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Abstract 10 

Achieving water security in ungauged basins is critically hindered by a lack of in situ river discharge 11 

data to assess past, current and future evolution of water resources. To overcome this challenge, there 12 

has been a shift toward the use of freely available satellite and reanalysis data products. However, 13 

due to inherent bias and uncertainty, these secondary sources require careful evaluation to ascertain 14 

their performance before being applied in ungauged basins. The objectives of this study were to 15 

evaluate river discharge and evapotranspiration estimates from eight gridded water resources 16 

reanalysis (WRR), six satellite-based evapotranspiration (ET) products and ET estimates derived 17 

from complimentary relationship (CR-ET) across eight river basins located in Central-West Africa. 18 

We also estimated the relative uncertainties in monthly basin-scale water balance evapotranspiration 19 

(ETWB) across all the basins. Results highlight strengths and weaknesses of the different WRR in 20 

simulating discharge dynamics and ET across the basins. Likewise satellite-based products also show 21 

some strength and weaknesses in simulating monthly ET. Analyses further revealed that the relative 22 

uncertainties in monthly ETWB range from 4–25 %  with a significant increase in magnitude during 23 

the rainy season while river discharge appear to be the dominant source of uncertainty. Our results 24 

further revealed that the performance of the models in simulating river discharge and 25 

evapotranspiration is strongly influenced by model structure, input data and spatial resolution. 26 

Considering all the evaluation criteria Noah, Lisflood, AWRAL, and Terra are among the best 27 

performing WRR products while Noah, Terra, GLEAM3.5a & 3.5b, and PMLV2 produced ET 28 

estimates with the least bias. Considering the plethora of products available, it is imperative to 29 

evaluate their performance in representative gauged basins to identify products that can be applied in 30 

each region. However, the choice of a particular WRR or ET product will depend on the application 31 

and users requirements. Results from this study suggest that gridded WRR and ET products are a 32 

useful source of data for assessing water security in ungauged basins.  33 

mailto:e.nkiaka@sheffield.ac.uk


2 
 

1. Introduction 34 

River discharge is one of the most important hydrological variables underpinning water resources 35 

management, aquatic ecosystems sustainability, flood prediction, and drought warnings at different 36 

scales (Mcnally et al., 2017; Couasnon et al., 2020). However, observed river discharge data is often 37 

not available at the exact location where critical water management decisions need to be made (Neal 38 

et al., 2009). This is especially the case in developing and semi arid/arid regions where discharge 39 

gauging stations are sparse (Krabbenhoft et al., 2022), while the number of existing stations are 40 

declining (Rodríguez et al., 2020). Despite the acute shortage in observed data, developing regions 41 

are areas that are more vulnerable to adverse hydroclimatological conditions (Byers et al., 2018; 42 

Kabuya et al., 2020). Furthermore, achieving water security in ungauged basins in developing regions 43 

remains a critical development challenge as climate change, population growth, rapid urbanization, 44 

and economic growth continue to exert pressure on available water resources under hydrological 45 

uncertainty (Flörke et al., 2018; Hirpa et al., 2019). This highlights the urgent need for more reliable 46 

data to better assess past, current, and future evolution of water resources, and to predict extreme 47 

hydroclimatological events so that better strategies can be put in place to enhance water management 48 

and mitigate the impact of extreme events (Nkiaka et al., 2020; Slater et al., 2021). Water security in 49 

this study refers to the availability of sufficient quantities of water for human use and ecosystem 50 

sustainability. 51 

Evapotranspiration (ET) is another important hydrological variable that represents the linkage 52 

between water, energy and carbon cycles and ecosystem services and is the second largest process in 53 

the hydrological cycle after precipitation (Zhang et al., 2019). Therefore, ET plays a critical role in 54 

water availability at different scales. As such, accurate estimates of ET are also crucial for water 55 

management operations such as basin-scale water balance estimation, irrigation planning, estimating 56 

water footprint, and assessing the impact of climate change on water availability. However, globally, 57 

in situ ET monitoring stations are also scarce while the existing monitoring network cannot provide 58 

sufficient information on the temporal and spatial trends of ET at large scales (Laipelt et al., 2021). 59 

ET data scarcity may therefore limit our ability to understand changes in the hydrological cycle and 60 

water security in the context of environmental change and hydrological uncertainty. 61 

To enhance water security in ungauged basins, there has been a progressive shift toward the 62 

use of gridded data derived from satellite and reanalysis (Odusanya et al., 2019; Nkiaka, 2022). This 63 

is because gridded data products can provide high spatial resolution and long-term homogeneous data 64 

for previously unmonitored areas at scales that are suitable for studying changes in the hydrological 65 

cycle and for water management applications (Sheffield et al., 2018). Several gridded data products 66 

with global coverage have been produced in recent decades including reanalysis and satellite-based 67 

products. Examples of reanalysis products include Watch Forcing Data applied to ERA-Interim 68 
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(Weedon et al., 2014) and Climate Forecast System Reanalysis (Saha et al., 2014). There is also a 69 

plethora of satellite products for different hydrometeorological variables such as precipitation, 70 

temperature, soil moisture, and ET. For satellite derived ET estimates, it is worth noting that this 71 

variable cannot be directly measured by satellites, but rather derived from physical variables observed 72 

by satellites from space such as radiation flux. As such, satellite derived ET estimates could rather be 73 

referred to as model outputs constrained by satellite data. Another technique used to produce ET 74 

estimates is the complimentary relationship (Ma et al., 2021). Considering the way gridded ET 75 

products are derived, they tend to suffer from large biases (Weerasinghe et al., 2020; Mcnamara et 76 

al., 2021) and therefore need to be validated before use. In fact, it is argued that validating gridded 77 

ET products is an essential step in understanding their applicability and usefulness in water 78 

management operations (Blatchford et al., 2020).  79 

Previously, much attention in the development of gridded environmental data was focused on 80 

hydrometeorological variables such as precipitation and temperature. However, rapid advancement 81 

in computer technology has led to the development of gridded water resources reanalysis (WRR) with 82 

quasi global coverage using both land surface models (LSMs) and Global Hydrological Models 83 

