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Abstract 10 

Achieving water security in poorly gauged basins is critically hindered by a lack of in situ river 11 

discharge data to assess past, current and future evolution of water resources. To overcome this 12 

challenge, there has been a shift toward the use of freely available satellite and reanalysis data 13 

products. However, due to inherent bias and uncertainty, these secondary sources require careful 14 

evaluation to ascertain their performance before being applied in poorly gauged basins. The 15 

objectives of this study were to evaluate river discharge and evapotranspiration estimates from eight 16 

gridded water resources reanalysis (WRR), six satellite-based evapotranspiration (ET) products and 17 

ET estimates derived from complimentary relationship (CR-ET) across eight river basins located in 18 

Central-West Africa. We also estimated the relative uncertainties in monthly basin-scale water 19 

balance evapotranspiration (ETWB) across all the basins. Results highlight strengths and weaknesses 20 

of the different WRR in simulating discharge dynamics and ET across the basins. Likewise satellite-21 

based products also show some strength and weaknesses in simulating monthly ET. Analyses further 22 

revealed that the relative uncertainties in monthly ETWB range from 4–25 % with a significant increase 23 

in magnitude during the rainy season while river discharge appear to be the dominant source of 24 

uncertainty. Our results further revealed that the performance of the models in simulating river 25 

discharge and evapotranspiration is strongly influenced by model structure, input data and spatial 26 

resolution. Considering all the evaluation criteria Noah, Lisflood, AWRAL, and Terra are among the 27 

best performing WRR products while Noah, Terra, GLEAM3.5a & 3.5b, and PMLV2 produced ET 28 

estimates with the least bias. Given the plethora of WRR and ET products available, it is imperative 29 

to evaluate their performance in representative gauged basins to identify products that can be applied 30 

in each region. However, the choice of a particular product will depend on the application and users 31 

requirements. Results from this study suggest that gridded WRR and ET products are a useful source 32 

of data for assessing water security in poorly gauged basins.  33 

mailto:e.nkiaka@sheffield.ac.uk


2 
 

1. Introduction 34 

River discharge is one of the most important hydrological variables underpinning water resources 35 

management, aquatic ecosystems sustainability, flood prediction, and drought warnings at different 36 

scales (Mcnally et al., 2017; Couasnon et al., 2020). However, observed river discharge data is often 37 

not available at the exact location where critical water management decisions need to be made (Neal 38 

et al., 2009). This is especially the case in developing and semi arid/arid regions where discharge 39 

gauging stations are sparse (Krabbenhoft et al., 2022), while the number of existing stations are 40 

declining (Rodríguez et al., 2020). Despite the acute shortage in observed data, developing regions 41 

are areas that are more vulnerable to adverse hydroclimatological conditions (Byers et al., 2018; 42 

Kabuya et al., 2020). Furthermore, achieving water security in poorly gauged basins remains a critical 43 

development challenge as climate change, population growth, rapid urbanization, and economic 44 

growth continue to exert pressure on available water resources under hydrological uncertainty (Flörke 45 

et al., 2018; Hirpa et al., 2019). This highlights the urgent need for more reliable data to better assess 46 

past, current, and future evolution of water resources, and to predict extreme hydroclimatological 47 

events so that better strategies can be put in place to enhance water management and mitigate the 48 

impact of extreme events (Nkiaka et al., 2020; Slater et al., 2021). Water security in this study refers 49 

to the availability of sufficient quantities of water for human use and ecosystem sustainability. 50 

Evapotranspiration (ET) is another important hydrological variable that represents the linkage 51 

between water, energy and carbon cycles and ecosystem services and is the second largest process in 52 

the hydrological cycle after precipitation (Zhang et al., 2019). Therefore, ET plays a critical role in 53 

water availability at different scales. As such, accurate estimates of ET are also crucial for water 54 

management operations such as basin-scale water balance estimation, irrigation planning, estimating 55 

water footprint, and assessing the impact of climate change on water availability. However, globally, 56 

in situ ET monitoring stations are also scarce while the existing monitoring network cannot provide 57 

sufficient information on the temporal and spatial trends of ET at large scales (Laipelt et al., 2021). 58 

ET data scarcity may therefore limit our ability to understand changes in the hydrological cycle and 59 

water security in the context of environmental change and hydrological uncertainty. 60 

To enhance water security in poorly gauged basins, there has been a progressive shift toward 61 

the use of gridded data derived from satellite and reanalysis (Odusanya et al., 2019; Nkiaka, 2022). 62 

This is because gridded data products can provide high spatial resolution and long-term homogeneous 63 

data for previously unmonitored areas at scales that are suitable for studying changes in the 64 

hydrological cycle and for water management applications (Sheffield et al., 2018). Several gridded 65 

data products with global coverage have been produced in recent decades including reanalysis and 66 

satellite-based products. Examples of reanalysis products include Watch Forcing Data applied to 67 

ERA-Interim (Weedon et al., 2014) and Climate Forecast System Reanalysis (Saha et al., 2014). 68 
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There is also a plethora of satellite products for different hydrometeorological variables such as 69 

precipitation, temperature, soil moisture, and ET. For satellite derived ET estimates, it is worth noting 70 

that this variable cannot be directly measured by satellites, but rather derived from physical variables 71 

observed by satellites from space such as radiation flux. As such, satellite derived ET estimates could 72 

rather be referred to as model outputs constrained by satellite data. Another technique used to produce 73 

ET estimates is the complimentary relationship (Ma et al., 2021). Considering the way gridded ET 74 

products are derived, they tend to suffer from large biases (Weerasinghe et al., 2020; Mcnamara et 75 

al., 2021) and therefore need to be validated before use. In fact, it is argued that validating gridded 76 

ET products is an essential step in understanding their applicability and usefulness in water 77 

management operations (Blatchford et al., 2020).  78 

Previously, much attention in the development of gridded environmental data was focused on 79 

hydrometeorological variables such as precipitation and temperature. However, rapid advancement 80 

in computer technology has led to the development of gridded water resources reanalysis (WRR) with 81 

quasi global coverage using both land surface models (LSMs) and Global Hydrological Models 82 

