
GW_DELAY! Groundwater delay (days) 0 – 500 
ALPHA_BF! Baseflow alpha factor (days-1) 0 – 1 
GWQMN! Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) 0 – 5000 
GW_REVAP! Groundwater "revap" coefficient 0.02 – 0.2 
REVAPMN! Threshold depth of water in the shallow aquifer for "revap" to occur (mm H2O) 0 – 1000 
SOL_AWC! Available water capacity of the soil layer (mm H2O ·mm soil-1) -50 – 50% 
CH_K2* Effective hydraulic conductivity in the main channel alluvium 0 – 500 
CH_N2* Manning's "n" value for the tributary channels 0.01 – 0.3 
SURLAG$ Surface runoff lag coefficient 0.5 – 24 
ESCO! Soil evaporation compensation factor 0 – 1 
EPCO! Plant uptake compensation factor 0 – 1 
CANMX! Maximum canopy storage (mm H2O) 0 – 100 
BIO_E!  
(corn, soybean, forest) 

Radiation use efficiency in ambient CO2 ((kg/ha)/(MJ/m2)) 10 – 90 

BLAI!  
(corn, soybean, forest) 

Maximum potential leaf area index (m2m-2) 0.5 – 10 
 

FRGRW1!  
(corn, soybean, forest) 

Fraction of the plant growing season of total potential heat units corresponding to the first 
point on the leaf area development curve 

0 – 0.5 

FRGRW2! 
(corn, soybean, forest) 

Fraction of the plant growing season of total potential heat units corresponding to the second 
point on the leaf area development curve 

0.5 – 1 

LAIMX1! 
(corn, soybean, forest) 

Fraction of the maximum leaf area index corresponding to the first point on the leaf area 
development curve 

0 – 0.5 

LAIMX2! 
(corn, soybean, forest) 

Fraction of the maximum leaf area index corresponding to the second point 0.5 – 1 

DLAI! 
(corn, soybean, forest) 

Leaf to biomass fraction 0.15 – 1.00 

Note: !, *, and $ indicate the parameters whose values differ by the hru, sub-watershed, and 300 
watershed levels. 301 

 302 

For model calibration, 20,000 PARs were prepared using Latin hypercube sampling (LHS). 303 

The LHS method divides the sampling space of individual parameters into multiple non-304 

overlapping subspaces with equal probabilities (McKay et al., 2000). Then, the LHS generates one 305 

PAR by randomly selecting individual parameter values within each subspace, while forcing each 306 

subspace to have only one value for each PAR (McKay et al., 2000). LHS is known to effectively 307 

converge to the optimal PAR relative to random sampling (Wambura et al., 2018).  308 

After each simulation, three daily model outputs (streamflow, ET, and LAI) were 309 

simultaneously compared with the corresponding observations. For this study, we selected KGE 310 
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as the model performance measure, as it was widely adopted in SWAT modeling studies that 311 

applied RS-ET and RS-LAI. Furthermore,   312 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − �(𝑟𝑟 − 1)2 − (𝜎𝜎𝑠𝑠/𝜎𝜎𝑜𝑜 − 1)2 − (𝜇𝜇𝑠𝑠/𝜇𝜇𝑜𝑜 − 1)2             (4) 313 

Where, 𝑟𝑟 indicates the Pearson product-moment correlation coefficient, 𝜎𝜎𝑠𝑠/𝜎𝜎𝑜𝑜 and 𝜇𝜇𝑠𝑠/𝜇𝜇𝑜𝑜 314 

indicate the variability ratio and bias between simulations and observations, respectively, 𝜎𝜎 and 𝜇𝜇 315 

are the standard deviation and mean of the variables, respectively. The subscripts 𝑠𝑠 and 𝑜𝑜 indicate 316 

simulations and observations, respectively. The KGE values range from – ∞ to 1, with values 317 

closer to 1 indicating stronger model performance.  318 

KGE was calculated using the “hydroeval” package of the Python 3.8.12 program 319 