(GHMs) driven by satellite and reanalysis data. Examples of WRR products include the Global Land 84 

Data Assimilation System [GLDAS] (Rodell et al., 2004), “The Global Earth Observation for 85 

Integrated Water Resources Assessment” [eartH2Observe] (Schellekens et al., 2017), and the Global 86 

Flood Awareness System [GloFAS-ERA5] (Harrigan et al., 2020). Several studies have demonstrated 87 

that model-based gridded WRR products can be used as an alternative to observe river discharge in 88 

ungauged basins to: (1) understand hydrological processes (Koukoula et al., 2020), (2) support 89 

transboundary water management (Sikder et al., 2019), (3) identify flood events (Gründemann et al., 90 

2018; López et al., 2020), and (4) support national water policies (Rodríguez et al., 2020). These 91 

examples demonstrate that WRR products have great potential for addressing water security 92 

challenges in ungauged basins. Despite their numerous advantages, model outputs from WRR are 93 

also fraught with uncertainties resulting from errors in the forcing data, model structure, and the 94 

parameterisation of the physical processes in the model scheme (Koukoula et al., 2020). Therefore, it 95 

is necessary to evaluate the performance of these products against observed river discharge where 96 

available.  97 

Whilst the use of outputs from WRR in water management has gained significant attention in 98 

many ungauged or poorly gauged regions such as Asia and Latin America (López et al., 2020; 99 

Rodríguez et al., 2020; Sikder et al., 2019), they remain largely under-utilized in Africa. For example, 100 

there are only a few case studies reporting on the use of these products in the Upper Blue Nile River 101 

basin (Koukoula et al., 2020; Lakew et al., 2020) and the Zambezi River basin (Gründemann et al., 102 

2018). Considering the scale of water insecurity in Africa -compounded by acute data scarcity 103 
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(Nkiaka et al., 2021), we feel that evaluating the performance of gridded WRR products in Africa 104 

may enhance their adoption in water management in the region. On the other hand, several studies 105 

evaluating the performance of gridded data in Africa have focused mostly on precipitation (Dinku et 106 

al., 2018; Satgé et al., 2020) while few studies that have evaluated gridded ET products focused on 107 

large basins, (Blatchford et al., 2020; Weerasinghe et al., 2020; Mcnamara et al., 2021) and mostly 108 

adopting an annual timescale. This may be attributed to the large scale of the basins which is ideal 109 

for the application of satellite data and the coarse spatial resolution of some of the ET products. The 110 

availability of high spatial and temporal resolution ET products means that it now possible to evaluate 111 

these products in small- to medium-size basins and at a higher temporal resolution. Lastly, 112 

considering that the water balance concept has been used widely to evaluate gridded ET products, 113 

most studies did not account for uncertainties in basin-wide water balance evapotranspiration (ETWB) 114 

even though such uncertainties could be large (Baker et al., 2021).  115 

The objectives of this paper were to: (1) evaluate the performance of eartH2Observe Tier 1 116 

and other WRR products in simulating discharge and evapotranspiration in the basins, (2) evaluate 117 

the performance of six satellite-based gridded ET estimates and ET estimates obtained using the 118 

complimentary relationship (CR-ET)  and (3) estimate the relative uncertainties in ETWB  in the 119 

basins. Considering that only a few studies have attempted to evaluate gridded WRR and ET products 120 

over Africa, this paper contributes to the contemporary debate on the performance of these products 121 

and how there can be used to assess water security in ungauged basins. We evaluated ET estimates 122 

from WRR and other sources considering the fact that users needs for the applicaitno of these products 123 

may vary. Hence our evaluation covered a wide range of models and products that meet the needs of 124 

different users. 125 

2. Materials and methods 126 

2.1. Study area 127 

The selected basins are located in Central-West Africa ranging in size from 9,000 km2 to 499,000 128 

km2 (Figure 1). Rainfall in the region is mostly controlled by the north-south movement of the 129 

intertropical convergence zone (ITCZ). The main criteria for selecting the basins were: (1) availability 130 

of observed river discharge data and (2) for the period of the available discharge data to coincide with 131 

the period when gridded WRR and ET data are also available. Additionally, some of the selected 132 

basins are facing substantial water security challenges caused by population displacement from 133 

conflicts in the Sahel and Lake Chad regions (Kamta et al., 2021; Nagabhatla et al., 2021). The 134 

evaluation timestep was determined by the timestep of river discharge data. Shapefiles for all the 135 

basins were obtained from HydroSHEDS, locations of the discharge gauging stations were obtained 136 

from the respective data sources while the area of each basin was calculated from the basin shapefiles. 137 
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HydroSHEDS drainage network offers the unique opportunity to generate watershed boundaries for 138 

GRDC gauging stations using a proofed dataset and applying a consistent methodology. Table 1 139 

shows that some of the basins are transboundary in nature. 140 

 141 
Figure 1: Locations of the eight river basins where the performance of WRR and gridded ET 142 

products were evaluated 143 

Table 1: Characteristics of river basins and sources of river discharge data 144 
Basin Total area 

(km2) 

Transboundary (Yes or No) 

Countr(y/ies) 

Population 

(thousands) 

Source of river 

discharge data 

Bani 101,600 (Yes) Ivory Coast, Mali, and Burkina 

Faso 

63,766 GRDC 

Katsina-Ala 22,963 (Yes) Cameroon and Nigeria 219,875 NHSA 

Konkoure 10,250 (No) Guinea-Conakry 13,053 GRDC 

Logone 87,953 (Yes) Cameroon, Chad, and Central 

Africa Republic 

44272 LCBC 

Milo 9,620 (No) Guinea-Conakry 13,053 GRDC 

Mono 21,575 (Yes) Togo, Benin 21,479 Co-author 

Oubangui 499,000 (Yes) Central Africa Republic and the 

Democratic Republic of Congo 

88,742 GRDC 

Oueme 46,990 (No) Benin 11,488 Co-author 

Global River Discharge Centre [GRDC], Nigeria Hydrological Services Agency [NIHSA], Lake Chad Basin Commission 145 
[LCBC]. Population data sourced from (Undesa, 2019) 146 