(GHMs) driven by satellite and reanalysis data. Examples of WRR products include the Global Land 83 

Data Assimilation System [GLDAS] (Rodell et al., 2004), “The Global Earth Observation for 84 

Integrated Water Resources Assessment” [eartH2Observe] (Schellekens et al., 2017), and the Global 85 

Flood Awareness System [GloFAS-ERA5] (Harrigan et al., 2020). Several studies have demonstrated 86 

that model-based gridded WRR products can be used as an alternative to observe river discharge in 87 

poorly gauged basins to: (1) understand hydrological processes (Koukoula et al., 2020), (2) support 88 

transboundary water management (Sikder et al., 2019), (3) identify flood events (Gründemann et al., 89 

2018; López et al., 2020), and (4) support national water policies (Rodríguez et al., 2020). These 90 

examples demonstrate that WRR products have great potential for addressing water security 91 

challenges in poorly gauged basins. Despite their numerous advantages, model outputs from WRR 92 

are also fraught with uncertainties resulting from errors in the forcing data, model structure, and the 93 

parameterisation of the physical processes in the model scheme (Koukoula et al., 2020). Therefore, it 94 

is necessary to evaluate the performance of these products against observed river discharge where 95 

available.  96 

Whilst the use of outputs from WRR in water management has gained significant attention in 97 

many ungauged or poorly gauged regions such as Asia and Latin America (López et al., 2020; 98 

Rodríguez et al., 2020; Sikder et al., 2019), they remain largely under-utilized in Africa. For example, 99 

there are only a few case studies reporting on the use of these products in the Upper Blue Nile River 100 

basin (Koukoula et al., 2020; Lakew et al., 2020) and the Zambezi River basin (Gründemann et al., 101 

2018). Considering the scale of water insecurity in Africa -compounded by acute data scarcity 102 

(Nkiaka et al., 2021), we feel that evaluating the performance of gridded WRR products in Africa 103 
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may enhance their adoption in water management in the region. On the other hand, several studies 104 

evaluating the performance of gridded data in Africa have focused mostly on precipitation (Dinku et 105 

al., 2018; Satgé et al., 2020) while few studies that have evaluated gridded ET products focused on 106 

large basins, (Blatchford et al., 2020; Weerasinghe et al., 2020; Mcnamara et al., 2021) and mostly 107 

adopting an annual timescale. This may be attributed to the large scale of the basins which is ideal 108 

for the application of satellite data and the coarse spatial resolution of some of the ET products. The 109 

availability of high spatial and temporal resolution ET products suggest that it now possible to 110 

evaluate these products in small- to medium-size basins and at a higher temporal resolution. Lastly, 111 

considering that the water balance concept has been used widely to evaluate gridded ET products, 112 

most studies did not account for uncertainties in basin-wide water balance evapotranspiration (ETWB) 113 

even though such uncertainties could be large (Baker et al., 2021).  114 

The objectives of this paper were to: (1) evaluate the performance of eartH2Observe Tier 1 115 

and other WRR products in simulating discharge and evapotranspiration in selected small to medium-116 

size basins in Central-West Africa, (2) evaluate the performance of six satellite-based gridded ET 117 

estimates and ET estimates obtained using the complimentary relationship (CR-ET)  and (3) estimate 118 

the relative uncertainties in ETWB  in the basins. Considering that only a few studies have attempted 119 

to evaluate gridded WRR and ET products over Africa, this paper contributes to the contemporary 120 

debate on the performance of these products and how there can be used to assess water security in 121 

poorly gauged basins. We evaluated ET estimates from WRR and other sources considering that users 122 

needs for the application of these products may vary. Hence our evaluation covered a wide range of 123 

models and products to align with the needs of different users. 124 

2. Materials and methods 125 

2.1. Study area 126 

The selected basins are located in Central-West Africa ranging in size from 9,000 km2 to 499,000 127 

km2 (Figure 1). Rainfall in the region is mostly controlled by the north-south movement of the 128 

intertropical convergence zone (ITCZ). The main criteria for selecting the basins were: (1) availability 129 

of observed river discharge data and (2) for the period of the available discharge data to coincide with 130 

the period when gridded WRR and ET data are also available. Additionally, some of the selected 131 

basins currently face substantial water security challenges caused by population displacement from 132 

conflicts in the Sahel and Lake Chad regions (Kamta et al., 2021; Nagabhatla et al., 2021). The 133 

evaluation timestep was determined by the timestep of river discharge data. Shapefiles for all the 134 

basins were obtained from HydroSHEDS, locations of the discharge gauging stations were obtained 135 

from the respective data sources while the area of each basin was calculated from the basin shapefiles. 136 

HydroSHEDS drainage network offers the unique opportunity to generate watershed boundaries for 137 
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GRDC gauging stations using a proofed dataset and applying a consistent methodology. Table 1 138 

shows that some of the basins are transboundary in nature. 139 

 140 
Figure 1: Locations of the eight river basins where the performance of WRR and gridded ET 141 

products were evaluated 142 

Table 1: Characteristics of river basins and sources of river discharge data 143 
Basin Total area 

(km2) 

Transboundary (Yes or No) 

Countr(y/ies) 

Population 

(thousands) 

Source of river 

discharge data 

Bani 101,600 (Yes) Ivory Coast, Mali, and Burkina 

Faso 

63,766 GRDC 

Katsina-Ala 22,963 (Yes) Cameroon and Nigeria 219,875 NHSA 

Konkoure 10,250 (No) Guinea-Conakry 13,053 GRDC 

Logone 87,953 (Yes) Cameroon, Chad, and Central 

Africa Republic 

44272 LCBC 

Milo 9,620 (No) Guinea-Conakry 13,053 GRDC 

Mono 21,575 (Yes) Togo, Benin 21,479 Co-author 

Oubangui 499,000 (Yes) Central Africa Republic and the 

Democratic Republic of Congo 

88,742 GRDC 

Oueme 46,990 (No) Benin 11,488 Co-author 

Global River Discharge Centre [GRDC], Nigeria Hydrological Services Agency [NIHSA], Lake Chad Basin Commission 144 
[LCBC]. Population data sourced from (Undesa, 2019) 145 