(Hallouin, 2020). This study defined acceptable daily model performance measures as follows: 320 

streamflow (KGE > 0.55, NSE > ), ET, and LAI (KGE > 0.5). Using previous studies (Becker et 321 

al., 2019; Poméon et al., 2018), relaxed criteria were set for ET and LAI relative to the streamflow.  322 

 323 

2.4.2. Spatial evaluation at sub-watershed level 324 

The simulated ET and LAI were compared with RS-ET and RS-LAI products at the sub-325 

watershed level. The RS-ET and RS-LAI products were discretized by the sub-watershed boundary 326 

generated from the ArcSWAT interface using the input DEM (Winchell et al., 2007). The TCW 327 

included 19 sub-watersheds. Except for one sub-watershed that was smaller than the LAI pixel 328 

size (0.25 km2), 18 sub-watersheds were used for the sub-watershed-level spatial evaluation. This 329 

evaluation was conducted using PARs-1 and PARs-2 simulations. Furthermore, the KGE values 330 

were computed for ET and LAI for individual sub-watersheds and the median KGE values. The 331 

PARs with median KGE values greater than 0.5 for both ET and LAI were considered to represent 332 
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acceptable performance measures for the spatial distribution of ET and LAI at the sub-watershed 333 

level. PARs that did not meet these criteria were viewed as unable to capture the spatial distribution 334 

of ET and LAI at the sub-watershed level, although they showed acceptable performance at the 335 

watershed level. The evaluation results were used to further assess the degree of equifinality.  336 

 337 

3. Results and discussions 338 

3.1. Impacts of vegetation data on ET predictions and predictive uncertainty at the 339 

watershed level 340 

The watershed-level calibration results show that there were 14 PARs-1 and 6 PARs-2 (Table 341 

4). The ranges of KGE values for PARs-1 were 0.59–0.77 (0.56–0.62) for streamflow and 0.50–342 

0.60 (0.56–0.61) for RS-ET during calibration (and validation) periods (Table 4). The six PARs 343 

(PARs-2) were observed to simultaneously satisfy the model performance thresholds for 344 

streamflow, RS-ET, and RS-LAI (Table 4). The model performance measures for PARs-2 were 345 

0.59–0.73 (0.56–0.59) for streamflow, 0.51–0.56 (0.57–0.58) for RS-ET, and 0.51–0.62 (0.57–346 

0.77) for RS-LAI during calibration (and validation) periods.  347 

The degree of equifinality was reduced from 14 to 6 with the inclusion of the RS-LAI. 348 

Although RS-LAI was incorporated, a 50% reduction in equifinality was observed because both 349 

the ET calculation and RS-ET considered the LAI. The ET calculation method in this study 350 

(Penman-Monteith) used canopy resistance as a key variable, which was calculated from the LAI 351 

in SWAT (Neitsch et al., 2011). RS-LAI data were used as inputs for RS-ET retrievals (Sun et al., 352 

2017). Therefore, calibrated parameter sets that matched RS-ET could also perform well with 353 
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respect to LAI estimation. A previous study by Chen et al. (2017) also reported a high correlation 354 

between ET and LAI from the SWAT results.  355 

 356 

Table 4. Performance measures (KGE value) for daily streamflow, RS-ET, and RS-LAI 357 

 Streamflow RS-ET RS-LAI 
Calibration Validation Calibration Validation Calibration Validation 

1 0.71  0.60  0.53  0.57  0.45  0.55  
2 0.73  0.56  0.51  0.58  0.10  0.11  
3 0.73  0.56  0.54  0.58  0.55  0.69  
4 0.66  0.57  0.56  0.57  0.58  0.67  
5 0.77  0.60  0.52  0.59  0.50  0.57  
6 0.66  0.62  0.55  0.56  0.41  0.43  
7 0.63  0.57  0.52  0.57  0.27  0.29  
8 0.68  0.59  0.50  0.56  0.48  0.55  
9 0.59  0.59  0.53  0.58  0.51  0.57  
10 0.60  0.58  0.60  0.61  0.22  0.34  
11 0.72  0.59  0.56  0.57  0.48  0.57  
12 0.60  0.58  0.53  0.58  0.57  0.70  
13 0.68  0.56  0.51  0.57  0.62  0.77  
14 0.63  0.58  0.52  0.58  0.56  0.69  
Note: The six rows (#3, 4, 9, 12, 13, and 14) are PARs-2.  358 