 147 

 148 
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2.2. Input data 149 

2.2.1. Water resources reanalysis (WRR0 150 

The WRR product evaluated in this study include “The Global Earth Observation for Integrated Water 151 

Resources Assessment” (eartH2Observe), Famine Early Warning Systems Network [FEWS NET] 152 

Land Data Assimilation System (FLDAS), and TerraClimate. The eartH2Observe Tier 1 product 153 

consists of a multi-model ensemble of ten global models at a spatial resolution of 0.5° x 0.5° spanning 154 

from 1979 to 2012 and driven by Watch Forcing Data methodology applied to ERA-Interim 155 

reanalysis (WFDEI) data (Schellekens et al., 2017). The WRR from eartH2Observe project are freely 156 

available through the project data portal (https://wci.earth2observe.eu/portal/). Model evaluation here 157 

omits the Joint UK Land Environment Simulator (JULES), Simple Water Balance Model (SWBM), 158 

and the simple conceptual HBV hydrological model (HBV-SIMREG) as data from the models was 159 

not available from the data portal for the selected basins at the time of writing. As such, seven models 160 

and model ensemble were included in this study. Evalutaion of ET data also omits Lisflood model as 161 

data was not available from the portal at the time writing. Although there is an available Tier 2 product 162 

with a higher spatial resolution (0.25°), this study did not utilise these data as  selected basins were 163 

not included at the time of conducting this research. We also evaluated discharge from FLDAS-Noah 164 

with sptial resolution of  0.1° and TerraClimate with a spatial resolution of 0.041°. Table 2 provides 165 

a brief summary of the different models used in this study. 166 

Table 2: Water resources reanalysis (WRR) products evaluated 167 
Model provider Model name Model type Routing scheme Reference 

CNRS (Centre 

National de la 

Recherche 

Scientifique) 

ORCHIDEE (Organizing 

Carbon and Hydrology in 

Dynamic Ecosystems) 

LSM Cascade of linear 

reservoirs 

(Krinner et al., 

2005) 

CSIRO 

(Commonwealth 

Scientific and 

Industrial Research 

Organization) 

AWRA-L (Australian 

Water Resources 

Assessment 

GHM Cascade of linear 

reservoirs 

(Van Dijk et al., 

2014) 

ECMWF (European 

Centre 

for Medium-Range 

Weather Forecasts) 

HTESSEL (Hydrology 

Tiled ECMWF Scheme 

for Surface 

Exchanges over Land) 

LSM CaMa-Flood (Balsamo et al., 

2009) 

JRC (Joint Research 

Centre) 

LISFLOOD  GHM Double kinematic 

wave 

(Van Der Knijff et 

al., 2010) 

UniUt (Universiteit 

Utrecht) 

PCR-GLOBWB  GHM Travel time (Van Beek et al., 

2011) 

MeteoFr (Meteo 

France) 

SURFEX LSM TRIP with stream (Decharme et al., 

2010) 

UniK (Universitat 

Kassel) 

WaterGAP GHM Manning–Strickler (Wada et al., 2014) 

NASA Noah LSM Soil-layer water 

and energy balance 

(Mcnally et al., 

2017) 

University of 

California Merced 

TerraClimate GHM Bucket type model (Abatzoglou et al., 

2018) 

 168 

https://wci.earth2observe.eu/portal/
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2.2.2. Evapotranspiration products 169 

In addition to the ET estimates from the reanalysis products, we also evaluated several satellite-based 170 

ET estimates including GLEAM3.5a & 3.5b, MODIS16A2, PMLV1, PMLV2, SSEBop, (see Table 171 

3). ET products from WRR have the same spatial resolution with the discharge estimates while remote 172 

sensing products have different spatial resolutions. However, we did not resample the data to the same 173 

resolution because a previous study has shown that resampling does not have any significant impact 174 

on the results (Weerasinghe et al., 2020). Table 3 provides a summary of all ET products evaluated 175 

in this study. 176 

Table 3: Summary of the characteristics of the different ET products 177 

ET product Core equation Temporal 

resolution 

Spatial 

resolution 

References 

GLEAM3.5a 

& 3.5b  

Priestley-Taylor Monthly  0.25° x 0.25° (Martens et al., 2017) 

MODIS16A2 Penman-Montieth 8-day 1/48°x1/48° (Mu et al., 2007; Mu et al., 2011) 

PMLV1 Penman–Monteith–

Leuning 

Monthly 

 

0.5° x 0.5° (Zhang et al., 2016) 

PMLV2 Penman–Monteith–

Leuning 

8-day 1/192°x1/192° (Zhang et al., 2019) 

SSEBop Surface Energy Balance Monthly  1/96° x 1/96° (Senay et al., 2013) 

CR-ET Penman-Montieth Monthly 0.25° (Ma et al., 2021) 

 178 

2.3. Evaluation data 179 

2.3.1. River discharge 180 

Observed river discharge data were used to evaluate the performance of WRR models and to estimate 181 

basin-wide water balance evapotranspiration (ETWB) using the water balance concept. The source of 182 

the river discharge data is available in Table 1. Gaps in the discharge data were filled using Self-183 

Organizing Maps which have been shown to be a robust method for infilling missing gaps in 184 

hydrometeorological time series (Nkiaka et al., 2016).  185 

2.3.2. Precipitation 186 

Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) was used to estimate 187 

ETWB. CHIRPS has a quasi-global coverage at a spatial resolution of 0.05° x 0.05°, spanning the 188 

period from 1981 to the present at a daily timescale (Funk et al., 2015). The dataset was designed 189 

taking into consideration the weaknesses of existing products (Sulugodu et al., 2019). As such, 190 