 146 

 147 

 148 
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2.2. Input data 149 

2.2.1. Water resources reanalysis (WRR) 150 

The WRR product evaluated in this study include “The Global Earth Observation for Integrated Water 151 

Resources Assessment” (eartH2Observe), Famine Early Warning Systems Network [FEWS NET] 152 

Land Data Assimilation System (FLDAS), and TerraClimate. The eartH2Observe Tier 1 product 153 

consists of a multi-model ensemble of ten global models at a spatial resolution of 0.5° x 0.5° spanning 154 

from 1979 to 2012 and driven by Watch Forcing Data methodology applied to ERA-Interim 155 

reanalysis (WFDEI) data (Schellekens et al., 2017). WRR data from eartH2Observe are freely 156 

available at (https://wci.earth2observe.eu/portal/). Model evaluation here omits the Joint UK Land 157 

Environment Simulator (JULES), Simple Water Balance Model (SWBM), and the simple conceptual 158 

HBV hydrological model (HBV-SIMREG) as data from the models was not available from the portal 159 

for the selected basins at the time of writing. As such, seven models and model ensemble were 160 

included in this study. Evalutaion of ET data also omits Lisflood model as data was not available 161 

from the portal at the time writing. Although there is an available Tier 2 product with a higher spatial 162 

resolution (0.25°), this study did not utilise these data as  selected basins were not included at the time 163 

of conducting this research. We also evaluated discharge data from FLDAS-Noah and TerraClimate 164 

with spatial resolutions of  0.1° and 0.041° respectively. Table 2 provides a brief summary of the 165 

different models used in this study. 166 

Table 2: Water resources reanalysis (WRR) products evaluated 167 
Model provider Model name Model type Routing scheme Reference 

CNRS (Centre 

National de la 

Recherche 

Scientifique) 

ORCHIDEE (Organizing 

Carbon and Hydrology in 

Dynamic Ecosystems) 

LSM Cascade of linear 

reservoirs 

(Krinner et al., 

2005) 

CSIRO 

(Commonwealth 

Scientific and 

Industrial Research 

Organization) 

AWRA-L (Australian 

Water Resources 

Assessment 

GHM Cascade of linear 

reservoirs 

(Van Dijk et al., 

2014) 

ECMWF (European 

Centre 

for Medium-Range 

Weather Forecasts) 

HTESSEL (Hydrology 

Tiled ECMWF Scheme 

for Surface 

Exchanges over Land) 

LSM CaMa-Flood (Balsamo et al., 

2009) 

JRC (Joint Research 

Centre) 

LISFLOOD  GHM Double kinematic 

wave 

(Van Der Knijff et 

al., 2010) 

UniUt (Universiteit 

Utrecht) 

PCR-GLOBWB  GHM Travel time (Van Beek et al., 

2011) 

MeteoFr (Meteo 

France) 

SURFEX LSM TRIP with stream (Decharme et al., 

2010) 

UniK (Universitat 

Kassel) 

WaterGAP GHM Manning–Strickler (Wada et al., 2014) 

NASA Noah LSM Soil-layer water 

and energy balance 

(Mcnally et al., 

2017) 

University of 

California Merced 

TerraClimate GHM Bucket type model (Abatzoglou et al., 

2018) 

 168 

https://wci.earth2observe.eu/portal/
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2.2.2. Evapotranspiration products 169 

In addition to the ET estimates from the reanalysis products, we also evaluated several satellite-based 170 

ET estimates including GLEAM3.5a & 3.5b, MODIS16A2, PMLV1, PMLV2, SSEBop and ET 171 

estimates obtained through complimentary relationship (Table 3). ET products from WRR have the 172 

same spatial resolution with the discharge estimates while remote sensing products have different 173 

spatial resolutions. However, we did not resample the ET data to the same resolution because a 174 

previous study has shown that resampling does not have any significant impact on the results 175 

(Weerasinghe et al., 2020). Table 3 provides a summary of all ET products evaluated in this study. 176 

Table 3: Summary of the characteristics of the different ET products 177 

ET product Core equation Temporal 

resolution 

Spatial 

resolution 

References 

GLEAM3.5a 

& 3.5b  

Priestley-Taylor Monthly  0.25° x 0.25° (Martens et al., 2017) 

MODIS16A2 Penman-Montieth 8-day 1/48°x1/48° (Mu et al., 2007; Mu et al., 2011) 

PMLV1 Penman–Monteith–

Leuning 

Monthly 

 

0.5° x 0.5° (Zhang et al., 2016) 

PMLV2 Penman–Monteith–

Leuning 

8-day 1/192°x1/192° (Zhang et al., 2019) 

SSEBop Surface Energy Balance Monthly  1/96° x 1/96° (Senay et al., 2013) 

CR-ET Penman-Montieth Monthly 0.25° (Ma et al., 2021) 

 178 

2.3. Evaluation data 179 

2.3.1. River discharge 180 

Observed river discharge data were used to evaluate the performance of WRR models and to estimate 181 

basin-wide water balance evapotranspiration (ETWB) using the water balance concept. The source of 182 

the river discharge data is available in Table 1. Gaps in the discharge data were filled using Self-183 

Organizing Maps which which is a robust method for infilling missing gaps in hydrometeorological 184 

time series (Nkiaka et al., 2016).  185 

2.3.2. Precipitation 186 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) was used to estimate 187 

ETWB. CHIRPS has a quasi-global coverage at a spatial resolution of 0.05° x 0.05°, spanning the 188 

period from 1981 to the present at a daily timescale (Funk et al., 2015). The dataset was designed 189 

taking into consideration the weaknesses of existing products (Sulugodu et al., 2019). As such, 190 

CHIRPS blends gauge and satellite precipitation covering most global land regions, it has low latency, 191 

high resolution, low bias, and long period of record (Funk et al., 2015). CHIRPS has extensively been 192 

validated (Dinku et al., 2018; Satgé et al., 2020) and used in several studies in Africa (Larbi et al., 193 