 359 

The observed streamflow, RS-ET, and RS-LAI were plotted against the simulation results from 360 

PARs-2 (Fig. 2). The simulated streamflow did not capture the observed peak flows during the 361 

simulation period. This may be because the precipitation data collected at the weather stations did 362 

not fully represent the spatial variations in meteorological conditions across the entire study site. 363 

Localized variations in precipitation have frequently been observed in this study area, which may 364 

have further contributed to the underestimation of the peak streamflow (Lee et al., 2016; Yeo et 365 

al., 2014). Spatially continuous climatic data, including the North American Land Data 366 

Assimilation System (NLDAS) and the Next-Generation Radar (NEXRAD), have been shown to 367 
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reduce prediction uncertainty from climatic data taken from stations (Qi et al., 2019; Sexton et al., 368 

2010). The use of these data may better mimic the peak streamflow. The ET and LAI results 369 

showed strong seasonal trends with high values during the summer season (May to October) and 370 

low values during the winter season (November to April). This was in agreement with an earlier 371 

study by Fisher et al. (2010) and local tower measurements (Sun et al., 2017). Warm temperatures 372 

and plant growth led to peak ET and LAI values during the summer period.  373 

 374 

 375 

 376 

 377 

 378 

 379 
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 380 
Fig. 2. Comparison of daily simulations with observed streamflow, watershed-level RS-ET, and 381 
RS-LAI during the simulation period from 2010 to 2014: PAR #3 (a, g, and m), #4 (b, h, and n), 382 
#9 (c, i, and o), #12 (d, j, and p) #13 (e, k, and q) #14 (f, l, and r). The unit of LAI is m2∙m-2. 383 
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As compared to streamflow and RS-LAI, low KGE values were observed in the ET simulations 384 

(Fig. 2). Low accuracy of ET in this study was likely attributable to the exclusion of irrigation 385 

practices in our simulations because of inadequate associated information, whereas the thermal ET 386 

remote sensing approach directly captured the impact of irrigation on ET (Hain et al., 2015). A 387 

previous study found that improved ET simulation resulted from the inclusion of irrigation 388 

practices in the simulations (Chen et al., 2017). Depressional wetlands, which are abundant in 389 

forested areas of this region, are likely to lose water via ET at rates higher than those captured by 390 

the SWAT model. Therefore, the ET module in the forested settings could have been an additional 391 

factor that led to low KGE values of ET (Fig. 2). Simulated LAI values were mostly lower than 392 

observations during the winter season (Fig. 2). Winter cover crops are widely implemented in this 393 

region to reduce nutrient loads. These crops have been shown to increase the winter vegetation 394 

index (Hively et al., 2020). The omission of winter cover crops from the simulation used in this 395 

study resulted in a low simulated LAI during the summer season. 396 

 397 

3.2. Comparing model results with RS-ET and RS-LAI at the sub-watershed level 398 

Sub-watershed-level KGE values were calculated for daily ET and LAI, as shown in Fig. 3. 399 

The median KGE values for ET ranged from 0.51 to 0.55 and from 0.57 to 0.58 during the 400 

calibration and validation periods, respectively. Lower KGE values were observed for LAI 401 

predictions (0.46–0.57 for the calibration period and 0.54–0.57 for the validation period) relative 402 

to ET predictions. All PARs-2 showed acceptable performance measures for the sub-watershed-403 

level ET criteria, but only three PARs-2 (#4, #13, and #14) exceeded the sub-watershed-level LAI 404 

criteria (KGE > 0.5).  405 
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The PAR#12 case was associated with high KGE values for LAI (0.57 and 0.70 for the 406 

calibration and validation periods, respectively) at the watershed level, but its KGE values at the 407 

sub-watershed level were 0.46 and 0.54 for the the calibration and validation periods, respectively 408 