CHIRPS blends gauge and satellite precipitation covering most global land regions, it has low latency, 191 

high resolution, low bias, and long period of record (Funk et al., 2015). CHIRPS has extensively been 192 

validated (Dinku et al., 2018; Satgé et al., 2020) and used in several studies in Africa (Larbi et al., 193 

2021; Nkiaka, 2022). The data was downloaded as the spatial average for each basin using the climate 194 

engine App and used to estimate ETWB 195 
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2.3.3. GRACE 196 

GRACE data are monthly anomalies of terrestrial water storage changes (TWSC) used to quantify 197 

changes in terrestrial water storage. The dataset has a global coverage spanning the period 2003–2017 198 

(Tapley et al., 2019). The data was derived from Jet Propulsion Laboratory (JPL) RL06M Version 199 

2.0 GRACE mascon solution at a spatial resolution of 0.5° x 0.5°. The data has a coastline resolution 200 

improvement (CRI) filter to reduce leakage errors across coastlines and land-grids, using scaling 201 

factors derived from the community land model (Wiese et al., 2016). GRACE data has recently been 202 

re-processed to reduce measurement errors and represents a new generation of gravity solutions that 203 

do not require empirical post-processing to remove correlated errors, as such, the present data is better 204 

than the previous GRACE version that was based on spherical harmonic gravity solution (Wiese et 205 

al., 2016). GRACE data was used in this study to estimate ETWB following the approach used in other 206 

studies e.g., (Andam-Akorful et al., 2015; Liu, 2018; Xie et al., 2022). 207 

2.4. Evaluating gridded WRR  208 

WRR models were evaluated following a multi-objective approach commonly used in evaluating the 209 

performance of hydrological models, including the Nash-Sutcliffe efficiency (NSE), Kling-Gupta 210 

efficiency (KGE), and the percent bias (PBIAS). NSE scores range from -∞ to 1, with 1 indicating a 211 

perfect representation of observed discharge. NSE scores ≥0.50 can be considered acceptable whereas 212 

NSE scores ≤0.0 indicate poor model performance (Moriasi et al., 2007). Similarly, the KGE is a 213 

dimensionless metric that can be decomposed into three components crucial for evaluating 214 

hydrological model performance accounting for temporal dynamics (correlation), bias errors 215 

(observed vs simulated volumes), and variability errors (relative dispersion between observations and 216 

simulations) (Gupta et al., 2009). KGE scores range from −∞ to 1, with 1 considered the ideal value. 217 

Next, PBIAS is used to measure the tendency of the simulated discharge to be larger or smaller than 218 

their observed counterparts (Gupta et al., 2009). PBIAS is expected to be 0.0, with low magnitude 219 

values indicating accurate simulations, positive values indicate underestimation, negative values 220 

indicate overestimation (Moriasi et al., 2007). According to Moriasi et al. (2007), a hydrological 221 

model with PBIAS values in the range ±25 % can be considered to be acceptable. Furthermore, a 222 

temporal evaluation of flow hydrographs was carried out by plotting the monthly simulated vs 223 

observed discharge to ascertain visually if the models were able to capture the magnitude, seasonality, 224 

and interannual variability of discharge.  225 

Table 4: Contingency table for 80th percentile river discharge 226 
  Observed discharge 

Yes No 

Simulated discharge Yes Hits (H)  False Alarms (FA) 

No Misses (M) Correct Negatives  

 227 
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Lastly, we evaluated the models ability to predict discharge above specific thresholds. This evaluation 228 

step is of critical importance when considering operational water management requirements such as 229 

water allocation and reservoir operation which rely on monthly river discharge. To achieve this, we 230 

adopted the Critical Success Index (CSI) as the metric to evaluate the ability of each model to simulate 231 

discharge exceeding the 20th and 80th percentiles. CSI is calculated from a two-dimensional 232 

contingency table defining the events in which observed and simulated discharges exceed a given 233 

threshold (Thiemig et al., 2015). We used the 20th and 80th percentiles to assess the ability of the 234 

models to simulate both low and high flows respectively. The contingency table (Table 4) is a 235 

performance measure used in summarizing all possible forecast-observation combinations such as 236 

hits (H; event forecasted and observed), misses (M; event observed but not forecasted), false alarms 237 

(FA; event forecasted but not observed) and correct negatives (CN; event neither forecasted nor 238 

observed). The ideal value for CSI is 100% and the metric is calculated as follows: 239 

𝐶𝑆𝐼 =  
𝐻

𝐻 + 𝑀 + 𝐹𝐴
𝑋 100                                          (1) 240 

2.5. Evaluating gridded ET 241 

We also adopted a multi-step approach to evaluate the performance of ET products by assessing the 242 

annual ET–precipitation ratio, evaluating the statistical performance of ET products against long-term 243 

ETWB and the ability of the products to capture monthly ET variability.  244 

In the first step, the annual ET–precipitation ratio was calculated to compare with the ratio 245 

obtained using ETWB method. The ET–precipitation ratio can also provide an estimate of the amount 246 

of water available in each basin after evapotranspiration losses. In the second step, different statistical 247 

metrics were used to assess the performance of the ET products using the monthly ETWB as a reference 248 

(Andam-Akorful et al., 2015; Burnett et al., 2020; Koukoula et al., 2020). The monthly ETBW was 249 

calculated using the basin water balance equation as follows:  250 

𝐸𝑇𝑊𝐵 = 𝑃 − 𝑄 − 𝛥𝑆                                                              (2) 251 

Where P is average monthly precipitation over the basin (mm), Q is river discharge (mm) and ΔS is 252 

the terrestrial water storage change [TWSC] (mm). Unlike several studies that have evaluated ET 253 

products on an annual timescale, this study adopts a monthly sample. As such, the TWSC component 254 