2021; Nkiaka, 2022). The data was downloaded as the spatial average for each basin using the Climate 194 

Engine App.  195 
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2.3.3. GRACE 196 

GRACE data are monthly anomalies of terrestrial water storage changes (TWSC) used to quantify 197 

changes in terrestrial water storage. The dataset has a global coverage spanning the period 2003–2017 198 

(Tapley et al., 2019). The data was derived from Jet Propulsion Laboratory (JPL) RL06M Version 199 

2.0 GRACE mascon solution at a spatial resolution of 0.5° x 0.5°. The data has a coastline resolution 200 

improvement (CRI) filter to reduce leakage errors across coastlines and land-grids, using scaling 201 

factors derived from the community land model (Wiese et al., 2016). GRACE data has recently been 202 

re-processed to reduce measurement errors and represents a new generation of gravity solutions that 203 

do not require empirical post-processing to remove correlated errors, as such, the present data is better 204 

than the previous GRACE version that was based on spherical harmonic gravity solution (Wiese et 205 

al., 2016). GRACE data was used in this study to estimate ETWB following the approach used in 206 

several studies e.g., (Andam-Akorful et al., 2015; Liu, 2018; Xie et al., 2022). 207 

2.4. Evaluating gridded WRR  208 

WRR models were evaluated following a multi-objective approach commonly used in evaluating the 209 

performance of hydrological models, including the Nash-Sutcliffe efficiency (NSE), Kling-Gupta 210 

efficiency (KGE), and the percent bias (PBIAS). NSE scores range from -∞ to 1, with 1 indicating a 211 

perfect representation of observed discharge. NSE scores ≥0.50 can be considered acceptable whereas 212 

NSE scores ≤0.0 indicate poor model performance (Moriasi et al., 2007). Similarly, the KGE is a 213 

dimensionless metric that can be decomposed into three components crucial for evaluating 214 

hydrological model performance accounting for temporal dynamics (correlation), bias errors 215 

(observed vs simulated volumes), and variability errors (relative dispersion between observations and 216 

simulations) (Gupta et al., 2009). KGE scores range from −∞ to 1, with 1 considered the ideal value. 217 

Next, PBIAS is used to measure the tendency of the simulated discharge to be larger or smaller than 218 

their observed counterparts (Gupta et al., 2009). PBIAS is expected to be 0.0, with low magnitude 219 

values indicating accurate simulations, positive values indicate underestimation, negative values 220 

indicate overestimation (Moriasi et al., 2007). According to Moriasi et al. (2007), a hydrological 221 

model with PBIAS values in the range ±25 % can be considered to be acceptable. Furthermore, a 222 

temporal evaluation of flow hydrographs was carried out by plotting the monthly simulated vs 223 

observed discharge to ascertain visually if the models were able to capture the magnitude, seasonality, 224 

and interannual variability of discharge.  225 

Table 4: Contingency table for 80th percentile river discharge 226 
  Observed discharge 

Yes No 

Simulated discharge Yes Hits (H)  False Alarms (FA) 

No Misses (M) Correct Negatives  

 227 



9 
 

Lastly, we evaluated the models ability to predict discharge above specific thresholds. This evaluation 228 

step is of critical importance when considering operational water management requirements such as 229 

water allocation and reservoir operation which rely on monthly river discharge. To achieve this, we 230 

adopted the Critical Success Index (CSI) as the metric to evaluate the ability of each model to simulate 231 

discharge at 20th and 80th percentiles (i.e. discharge at 80th and 20th percent exceedance respectively). 232 

CSI is calculated from a two-dimensional contingency table defining the events in which observed 233 

and simulated discharges exceed a given threshold (Thiemig et al., 2015). We used the 20th and 80th 234 

percentiles to assess the ability of the models to simulate both low and high flows respectively. The 235 

contingency table (Table 4) is a performance measure used in summarizing all possible forecast-236 

observation combinations such as hits (H; event forecasted and observed), misses (M; event observed 237 

but not forecasted), false alarms (FA; event forecasted but not observed) and correct negatives (CN; 238 

event neither forecasted nor observed). The ideal value for CSI is 100% and the metric is calculated 239 

as follows: 240 

𝐶𝑆𝐼 =  
𝐻

𝐻 + 𝑀 + 𝐹𝐴
𝑋 100                                          (1) 241 

2.5. Evaluating gridded ET 242 

We also adopted a multi-step approach to evaluate the performance of ET products by assessing the 243 

annual ET–precipitation ratio, evaluating the statistical performance of ET products against long-term 244 

ETWB and the ability of the products to capture monthly ET variability.  245 

In the first step, the annual ET–precipitation ratio was calculated to compare with the ratio 246 

obtained using ETWB method. The ET–precipitation ratio can also provide an estimate of the amount 247 

of water available in each basin after evapotranspiration losses. In the second step, different statistical 248 

metrics were used to assess the performance of the ET products using the monthly ETWB as a reference 249 

(Andam-Akorful et al., 2015; Burnett et al., 2020; Koukoula et al., 2020). The monthly ETBW was 250 

calculated using the basin water balance equation as follows:  251 

𝐸𝑇𝑊𝐵 = 𝑃 − 𝑄 − 𝛥𝑆                                                              (2) 252 

Where P is average monthly precipitation over the basin (mm), Q is river discharge (mm) and ΔS is 253 

the terrestrial water storage change [TWSC] (mm). Unlike several studies that have evaluated ET 254 

products on an annual timescale, this study adopts a monthly sample. As such, the TWSC component 255 