(Figs. 2 and 3). Similar to the PAR#12 case, the PAR#3 and #9 cases exhibited acceptable KGE 409 

values at the watershed level and narrowly failed to meet the sub-watershed-level criteria for LAI. 410 

With respect to the sub-watershed results, the number of acceptable PARs decreased from six 411 

(PARs-2) to three, which suggested that the sub-watershed-level assessment helped identify the 412 

PARs that satisfactorily characterized internal processes at a finer spatial level. This finding 413 

supports the conclusion that spatial assessment using remotely sensed data can further narrow the 414 

acceptable PARs, thus reducing predictive uncertainty (e.g., equifinality).  415 

 416 

 417 
Fig. 3. Median KGE values of sub-watersheds: (a) ET for calibration periods, (b) ET for validation 418 
periods, (c) LAI for calibration periods, (a) LAI for validation periods. The horizontal red line 419 
indicates a KGE threshold value of 0.5. KGE values of ET and LAI for individual sub-watersheds 420 
are available in the supplementary material Tables S2 and S3, respectively. 421 

 422 
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 423 
Fig. 4. Spatial distribution of KGE values for the PAR#4, PAR#13, and PAR#14 cases at the sub-424 
watershed level for ET (a, b, and c) and LAI (d, e, and f). 425 

 426 

At the sub-watershed level, half of the PARs-2 were acceptable for LAI, whereas all PARs-2 427 

met the sub-watershed-level ET criterion. This was likely due to the spatial resolution of the RS-428 

ET and RS-LAI. RS-ET with a 30 m resolution might better represent the sub-watershed-level ET, 429 

but RS-LAI with a 500 m resolution might not discern the sub-watershed-level LAI from the 430 

watershed-level value.  431 

Although spatialized parameterization requires large computational resources and long 432 

simulation times, it is useful for characterizing large watersheds (Becker et al., 2019; Rajib et al., 433 

2018). However, relative to the spatial extent of those studies (> 1670 km2), the spatial extent of 434 

our study site (220 km2) was small. Moreover, this study focused on the use of multiple remotely 435 
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sensed datasets to reduce predictive uncertainty. Therefore, the lumped parameterization used in 436 

this study was sufficient to assess the prediction accuracy of the spatial distributions of ET and 437 

LAI.  438 

 439 

4. Limitations and implications 440 

This study aimed to improve model predictions by accommodating remotely sensed ET and 441 

LAI in an effort to contribute to watershed modeling. However, this study had several limitations 442 

to be conisdered for future studies. Remotely sensed data inevitably include uncertainties that are 443 

greater than those in observations collected at the watershed outlet (Vervoort et al., 2014) but they 444 

also enable hydrological models to be evaluated at a finer spatial level than watersheds (Rajib et 445 

al., 2018). Thus, the uncertainty embedded in remotely sensed data must be carefully considered 446 

when incorporating remotely sensed data into watershed modeling. Furthermore, simulated ET 447 

and LAI are highly influenced by the climatic data. In this study, three sets of climatic input data 448 

(i.e., humidity, solar radiation, and wind speed) were prepared using SWAT’s built-in weather 449 

generator. This has also been practiced in previous studies (Wu and Xu, 2006; Yeo et al., 2014; 450 

Zhao et al., 2020). Grid-format continuous climate data are increasingly available and have been 451 

adopted in watershed modeling (Basso et al., 2020; Dosdogru et al., 2020). Application of 452 

continuous climatic data to half of the generated data can improve the model predictions of ET 453 

and LAI. Furthermore, poor simulations (e.g., peak flows) resulting from localized precipitation 454 

events can be addressed by incorporating these climatic datasets. 455 

Model performance measures for water quantity and quality variables have been well 456 

demonstrated (Moriasi et al., 2007). The measures for ET and LAI varied by temporal scales. Daily 457 

https://doi.org/10.5194/hess-2022-187
Preprint. Discussion started: 28 June 2022
c© Author(s) 2022. CC BY 4.0 License.