(ΔS)  in equation 2 that is often neglected when estimating ETWB over several years (≥10 years) could 255 

not be overlooked. Due to the likely impact of anthropogenic activities such as reservoir operation, 256 

water withdrawal, and monthly rainfall variability on TWSC, values derived at monthly timescales 257 

are important. In this case, TWSC data used in this study were obtained from GRACE.  258 
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Due to the coarse spatial resolution of GRACE, it has been argued that GRACE is not sensitive 259 

at detecting changes in monthly TWSC in small-size basins ≤150,000 km2 (Rodell et al., 2011). Based 260 

on this claim, it might be argued that GRACE data may not be applicable in this study considering 261 

that most of the basins are below this threshold except the Oubangui (499,000 km2). However, several 262 

studies (Liu, 2018; Biancamaria et al., 2019; Oussou et al., 2022; Xie et al., 2022), have demonstrated 263 

that GRACE can provide acceptable TWSC estimates for basins that are smaller than this threshold. 264 

Encouraging results from these and other studies do therefore suggest that GRACE data can be used 265 

in this study; albeit with the  expectation of considerable uncertainties in TWSC estimates. For this 266 

study, GRACE data for each basin were obtained by averaging the timeseries of all coincident 267 

GRACE grid cells. To estimate changes in monthly TWSC, we calculated the difference between 268 

consecutive GRACE measurements for each basin, divided by the time between measurements, using 269 

the following equation: 270 

𝛥𝑆 = (𝑆[𝑛] − 𝑆[𝑛−1])/𝑑𝑡                                      (3) 271 

where ΔS represents the TWSC (mm), n is the measurement number, and dt is the time difference 272 

between two consecutive GRACE measurements (months). 273 

Lastly, temporal evaluation of the products was carried out by plotting the time series of all 274 

ET products against ETWB to visually establish if the gridded ET products were able to capture the 275 

magnitude, seasonality, and interannual variability of ET across the basins. 276 

2.6. Estimating relative uncertainty in basin-scale water balance ET (ETWB) 277 

To estimate the relative uncertainty in monthly ETWB, we first calculated the absolute uncertainty in 278 

monthly ETWB by propagating errors through each of the components in equation 2 (Rodell et al., 279 

2011), as follows: 280 

𝜎𝐸𝑇 = √𝜎𝑃+
2 𝜎𝑄+

2 𝜎𝛥𝑆
2                                                                      (4) 281 

Where σP, σQ and σΔS represent the absolute uncertainties in basin precipitation, observed river 282 

discharge, and TWSC respectively. Uncertainty in precipitation was estimated as systematic errors 283 

(bias). For this, we used a value of  2 % estimated for CHIRPS data at monthly timescale from 1981–284 

2016 over Africa from a validation study using the Global Precipitation Climatology Centre (Shen et 285 

al., 2020). Uncertainty in TWSC was determined using the gridded fields of measurement and leakage 286 

errors (residual errors after filtering and rescaling) that are provided with the GRACE data. The 287 

uncertainty for each basin was calculated by averaging the values of all GRACE grid cells within 288 

each basin. To account for month-to-month variation in equation 3, the TWSC error values were 289 
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multiplied by √2  to obtain σΔS (Andam-Akorful et al., 2015). Because no uncertainty estimates were 290 

provided with the river discharge data, we adopted a value of 20 % which has been used in a recent 291 

study in the region (Burnett et al., 2020). After calculating the absolute uncertainty in monthly ETWB, 292 

the relative monthly uncertainty was calculated using equation 5 (Baker et al., 2021) as follows: 293 

𝜐𝐸𝑇 =
𝜎𝐸𝑇

𝐸𝑇𝑊𝐵
𝑋100                                                                (5) 294 

Where υET is the monthly relative uncertainty (%), σET is the absolute monthly uncertainty (mm), 295 

and monthly ETWB (mm). Figure 2 shows a flowchart detailing the different steps used for evaluating 296 

the WRR and ET products. 297 

 298 

Figure 2: Flowchart outlining the steps used in evaluating the WRR and ET products (The blue 299 

dotted line in the flow chart separates evaluation of WRR from ET products) 300 

3. Results 301 

3.1. Water resources reanalysis products 302 

3.1.1. Hydrological performance 303 

A multi-objective approach using different statistical metrics (NSE, KGE and PBIAS) was used to 304 

evaluate discharge estimates from WRR products. The performance of the models in simulating 305 

discharge is shown in Figure 3. Using the NSE as a performance metric, results show that Noah 306 

produced positive scores in all the basins (0.15–0.48). Terra, AWRAL and Lisflood produced positive 307 

scores (0.01–0.75) in seven, six and four basins respectively. SURFEX model produced positive 308 
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scores in three basins while ORCHIDEE, HTESSEL, Watergap and the ensemble mean produced 309 

positive scores in two basins each while PCR-GLOBW produced negative scores in all the basins 310 

(Figure 3a).  311 

 312 

Figure 3: Statistical evaluation of the models using (a) NSE, (b) KGE, and (c) PBIAS. Red and 313 

orange colours represent poor model performance in Figures 3a, 3b & 3c, however, the acceptable 314 

PBIAS range in Figure 3c is ±25%. Ensemble refers to the mean of WRR from the earthH2Observe. 315 

KGE results show that Noah also produced positive scores (0.11– 0.44) in all basins, followed by 316 

AWRAL, Lisflood and Terra with positive scores in six, five and four basins respectively (Figure 317 

3b). SURFEX and Watergap produced positive scores in three basins while ORCHIDEE and 318 

HTESSEL produced positive scores (0.31–0.76) in two basins. The ensemble mean produced positive 319 

scores (0.09 – 0.42) in three basins while PCRGLOBW produced the lowest KGE scores (Figure 3b).  320 

Positive and negative PBIAS values were obtained in the different basins. Negative values 321 

indicate that the model overestimated discharge volumes compared to observed discharge while 322 

positive values indicate the opposite. Noah, Terra and AWRAL produced acceptable PBIAS scores 323 

(±25 %) in three basins, ORCHIDEE and Watergap produced similar scores in two basins and 324 
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HTESSEL in one basin (Figure 3c). The rest of the models including the ensemble mean either grossly 325 

overestimated or underestimated discharge volumes in all the basins.  326 

3.1.2. Temporal evaluation 327 

The ability of the models to capture discharge variability was analysed by comparing the simulated 328 

vs observed discharge. Results show that most of the models were able to capture the seasonal 329 

discharge variability including peak and low flows (Figure 4). However, PCR-GLOBW 330 

systematically overestimated low flows and underestimated high flows across all basins. In the 331 