(ΔS)  in equation 2 that is often neglected when estimating ETWB over several years (≥10 years) could 256 

not be overlooked. Due to the likely impact of anthropogenic activities such as reservoir operation, 257 

water withdrawal, and monthly rainfall variability on TWSC, values derived at monthly timescales 258 

are important. TWSC data used in this study were obtained from GRACE.  259 
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Due to the coarse spatial resolution of GRACE, it has been argued that GRACE is not sensitive 260 

at detecting changes in monthly TWSC in small-size basins ≤150,000 km2 (Rodell et al., 2011). Based 261 

on this claim, it might be argued that GRACE data may not be applicable in this study considering 262 

that most of the basins are below this threshold except the Oubangui (499,000 km2). However, several 263 

studies (Liu, 2018; Biancamaria et al., 2019; Oussou et al., 2022; Xie et al., 2022), have demonstrated 264 

that GRACE can provide acceptable TWSC estimates for basins that are smaller than this threshold. 265 

Encouraging results from these and other studies do therefore suggest that GRACE data can be used 266 

in this study; albeit with the  expectation of considerable uncertainties in TWSC estimates. For this 267 

study, GRACE data for each basin were obtained by averaging the timeseries of all coincident 268 

GRACE grid cells. To estimate changes in monthly TWSC, we calculated the difference between 269 

consecutive GRACE measurements for each basin, divided by the time between measurements, using 270 

the following equation: 271 

𝛥𝑆 = (𝑆[𝑛] − 𝑆[𝑛−1])/𝑑𝑡                                      (3) 272 

Where ΔS represents the TWSC (mm), n is the measurement number, and dt is the time difference 273 

between two consecutive GRACE measurements (months). 274 

Lastly, temporal evaluation of the products was carried out by plotting the time series of all 275 

ET products against ETWB to visually establish if the gridded ET products were able to capture the 276 

magnitude, seasonality, and interannual variability of ET across the basins. 277 

2.6. Estimating relative uncertainty in basin-scale water balance ET (ETWB) 278 

To estimate the relative uncertainty in monthly ETWB, we first calculated the absolute uncertainty in 279 

monthly ETWB by propagating errors through each of the components in equation 2 (Rodell et al., 280 

2011), as follows: 281 

𝜎𝐸𝑇 = √𝜎𝑃+
2 𝜎𝑄+

2 𝜎𝛥𝑆
2                                                                      (4) 282 

Where σP, σQ and σΔS represent the absolute uncertainties in basin precipitation, observed river 283 

discharge, and TWSC respectively. Uncertainty in precipitation was estimated as systematic errors 284 

(bias). For this, we used a value of  2 % estimated for CHIRPS data at monthly timescale from 1981–285 

2016 over Africa from a validation study using the Global Precipitation Climatology Centre (Shen et 286 

al., 2020). Uncertainty in TWSC was determined using the gridded fields of measurement and leakage 287 

errors (residual errors after filtering and rescaling) that are provided with the GRACE data. The 288 

uncertainty for each basin was calculated by averaging the values of all GRACE grid cells within 289 

each basin. To account for month-to-month variation in equation 3, the TWSC error values were 290 
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multiplied by √2  to obtain σΔS (Andam-Akorful et al., 2015). Because no uncertainty estimates were 291 

provided with the river discharge data, we adopted a value of 20 % which has been used in a recent 292 

study in the region (Burnett et al., 2020). After estimating the absolute uncertainty in monthly ETWB, 293 

the relative monthly uncertainty was calculated using equation 5 (Baker et al., 2021) as follows: 294 

𝜐𝐸𝑇 =
𝜎𝐸𝑇

𝐸𝑇𝑊𝐵
𝑋100                                                                (5) 295 

Where υET is the monthly relative uncertainty (%), σET is the absolute monthly uncertainty (mm), 296 

and monthly ETWB (mm). Figure 2 shows a flowchart detailing the different steps used for evaluating 297 

the WRR and ET products. 298 

 299 

Figure 2: Flowchart outlining the steps used in evaluating the WRR and ET products (The blue 300 

dotted line in the flow chart separates evaluation of WRR from ET products) 301 

3. Results 302 

3.1. Water resources reanalysis products 303 

3.1.1. Hydrological performance 304 

A multi-objective approach using different statistical metrics (NSE, KGE and PBIAS) was used to 305 

evaluate discharge estimates from WRR products. The performance of the models in simulating 306 

discharge is shown in Figure 3. Using the NSE as a performance metric, results show that Noah 307 

produced positive scores in all the basins (0.15–0.48). Terra, AWRAL and Lisflood produced positive 308 

scores (0.01–0.75) in seven, six and four basins respectively. SURFEX model produced positive 309 
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scores in three basins while ORCHIDEE, HTESSEL, Watergap and the ensemble mean produced 310 

positive scores in two basins each while PCR-GLOBW produced negative scores in all the basins 311 

(Figure 3a).  312 

 313 

Figure 3: Statistical evaluation of the models using (a) NSE, (b) KGE, and (c) PBIAS. Red and 314 
orange colours represent poor model performance in Figures 3a, 3b & 3c, however, the acceptable 315 

PBIAS range in Figure 3c is ±25%. Ensemble refers to the mean of WRR from the earthH2Observe. 316 

KGE results show that Noah also produced positive scores (0.11– 0.44) in all basins, followed by 317 

AWRAL, Lisflood and Terra with positive scores in six, five and four basins respectively (Figure 318 

3b). SURFEX and Watergap produced positive scores in three basins while ORCHIDEE and 319 

HTESSEL produced positive scores (0.31–0.76) in two basins. The ensemble mean produced positive 320 

scores (0.09 – 0.42) in three basins while PCRGLOBW produced the lowest KGE scores (Figure 3b).  321 

Positive and negative PBIAS values were obtained in the different basins. Negative values 322 

indicate that the model overestimated discharge volumes compared to observed discharge while 323 

positive values indicate the opposite. Noah, Terra and AWRAL produced acceptable PBIAS scores 324 

(±25 %) in three basins, ORCHIDEE and Watergap produced similar scores in two basins and 325 
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HTESSEL in one basin (Figure 3c). The rest of the models including the ensemble mean either grossly 326 

overestimated or underestimated discharge volumes in all the basins.  327 

3.1.2. Temporal evaluation 328 

The ability of the models to capture discharge variability was analysed by comparing the simulated 329 

vs observed discharge. Results show that most of the models were able to capture the seasonal 330 

discharge variability including peak and low flows (Figure 4). However, PCR-GLOBW 331 

systematically overestimated low flows and underestimated high flows across all basins. In the 332 