25 
 

simulations of ET and LAI were frequently assessed using only one measure (e.g., KGE) (Rajib et 458 

al., 2018, 2020). In case of monthly simultions, multiple measures including Nash-Sutcliffe 459 

efficiency [NSE], Percent bias [PBIAS], root mean squared error (RMSE)-observations standard 460 

deviation ratio [RSR], KGE, etc, were used (Ding and Zhu, 2022; Haas et al., 2022; Herman et al., 461 

2018; Lee et al., 2022; Parajuli et al., 2018). Depending on the temporal scales of the simulated 462 

results, less strict measures were recommended for the streamflow predictions (Arnold et al., 2012). 463 

However, the selection of performance measures for  ET and LAI has not been well explored. The 464 

use of remotely sensed products in watershed modeling is incresing. Therefore, the guideline of 465 

the performance measures for variables calibrated against remotely sensed products would be 466 

needed. 467 

 468 

5. Summary and Conclusion 469 

Hydrological models tackle uncertainty issues caused by incomplete model structures and poor 470 

observational data. To address this issue, remotely sensed products have been employed as 471 

additional constraints to enhance the prediction accuracy of hydrological models. For example, the 472 

use of RS-ET retrievals as additional constraints has led to a substantial reduction in predictive 473 

uncertainty and achievement of spatial evaluation. However, vegetation parameters that affect ET 474 

dynamics are often adjusted only against RS-ET. This calibration practice may inaccurately 475 

represent the impact of vegetation on ET. This study employed RS-LAI as an additional constraint 476 

to control vegetation parameters, and explored whether the addition of RS-LAI was beneficial in 477 

reducing parameter uncertainty. The SWAT model was calibrated against the observed streamflow 478 

and RS-ET, and the calibrated model was further constrained by RS-LAI to determine the number 479 
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of acceptable parameter sets depending on the presence or absence of RS-LAI as a constraint. 480 

Depiction of the spatial distribution of ET and LAI at the sub-watershed level by parameter sets 481 

(acceptable for streamflow, ET, and LAI at the watershed level) was further tested. This finer-level 482 

evaluation was effective in constraining acceptable parameter sets.  483 

 Our results showed that the number of acceptable parameter sets was reduced from 14 to 6 484 

with the inclusion of the RS-LAI. Therefore, the calibrated model against RS-ET and RS-LAI was 485 

useful in reducing the degree of equifinality, as compared with the model calibrated against only 486 

RS-ET. Among the six parameter sets, only three represented the spatial distribution of ET and 487 

LAI at the sub-watershed level with acceptable model performance. This indicates that the 488 

equifinality of the hydrological model is further constrained by the spatial evaluation performed 489 

in this study. Moreover, RS-LAI was the key constraint at the sub-watershed level, whereas RS-490 

ET rarely limited the parameter sets. This is likely because RS-LAI retrievals are obtained with a 491 

low spatial resolution (e.g., 500 m), including high uncertainty in capturing spatialized 492 

characteristics relative to RS-ET (e.g., 30 m). Therefore, an inaccurate spatial distribution of LAI 493 

might be less efficient in constraining acceptable parameter sets. This suggests that the spatial 494 

resolution of the remotely sensed data should be carefully selected based on the spatial extent of 495 

the study site.  496 

Overall, this study showed that the predictive uncertainty was affected by the inclusion of 497 

RS-LAI at the watershed level. Remotely sensed products enabled hydrologic modelers to conduct 498 

spatial evaluations at finer spatial scales, which led to a reduction in the predictive uncertainty and 499 

improved representations of intra-watershed processes. These findings emphasized the importance 500 

of incorporating remotely sensed data as additional constraints to address the uncertainty in 501 

watershed models, thereby extending the usefulness of these models.  502 
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Appendix A 503 