Oubangui basin, all models were able to capture the seasonal variability but consistently 332 

underestimated peak flows except Noah and Terra models which overestimated peak flows (Figure 333 

4). For example, measured peak discharge in the river exceeds 5000 m3/sec, but all models except 334 

Noah and Terra simulated it to be less than 2000 m3/sec (Figure 4).  335 

 336 

Figure 4: Evaluation of temporal flow variability simulated by the different model 337 

3.1.3. Critical Success Index 338 

Figure 5 shows the performance of the models in simulating the 80th and 20th percentiles monthly 339 

discharge. For the 80th percentile flows, results show that Noah and Terra produced CSI scores above 340 

50 % in all basins followed by Lisflood and AWRAL in seven and six basins respectively while 341 
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Surfex and Watergap produced similar scores in four basins each (Figure 5a). For the 20th percentile 342 

flows, only Noah produced CSI scores above 50 % in four basins while Lisflood produced similar 343 

scores in two basins. The performance of the other models in simulating the 80th percentile flow 344 

shows a large spread while most models including the ensemble mean failed to simulate the 20th 345 

percentile flow across all the basins. Taking together, results suggest that the models simulated high 346 

flows better than the low flows with only Noah capable of capturing both flow regimes in most basins 347 

(Figure 5b).  348 

 349 

Figure 5: Critical Success Index for 80th and 20th percentile of monthly flow across all basins 350 

3.2. Evapotranspiration products 351 

3.2.1. Evapotranspiration–precipitation ratio 352 

Figure 6 shows the annual ET–precipitation ratio for all basins. It can be observed that average annual 353 

ET–precipitation ratio ranges between (0.58-0.76) for WRR and (0.52–0.83) for satellite-based 354 

products over a period of 10 years (2003–2012) across all basins. WaterGap produced the highest 355 

ratio (0.45-1.01) among WRR models, SSEBop produced the highest ratio (0.53–0.99) while 356 

MOD16A2 produced the lowest ratio (0.41–0.66) among the satellite-based products (Figure 6). 357 

Results show that the evaporation ratios from  the different ET estimates are in the same order of 358 

magnitude with the ratio from ETWB across all the basins except for WaterGap, SSEBop, MOD16A2 359 

and CR-ET which produced values which were beyond this range (Figure 6). 360 
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 361 

Figure 6: Annual evapotranspiration – precipitation ratio 2003 – 2012 362 

3.2.2. Basin-wide water balance estimates 363 

Figure 7 shows the results of the statistical metrics used in evaluating the ET estimates using monthly 364 

ETWB as reference. Considering bias as a performance metric, AWARL, Noah and Terra produced 365 

the lowest bias scores among the estimates from WRR while PMLV2, Terra, and GLEAM3.5a &3.5b 366 

produced the lowest bias scores among the satellite-based products (Figure 7a&d). Most WRR 367 

products undersestimated ET and similarly GLEAM also slightly underestimated ET, among the 368 

satellite-based products while the rest of the products produced mixed results (Figure 7a&d). 369 

However, SSEBop systematically overestimated ET in all the basins while MOD16A2 grossly 370 

underestimated this variable in all but one basin with respect to monthly ETWB (Figure 7d). 371 
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 372 

Figure 7: Bias, RMSE, and Pearson correlation coefficient between monthly ETWB and different 373 

ET products (a-c: WRR and d-f: remote sensing products). 374 

Noah produced the lowest RMSE (13–20 mm/month) among the WRR products while GLEAM3.5a 375 

& b and PMLV1 produced the lowest RMSE (8.50–12 mm/month) among the satellite-based products 376 

(Figure 7b&e). The rest of the products both WRR and satellite-based produced substantially higher 377 

RMSE scores (Figure 7b&e). Only Noah and Terra produced high Pearson correlation scores across 378 

all basins among WRR products (Figure 7c). On the other hand most satellite-based products 379 

produced high Pearson correlation scores (≥0.75) in all basins except PMLV2 and SSEBop which 380 

both produced low scores (<0.50) in three and two basins respectively (Figure 7f). ET estimates 381 

produced from complimentary relationship (CR-ET) performed poorly across most basins. 382 
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 383 

Figure 8a: Seasonal cycle of ET estimates from WRR and basin-wide water balance 384 

evapotranspiration. ETWB represents monthly evapotranspiration estimated by the water balance 385 

method, while the rest are derived from LSMs and GHMs. 386 

 387 

Figure 8b: Seasonal cycle of ET estimates from remote sensing-based products and basin-wide water 388 

balance evapotranspiration. 389 
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3.2.3. Monthly ET variability 390 

Figure 8 shows the seasonal cycle of ETWB against both WRR products and satellite-based ET 391 

estimates. It can be observed that most products were able to replicate the seasonal ET cycle across 392 

all the basins (Figure 8a&b). In addition, most products were not able to replicate the high ET peaks 393 

produced by ETWB during the rainy season except WaterGap in some instances (Figure 8a). The 394 

performance of CR-ET follows that of the rest of the products. 395 

3.2.4. Estimating relative uncertainty in ETWB 396 

An assessment of absolute uncertainties in monthly ETWB indicated that the dominant sources of 397 

uncertainty vary from one basin to another and by each month. For example, in the Katsina-Ala, 398 

Konkoure, and Milo basins, the dominant source of uncertainty in monthly ETWB was  river discharge 399 

(supplementary material). Although the absolute uncertainty in precipitation and TWS also appear 400 

to be high in the three basins, the uncertainty in river discharge takes precedence over the other 401 

sources of uncertainty due to its higher magnitude (supplementary material). On the contrary, the 402 

dominant source of uncertainty in ETWB in the Bani, Logone, and Oubangui basins was from TWSC. 403 