Oubangui basin, all models were able to capture the seasonal variability but consistently 333 

underestimated peak flows except Noah and Terra models which both overestimated peak flows 334 

(Figure 4). For example, measured peak discharge in the river exceeds 5000 m3/sec, but all models 335 

except Noah and Terra simulated it to be less than 2000 m3/sec (Figure 4).  336 

 337 

Figure 4: Evaluation of temporal flow variability simulated by the different model 338 

3.1.3. Critical Success Index 339 

Figure 5 shows the performance of the models in simulating the 80th and 20th percentiles monthly 340 

discharge. For the 80th percentile flows, results show that Noah and Terra produced CSI scores above 341 

50 % in all basins followed by Lisflood and AWRAL in seven and six basins respectively while 342 

Surfex and Watergap produced similar scores in four basins each (Figure 5a). For the 20th percentile 343 
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flows, only Noah produced CSI scores above 50 % in four basins while Lisflood produced similar 344 

scores in two basins. The performance of the other models in simulating the 80th percentile flow 345 

shows a large spread while most models including the ensemble mean failed to simulate the 20th 346 

percentile flow across all the basins. Taking together, results suggest that the models simulated high 347 

flows better than the low flows with only Noah capable of capturing both flow regimes in most basins 348 

(Figure 5b).  349 

 350 

Figure 5: Critical Success Index for 80th and 20th percentile of monthly flow across all basins 351 

3.2. Evapotranspiration products 352 

3.2.1. Evapotranspiration–precipitation ratio 353 

Figure 6 shows the annual ET–precipitation ratio for all basins. It can be observed that average annual 354 

ET–precipitation ratio ranges between (0.58–0.76) for WRR and (0.52–0.83) for satellite-based 355 

products over a period of 10 years (2003–2012) across all basins. WaterGap produced the highest 356 

ratio (0.45-1.01) among WRR models, SSEBop produced the highest ratio (0.53–0.99) while 357 

MOD16A2 produced the lowest ratio (0.41–0.66) among the satellite-based products (Figure 6). 358 

Results show that the evaporation ratios from  the different ET estimates are in the same order of 359 

magnitude with the ratio from ETWB across all the basins except for WaterGap, SSEBop, MOD16A2 360 

and CR-ET which produced values which were beyond this range (Figure 6). 361 
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 362 

Figure 6: Annual evapotranspiration – precipitation ratio 2003 – 2012 363 

3.2.2. Basin-wide water balance estimates 364 

Figure 7 shows the results of the statistical metrics used in evaluating the ET estimates using monthly 365 

ETWB as reference. Considering bias as a performance metric, AWARL, Noah and Terra produced 366 

the lowest bias scores among WRR products while PMLV2, Terra, and GLEAM3.5a &3.5b produced 367 

the lowest bias scores among the satellite-based products (Figure 7a&d). Most WRR products 368 

undersestimated ET and similarly GLEAM also slightly underestimated ET, among the satellite-369 

based products while the rest of the products produced mixed results (Figure 7a&d). However, 370 

SSEBop systematically overestimated ET in all the basins while MOD16A2 grossly underestimated 371 

this variable in all but one basin with respect to monthly ETWB (Figure 7d). 372 
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 373 

Figure 7: Bias, RMSE, and Pearson correlation coefficient between monthly ETWB and different 374 

ET products (a-c: WRR and d-f: remote sensing products). 375 

Noah produced the lowest RMSE (13–20 mm/month) among the WRR products while GLEAM3.5a 376 

& b and PMLV1 produced the lowest RMSE (8.50–12 mm/month) among the satellite-based products 377 

(Figure 7b&e). The rest of the products both WRR and satellite-based produced substantially higher 378 

RMSE scores (Figure 7b&e). Among WRR products, only Noah and Terra produced high Pearson 379 

correlation scores across all basins (Figure 7c). On the other hand most satellite-based products 380 

produced high Pearson correlation scores (≥0.75) in all basins except PMLV2 and SSEBop which 381 

both produced low scores (<0.50) in three and two basins respectively (Figure 7f). ET estimates 382 

produced from complimentary relationship (CR-ET) performed poorly across most basins. 383 
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 384 

Figure 8a: Seasonal cycle of ET estimates from WRR and basin-wide water balance 385 

evapotranspiration. ETWB represents monthly evapotranspiration estimated by the water balance 386 
method, while the rest are derived from LSMs and GHMs. 387 

 388 

Figure 8b: Seasonal cycle of ET estimates from remote sensing-based products and basin-wide water 389 
balance evapotranspiration. 390 



18 
 

3.2.3. Monthly ET variability 391 

Figure 8 shows the seasonal cycle of ETWB against both WRR products and satellite-based ET 392 

estimates. It can be observed that most products were able to replicate the seasonal ET cycle across 393 

all the basins (Figure 8a&b). However, most products were not able to replicate the high ET peaks 394 

produced by ETWB during the rainy season except WaterGap in some instances (Figure 8a). The 395 

performance of CR-ET follows that of the rest of the products. 396 

3.2.4. Estimating relative uncertainty in ETWB 397 

An assessment of absolute uncertainties in monthly ETWB indicated that the dominant sources of 398 

uncertainty vary from one basin to another and by each month. For example, in the Katsina-Ala, 399 

Konkoure, and Milo basins, the dominant source of uncertainty in monthly ETWB was  river discharge 400 

(supplementary material). Although the absolute uncertainty in precipitation and TWS also appear 401 

to be high in the three basins, the uncertainty in river discharge takes precedence over the other 402 

sources of uncertainty due to its higher magnitude (supplementary material). On the contrary, the 403 

dominant source of uncertainty in ETWB in the Bani, Logone, and Oubangui basins was from TWSC. 404 