Table A1. Observed daily minimum and maximum values of precipitation, temperature, 504 
streamflow, remotely sensed evapotranspiration (RS-ET) and leaf area index (RS-LAI) products 505 
for calibration/validation periods 506 

 Calibration (2010 – 2012) Validation (2013 – 2014) 
Precipitation (mm) 0 – 238 (10) 0 – 125 (10) 
Temperature (℃) -18 – 33 (12) -9 – 31 (14) 

Streamflow  (m3/s) 0.14 – 169 (3.42) 0.70 – 47 (3.69) 
RS-ET (mm) 0.03 – 6.84 (2.59) 0.35 – 6.86 (2.76) 

RS-LAI (m3/m3) 0.38 – 3.18 (1.39) 0.38 – 3.18 (1.39) 
Note: A number indicates the minimum (left) and maximum (right) values. The value in the 507 
parenthesis is the daily average. The precipitation average only considers values during rainy days 508 
(375 and 276 days for calibration and validation periods, respectively). 509 

 510 

Text A2. The calculation of solar radiation, relative humidity, by a weather generator 511 

SWAT’s built-in weather generator computes solar and relative humidity by a function of 512 
precipitation and temperature. Solar radiation and relative humidity are determined based on the 513 
number of dry or wet days per given month. Solar radiation is assumed to be lower on wet day 514 
(𝑅𝑅𝑤𝑤) and that the wet day solar radiation is the half of the dry day solar radiation (𝑅𝑅𝐷𝐷). 515 

𝑅𝑅𝑤𝑤 = 0.5 ∙ 𝑅𝑅𝐷𝐷                                                (1) 516 

𝑅𝑅𝐷𝐷 = 𝑅𝑅𝑀𝑀∙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇
5∙𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤+𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷

                                                             (2)                                     517 

Where, 𝑅𝑅𝑤𝑤 is the average daily solar radiation for the month, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑇𝑇 is the total number of days in 518 

the month, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑊𝑊 and  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷are the total number of wet and dry days in the month, respectively. 519 

To incorporate the effect of clear and overcast weather on generated values of relative humidity, 520 

monthly average relative humidity values can be adjusted for wet or dry conditions. The wet day 521 

average relative humidity is assumed to be greater than the dry day relative humidity by some 522 

fraction as Eq. (3). The dry day relative humidity is computed as shown in Eq. (4). 523 

 524 
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𝑅𝑅ℎ𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑅𝑅ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑏𝑏𝐻𝐻 ∙ (1 − 𝑅𝑅ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷)                                                        (3) 525 

𝑅𝑅ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = �𝑅𝑅ℎ𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑏𝑏𝐻𝐻 ∙
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

� ∙ �1.0 − 𝑏𝑏𝐻𝐻 ∙
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡

�
−1

                                (4) 526 

Where, 𝑅𝑅ℎ𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is the average relative humidity of the month on wet days, 𝑅𝑅ℎ𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 is the average 527 

relative humidity of the month on dry days, 𝑏𝑏𝐻𝐻  is a scaling factor that controls the degree of 528 

deviation in relative humidity caused by the presence or absence of precipitation, 𝑅𝑅ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is the 529 

average relative humidity for the month, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤 and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 are the number of wet days in the 530 

month and the total number of days in the month, respectively.  531 

Wind speed is generated for the potential evapotranspiration by the Penman-Monteith equation. 532 
Mean daily wind speed is generated using the equation below. 533 

𝑊𝑊 = 𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 ∙ (−ln (𝑟𝑟𝑟𝑟𝑟𝑟1))0.3                                                           (5)        534 

Where, 𝑊𝑊 is the mean wind speed for the day (m∙s-1), 𝜇𝜇𝑤𝑤𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚is the average wind speed for the 535 

month (m∙s-1), and 𝑟𝑟𝑟𝑟𝑟𝑟1 is a random number between 0.0 and 1.0. 536 

 537 

 538 

 539 
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