Across all the basins, there was no significant variation in monthly TWSC uncertainty which is 404 

consistent with the results of a similar study in the Amazon basin (Baker et al., 2021). Results also 405 

revealed that the magnitude of TWSC uncertainty were similar across the basins irrespective of the 406 

basin size (Supplementary material). 407 

Figure 9 shows the relative uncertainty in ETWB across all the basins. It can be observed that 408 

relative uncertainty values are generally <30 % but vary from month to month. However, the values 409 

were exceptionally high in the Katsina-Ala and Konkoure basins. The relative uncertainty in ETWB 410 

also appears to be exceptionally high in the months of September–November which corresponds to 411 

the high flow season across most basins. Taking together, the average monthly relative uncertainty in 412 

ETWB for all basins ranges from 10–18% except in the Katsina-Ala and Konkoure basins where this 413 

range is grossly exceeded.  414 

 415 

Figure 9: Average (2003 – 2012) monthly relative uncertainty in monthly ETWB (%) 416 
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4. Discussion 417 

The overarching goal of this paper was to assess the performance of gridded water resources 418 

reanalysis and evapotranspiration products and to estimate the relative uncertainty in monthly basin-419 

wide evapotranspiration (ETWB) estimates. Below we provide a discussion and implications of our 420 

results in water security assessment in ungauged basins. 421 

4.1. Water resources reanalysis 422 

The performance of WRR products was assessed through commonly used model evaluation metrics, 423 

discharge variability, and verification skill scores (critical success index) using observed river 424 

discharge data. Our results show strong differences in the performance of the different models in 425 

simuating river discharge across the basins. Noah model produced positive NSE and KGE values in 426 

all basins and PBIAS values within the acceptable range (±25%) in three basins. Temporal evaluation 427 

of the WRR products showed that Noah, Terra, AWRAL and Lisflood were able to capture the 428 

seasonal variability in discharge as demonstrated by high KGE scores. Indeed, high KGE values  429 

suggest that some models were able to capture the temporal dynamics (strong correlation), and low 430 

bias scores indicate that the variability errors between the observed discharge and simulation was also 431 

low (Gupta et al., 2009). Nevertheless, Terra consistently overestimated peak flows in all the basins. 432 

Apart from Noah model which is a LSM used in FLDAS, most GHMs used in 433 

earthH2Observe tier 1 product performed better than the LSMs, which is consistent with results from 434 

other studies (Lakew et al., 2020). The strong performance of GHMs compared to LSMs can be 435 

attributed to the differences in the model structure and parametrisation schemes between LSMs and 436 

GHMs (Gründemann et al., 2018; Koukoula et al., 2020). For example, some GHMs such as 437 

Watergap are able to simulate lakes and reservoirs and water withdrawal while LSMs can only 438 

simulate natural processes. Such differences in model structure can significantly influence discharge 439 

volumes simulated by both types of models (Gründemann et al., 2018). Although PCRGLOBW is a 440 

GHM, it produced substantially low performance compared to the LSMs which is consistent with 441 

results from other studies in the region (Gründemann et al., 2018; Lakew et al., 2020). This suggest 442 

that  PCRGLOBW model may not be suitable for assessing water security in the region.  443 

The ability of the models to simulate flow thresholds was evaluated using the CSI. Results 444 

show that Noah, Terra, AWRAL and Lisflood were able to capture more than 50% of 80th percentile 445 

monthly flow in most basins. We also noted that apart from Noah model, the rest of the GHMs 446 

performed better than the LSMs from eartH2Observe in their ability to capture the 80th percentile 447 

monthly flows across the basins while only Noah was able to capture 20th percentile flows in three 448 

basins. The performance of Noah compared to other models can be attributed to the fact that FLDAS 449 

was specially designed and optimized to produce physically meaningful variables for monitoring food 450 
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and water security in data-scarce regions in Africa (Mcnally et al., 2017). Furthermore, Noah and 451 

Terra with spatial resolutions of 0.1° & 0.041° respectively perform better than other models and this 452 

may be attributed to their higher spatial resolutions compared to other models with coarser resolution 453 

(0.5°). In fact, Gründemann et al. (2018), has shown that WRR products with higher spatial resolution 454 

perform better than products with coarser resolution in their ability to simulate discharge. The 455 

performance of Noah can also be attributed to the fact the FLDAS is driven by a combination of 456 

different precipitation products thereby reducing the uncertainty in the input data while earth2oberve 457 

tier 1 product are driven by only one data source (WFDEI) which increases the uncertainty in the 458 

input data which is propagated to the model outputs. Our results also showed that Lisflood performed 459 

better than most other earth2oberve models and this can be attributed to the fact that Lisflood has 460 

been extensively used in research and operational settings in Africa (Thiemig et al., 2015; Smith et 461 

al., 2020). As such, the  model parameters may have been better constrained in the region than other 462 

models from eartH2Observe. Taking together, results from this study highlight the importance of 463 

evaluating outputs from WRR products in representative basins before applying them in studies that 464 

may have wider policy and financial implications. Our results suggest a need to enhance the spatial 465 

resolution of WRR products and for the products to be driven by input data from multiple sources to 466 

reduce the uncertainties input data. 467 

4.2. Evapotranspiration products 468 

The annual ET–precipitation ratio produced by WRR and satelitte-based ET products are within the 469 

range estimated for the global land regions (Rodell et al., 2015) with the only exception being 470 

WaterGap, SSEBop,  MOD16A2 and CR-ET with values beyond this range. This suggests that ET 471 

estimates from both sources performed well in this aspect of the ET evaluation. The annual ET–472 

precipitation ratios obtained in this study suggests that annual ET does not exceed annual precipitation 473 

in most basins during the period under evaluation. This suggest the availability of sufficient water 474 

resources in each basin. 475 

Considering all the ET evaluation criteria and comparing between estimates from WRR and 476 

satellite-based products, Noah, Terra, GLEAM3.5a & 3.5b, and PMLV2 appear to outperform the 477 

rest of products even though GLEAM products slightly underestimated ET in all the basins. 478 