Across all the basins, there was no significant variation in monthly TWSC uncertainty which is 405 

consistent with the results of a similar study in the Amazon basin (Baker et al., 2021). Results also 406 

revealed that the magnitude of TWSC uncertainty were similar across the basins irrespective of the 407 

basin size (Supplementary material). 408 

Figure 9 shows the relative uncertainty in ETWB across all the basins. It can be observed that 409 

relative uncertainty values are mostly <30 % but vary from month to month. However, the values 410 

were exceptionally high in the Katsina-Ala and Konkoure basins. The relative uncertainty in ETWB 411 

also appears to be exceptionally high in the months of September–November which corresponds to 412 

the high flow season across the basins. Taking together, the average monthly relative uncertainty in 413 

ETWB for all basins ranges from 10–18% except in the Katsina-Ala and Konkoure basins where this 414 

range is grossly exceeded.  415 

 416 

Figure 9: Average (2003 – 2012) monthly relative uncertainty in monthly ETWB (%) 417 
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4. Discussion 418 

The overarching goal of this paper was to assess the performance of gridded WRR and ET products 419 

and to estimate the relative uncertainty in monthly basin-wide evapotranspiration (ETWB) estimates. 420 

Below we provide a discussion and implications of our results in water security assessment in poorly 421 

gauged basins. 422 

4.1. Water resources reanalysis 423 

The performance of WRR products was assessed through commonly used model evaluation metrics, 424 

discharge variability, and verification skill scores (critical success index) using observed river 425 

discharge data. Our results show strong differences in the performance of the different models in 426 

simuating river discharge across the basins. Noah model produced positive NSE and KGE values in 427 

all basins and PBIAS values within the acceptable range (±25%) in three basins. Temporal evaluation 428 

of the WRR products showed that Noah, Terra, AWRAL and Lisflood were able to capture the 429 

seasonal variability in discharge as demonstrated by high KGE scores. Indeed, high KGE values  430 

suggest that some models were able to capture the temporal dynamics (strong correlation), and low 431 

bias scores indicate that the variability errors between the observed discharge and simulation was also 432 

low (Gupta et al., 2009). Nevertheless, Terra consistently overestimated peak flows in all the basins. 433 

Apart from Noah model which is a LSM used in FLDAS, most GHMs used in 434 

earthH2Observe tier 1 product performed better than the LSMs, which is consistent with results from 435 

other studies (Lakew et al., 2020). The strong performance of GHMs compared to LSMs can be 436 

attributed to the differences in the model structure and parametrisation schemes between LSMs and 437 

GHMs (Gründemann et al., 2018; Koukoula et al., 2020). For example, some GHMs such as 438 

Watergap are able to simulate lakes and reservoirs and water withdrawal while LSMs can only 439 

simulate natural processes. Such differences in model structure can significantly influence discharge 440 

volumes simulated by both types of models (Gründemann et al., 2018). Although PCRGLOBW is a 441 

GHM, it produced substantially low performance compared to the LSMs which is consistent with 442 

results from other studies in the region (Gründemann et al., 2018; Lakew et al., 2020). This suggest 443 

that  PCRGLOBW model may not be suitable for assessing water security in the region.  444 

The ability of the models to simulate flow thresholds was evaluated using the CSI. Results 445 

show that Noah, Terra, AWRAL and Lisflood were able to capture more than 50% of 80th percentile 446 

monthly flow in most basins. We also noted that apart from Noah model, the rest of the GHMs 447 

performed better than the LSMs from eartH2Observe in their ability to capture the 80th percentile 448 

monthly flows across the basins while only Noah was able to capture 20th percentile flows in three 449 

basins. The performance of Noah compared to other models can be attributed to the fact that FLDAS 450 

was specially designed and optimized to produce physically meaningful variables for monitoring food 451 
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and water security in data-scarce regions in Africa (Mcnally et al., 2017). Furthermore, Noah and 452 

Terra with spatial resolutions of 0.1° & 0.041° respectively perform better than other models which 453 

may be attributed to their higher spatial resolutions compared to other models with a coarser 454 

resolution (0.5°). In fact, Gründemann et al. (2018), has shown that WRR products with higher spatial 455 

resolution perform better than products with coarser resolution in their ability to simulate discharge. 456 

The performance of Noah can also be attributed to the fact the FLDAS is driven by a combination of 457 

different precipitation products thereby reducing the uncertainty in the input data while earth2oberve 458 

tier 1 product are driven by one data source (WFDEI) which increases the uncertainty in the input 459 

data which is propagated to the model outputs. Our results also showed that Lisflood performed better 460 

than most of the other earth2oberve models which may be attributed to the fact that Lisflood has been 461 

extensively used in research and operational settings in Africa (Thiemig et al., 2015; Smith et al., 462 

2020). As such, the  model parameters may have been better constrained in the region than other 463 

models from eartH2Observe. Taking together, results from this study highlight the importance of 464 

evaluating outputs from WRR products in representative basins before applying them in studies that 465 

may have wider policy and financial implications in poorly gauged basins. Our results suggest a need 466 

to enhance the spatial resolution of WRR products and for the products to be driven by input data 467 

from multiple sources to reduce the uncertainties in the input data. 468 

4.2. Evapotranspiration products 469 

The annual ET–precipitation ratio produced by WRR and satelitte-based ET products are within the 470 

range estimated for the global land regions (Rodell et al., 2015) with the only exception being 471 

WaterGap, SSEBop,  MOD16A2 and CR-ET with values beyond this range. This suggests that ET 472 

estimates from both sources performed well in this aspect of the ET evaluation. The annual ET–473 

precipitation ratios obtained in this study suggests that annual ET does not exceed annual precipitation 474 

in most basins during the period under evaluation. This suggest the availability of sufficient water 475 

resources in each basin. 476 

Considering all the ET evaluation criteria and comparing between estimates from WRR and 477 

satellite-based products, Noah, Terra, GLEAM3.5a & 3.5b, and PMLV2 appear to outperform the 478 

rest of products even though GLEAM products slightly underestimated ET in all the basins. 479 

Conversely, WaterGap, SSEBop and MOD16A2 performed poorly and may not be suitable for water 480 

security assessment in the region. Our results are generally consistent with those from other studies 481 

indicating that GLEAM and MODIS16A2 underestimate evapotranspiration, while SSEBop 482 

overestimates this variable in most parts of Africa (Weerasinghe et al., 2020; Adeyeri and Ishola, 483 