Conversely, WaterGap, SSEBop and MOD16A2 performed poorly and may not be suitable for water 479 

security assessment in the region. Our results are generally consistent with those from other studies 480 

indicating that GLEAM and MODIS16A2 underestimate evapotranspiration, while SSEBop 481 

overestimates this variable in most parts of Africa (Weerasinghe et al., 2020; Adeyeri and Ishola, 482 

2021; Mcnamara et al., 2021). Given that  ET estimates from Noah and Terra are produced together 483 

with other water balance components (runoff, soil moisture and baseflow) the two models may be 484 
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recommended for water security assessment in the region because of water balance closure. Our 485 

results also revealed that the performance of satellite-based ET products is not influence by spatial 486 

resolution which is consistent with results from previous studies (Weerasinghe et al., 2020; Jiang and 487 

Liu, 2021). For example, Gleam products with a spatial resolution of 0.25° outperformed products 488 

such as MODIS16A2 and SSEBop with higher spatial resolutions. On the contrary, ET estimates 489 

from WRR appear to be influenced by spatial resolution considering that Noah and Terra  with higher 490 

spatial resolutions perform better than other products with coarser resolutions. 491 

Although all the products were able to capture the temporal dynamics of ET in all the basins, 492 

there were substantial differences in the magnitude of monthly ET from each model. This finding is 493 

consistent with results from other studies showing strong differences in ET estimates produced by 494 

different models (Weerasinghe et al., 2020; Adeyeri and Ishola, 2021). The discrepancies in monthly 495 

ET estimates from the models may be attributed to differences model structure, parameters, and 496 

uncertainties in the input data used in driving the models. This is also in-line with findings from 497 

another study in West Africa highlighting the impact of model parameters and input data uncertainty 498 

on ET estimates (Jung et al., 2019). Considering the aforementioned factors, it may be difficult to 499 

expect the products to produce similar results. ETWB estimates across all the basins produced high 500 

peaks during the rainy season which is also similar to the results of a related study in West Africa 501 

(Andam-Akorful et al., 2015). The high peaks observed in ETWB may be attributed to errors inherent 502 

in monthly precipitation, river discharge, and TWSC estimates used in estimating monthly ETWB.  503 

Given that there was no uncertainty information on the river discharge data used in this study, 504 

we adopted a value of 20 % following a previous study in the region (Burnett et al., 2020). In fact, 505 

we feel that this value may be conservative considering that uncertainties in river discharge in tropical 506 

regions have been shown to exceed 200 % (Kiang et al., 2018). The mean monthly relative uncertainty 507 

for ETWB for most basins appears to be in the same order of magnitude (16 %) with results obtained 508 

in the Amazon basin (Baker et al., 2021). Results also showed that  the relative uncertainty in ETWB 509 

is not influenced by basin size as most basins produced similar (same order of magnitude) uncertainty 510 

estimates. The relative uncertainty in monthly ETWB was higher during the rainy season. This can be 511 

linked to high rainfall input during the rainy season which translates to high river discharge and 512 

TWSC thereby increasing the absolute uncertainties in the different water balance components used 513 

in estimating ETWB. Results from this study suggest that the relative the uncertainty in monthly ETWB 514 

may be substantial which can potentially influence the performance of ET products when they are 515 

evaluated using the ETWB method. We therefore recommend that evaluating the performance of ET 516 

products at monthly timescale should be accompanied with the estimataion of relative uncertainties. 517 

 518 
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5. Conclusions 519 

The objectives of this study were to assess the performance of water resources reanalysis and 520 

evapotranspiration products and to estimate the relative uncertainties in monthly ETWB across eight 521 

basins in Africa. Results show varying strengths and weaknesses for the different models. Some 522 

models were able to capture the river discharge dynamics in the basins while other models could not 523 

adequately capture this pattern. Differences in the model performance can be attributed to differences 524 

model structure, parameters, input data used in driving the models and the spatial resolution of the 525 

WRR products. Apart from Noah which is a land surface model (LSM), global hydrological models 526 

(GHMs) performed better than LSMs except PCRGLOBW. 527 

Evaluation of gridded ET products also revealed varying strengths and weaknesses for the 528 

different products. Based on the different evaluation criteria (bias, RMSE, Pearson correlation 529 

coefficient, and temporal ET variability), Noah appears to outperform most of other ET estimates and 530 

may therefore be recommended for water security assessment in the region. More so, because of water 531 

balance closure and the availability of other water balance components (runoff, soil moisture and 532 

baseflow). Our results also suggest that the performance of satellite-based ET products is not 533 

influenced by spatial resolution, while differences in ET estimates may be attributed to differences in 534 

model structure, parameters and the input data used to drive each model. On the contrary, spatial 535 

resolution appear to have a significant impact on the performance of WRR in simulating ET estimates. 536 

Our results also revealed that the relative uncertainties in monthly ETWB were substantially 537 

higher during the rainy season which can be attributed to uncertainties inherent in higher rainfall 538 

leading to an increase in discharge magnitude and TWSC during this period. Results also revealed 539 

that uncertainty in river discharge is the dominant source of uncertainty in ETWB. This underscores 540 

the need to prioritize the installation of new gauging stations while upgrading existing stations. This 541 

is because uncertainties in river discharge could constrain the ability to fully understand hydrologic 542 

variability and undermine discharge prediction.  543 

Results from this study suggest that WRR and ET products may be used for water security 544 

assessment in ungauged basins. However, it is imperative to evaluate the performance of these 545 

products in representative gauged basins before applying them in ungauged basins. This is because 546 

applying the products in ungauged basins without evaluating their performance may lead to poor 547 

water management decisions with wider policy and financial implications. However, there is also a 548 

need for WRR and ET products to be driven by input data from multiple sources to reduce 549 

uncertainties in the input data and at the same time, the spatial resolution of WRR products needs to 550 

be enhanced. Results from this study may be used by the products developers to improve on the 551 

quality of future generations of WRR and ET products. 552 
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