2021; Mcnamara et al., 2021). Given that  ET estimates from Noah and Terra are produced together 484 

with other water balance components (runoff, soil moisture and baseflow) the two models may be 485 
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recommended for water security assessment in the region because of water balance closure. Our 486 

results also revealed that the performance of satellite-based ET products is not influence by spatial 487 

resolution which is consistent with results from previous studies (Weerasinghe et al., 2020; Jiang and 488 

Liu, 2021). For example, Gleam products with a spatial resolution of 0.25° outperformed products 489 

such as MODIS16A2 and SSEBop with higher spatial resolutions. Conversely, ET estimates from 490 

WRR appear to be influenced by spatial resolution considering that Noah and Terra  with higher 491 

spatial resolutions outperformed other products with coarser resolutions. 492 

Although all the products were able to capture the temporal dynamics of ET in all the basins, 493 

there were substantial differences in the magnitude of monthly ET from each model. This finding is 494 

consistent with results from other studies showing strong differences in ET estimates produced by 495 

different models (Weerasinghe et al., 2020; Adeyeri and Ishola, 2021). The discrepancies in monthly 496 

ET estimates from the models may be attributed to differences in model structure, parameters, and 497 

uncertainties in the input data used in driving the models. This is also in-line with findings from 498 

another study in West Africa highlighting the impact of model parameters and input data uncertainty 499 

on ET estimates (Jung et al., 2019). Considering the aforementioned factors, it may be difficult to 500 

expect the products to produce similar results. ETWB estimates across all the basins produced high 501 

peaks during the rainy season which is also similar to the results of a related study in West Africa 502 

(Andam-Akorful et al., 2015). The high peaks observed in ETWB may be attributed to errors inherent 503 

in monthly precipitation, river discharge, and TWSC estimates used in estimating monthly ETWB.  504 

Given that there was no uncertainty information on the river discharge data used in this study, 505 

we adopted a value of 20 % following a previous study in the region (Burnett et al., 2020). In fact, 506 

we feel that this value may be conservative considering that uncertainties in river discharge in tropical 507 

regions have been shown to exceed 200 % (Kiang et al., 2018). The mean monthly relative uncertainty 508 

for ETWB in most basins appears to be in the same order of magnitude (16 %) with results obtained 509 

in the Amazon basin (Baker et al., 2021). Results also showed that  the relative uncertainty in ETWB 510 

is not influenced by basin size as most basins produced similar (same order of magnitude) uncertainty 511 

estimates. The relative uncertainty in monthly ETWB was higher during the rainy season. This can be 512 

linked to high rainfall input during the rainy season which translates to high river discharge and 513 

TWSC thereby increasing the absolute uncertainties in the different water balance components used 514 

in estimating ETWB. Results from this study suggest that the relative the uncertainty in monthly ETWB 515 

may be substantial which can potentially influence the performance of ET products when they are 516 

evaluated using the ETWB method. We therefore recommend that evaluating the performance of ET 517 

products at monthly timescale should be accompanied with the estimataion of relative uncertainties. 518 

 519 
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5. Conclusions 520 

The objectives of this study were to assess the performance of water resources reanalysis and 521 

evapotranspiration products and to estimate the relative uncertainties in monthly ETWB across eight 522 

basins in Africa. It should be noted the evaluation of the performance of WRR and ET products in 523 

this study did not explicitly consider the influence the models structure, parameters and input data on 524 

their performance. However, we do acknowledge that these factors could have significant impact on 525 

the performance of the different models evaluated in this study.  526 

The evaluation of WRR products for discharge simulation show varying strengths and 527 

weaknesses for the different models. Some models were able to capture the discharge dynamics in 528 

the basins while others could not adequately capture this pattern. Differences in the model 529 

performance can be attributed to differences model structure, parameters, input data used in driving 530 

the models and the spatial resolution of the WRR products. Apart from Noah which is a land surface 531 

model (LSM), global hydrological models (GHMs) performed better than LSMs except 532 

PCRGLOBW.. 533 

Evaluation of gridded ET products also revealed varying strengths and weaknesses for the 534 

different products. Based on the different evaluation criteria (bias, RMSE, Pearson correlation 535 

coefficient, and temporal ET variability), Noah appears to outperform most of other ET estimates and 536 

may therefore be recommended for water security assessment in the region. More so, because of water 537 

balance closure and the availability of other water balance components (runoff, soil moisture and 538 

baseflow). Our results also suggest that the performance of satellite-based ET products is not 539 

influenced by spatial resolution, while differences in ET estimates may be attributed to differences in 540 

model structure, parameters and the input data used to drive each ET model. On the contrary, spatial 541 

resolution appears to have a significant impact on the performance of WRR in simulating ET 542 

estimates. 543 

Our results also revealed that the relative uncertainties in monthly ETWB were substantially 544 

higher during the rainy season which can be attributed to uncertainties inherent in higher rainfall 545 

leading to an increase in discharge magnitude and TWSC during this period. Results also revealed 546 

that uncertainty in river discharge is the dominant source of uncertainty in ETWB. This underscores 547 

the need to prioritize the installation of new gauging stations while upgrading existing stations. This 548 

is because uncertainties in river discharge could constrain the ability to fully understand long-term 549 

hydrologic variability and undermine discharge prediction.  550 

Results from this study suggest that WRR and ET products may be used for water security 551 

assessment in poorly gauged basins. However, it is imperative to evaluate the performance of these 552 

products in representative gauged basins before applying them in poorly gauged basins. This is 553 

because applying the products in poorly gauged basins without evaluating their performance may 554 
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lead to poor water management decisions with wider policy and financial implications. However, 555 

there is also a need for WRR and ET products to be driven by input data from multiple sources to 556 

reduce uncertainties in the input data and at the same time, the spatial resolution of WRR products 557 

needs to be enhanced. Results from this study may be used by the products developers to improve on 558 

the quality of future generations of WRR and ET products. 559 
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