Calibration of groundwater seepage on the spatial distribution of the stream network to assess catchment-scale hydraulic conductivity

Ronan Abhervé¹, Alexandre Gauvain¹,⁴, Clément Roques¹,², Laurent Longuevergne¹, Stéphane Louaisil³, Luc Aquilina¹, Jean-Raynald de Dreuzy¹

¹Univ Rennes, CNRS, Geosciences Rennes - UMR 6118, F-35000 Rennes, France
²Centre for Hydrology and Geothermics (CHYN), Université de Neuchâtel, Neuchâtel, Switzerland
³Eau du Bassin Rennais, Rennes, France
⁴Geosophy, Paris, France

Correspondence to: Ronan Abhervé (ronan.abherve@univ-rennes1.fr, ronan.abherve@gmail.com)

Abstract

To supplement the use of hydraulic tests and assess catchment-scale hydraulic conductivity (K), we propose a methodology for shallow aquifers only based on the Digital Elevation Model (DEM) and on the observation of the stream network. The methodology requires the groundwater system to be a main determinant of the stream density and extension. It assumes that the perennial stream network is set by the intersection of the groundwater table with the topography. The topographical structures and the subsurface hydraulic conductivity divided by the recharge rate K/R determine the groundwater table depth and the development of the stream network. Using a parsimonious 3D groundwater flow model, we calibrate K/R by minimizing newly defined distances between the simulated groundwater seepage zones and the observed stream network. Deployed on 24 selected headwater catchments from 12 to 141 km² located in north-western France, the method successfully matches the stream network in 80% of the cases and provides catchment-scale hydraulic conductivities between 9 x 10⁴ and 9 x 10⁵ m s⁻¹ for shallow aquifers sedimentary and crystalline rocks. Results show a high sensitivity of K to the density and extension of the low-order streams and limited impacts of the DEM resolution as long the DEM remains consistent with the stream network observations. With the emergence of global remote-sensing databases combining information of high-resolution DEM and stream network, this approach will contribute to assess hydraulic properties of in shallow headwater aquifers.
1 Introduction

Evaluating the availability of water resources and its evolution under global changes requires local knowledge on the storage and transfer of water at the catchment scale (Fan et al., 2019). It involves the development of advanced hydrological models resolving the important hillslope to catchment-scale processes (Refsgaard et al., 2010; Holman et al., 2012; Wada et al., 2010) in a wide variety of high-stake areas (Elshall et al., 2020; Vergnes et al., 2020). Within the local hydrological cycle, aquifers have a specific role ensuring the storage and transfer of water during and after recharge periods increasing the availability of the resources (Fan, 2015; Fan et al., 2015) and sustaining surface systems in rain-free periods (Winter, 1999; Sophocleous, 2002; Alley et al., 2002; Anderson et al., 2015; Huscroft et al., 2018). Quantifying their contribution remains a challenge, as their hydraulic properties have classically been constrained only by sparse borehole-scale characterization, hydraulic tests, and head-based inverse problems (Anderson et al., 2015; Carrera et al., 2005). As global databases compiling hydraulic conductivities give broad range of characteristic values by lithologies (Gleeson et al., 2014; Huscroft et al., 2018; Hartmann and Moosdorf, 2012), it has been shown that they cannot be applied directly to local catchments (Reinecke et al., 2019; Tashie et al., 2021; de Graaf et al., 2020). Analysis of stream discharge and borehole head dynamics have provided additional ways to estimate effective hydraulic properties at larger scales (Brutsaert and Nieber, 1977; Vannier et al., 2014; Mendoza et al., 2003; Troch et al., 2013) and to calibrate hydrological models (Eckhardt and Ulbrich, 2003; Etter et al., 2020; Chow et al., 2016). However, this type of data faces the issue of deployment and maintenance of regional observation networks, engaging the hydrological community to develop alternative methods to characterize ungauged catchments (Blöschl et al., 2019; Beven et al., 2020).

We propose a method to quantify effective hydraulic conductivities of shallow aquifers from increasingly accessible topographical and stream network observations when the density and extent of the stream system is dominantly controlled by subsurface circulations. It is the case in temperate and wet climates for which surface and subsurface hydrological systems are well connected (Cuthbert et al., 2019; Fan et al., 2013) and where the aquifer directly discharges into the stream network (Haitjema and Mitchell-Bruker, 2005). Indeed, the discontinuous groundwater seepage network dominantly controls the structure of the continuous stream network (Leibowitz et al., 2018; Pederson, 2001). At a given recharge rate, low permeable aquifers display high groundwater table elevation and, consequently, dense stream networks in the upper part of the catchments. At the opposite, highly permeable aquifers will display lower groundwater tables, higher discharge rates in fewer seepage areas, and, consequently, sparser stream networks confined in the lower elevation valleys (Day, 1980; Lovill et al., 2018; Dunne, 1975; Luo et al., 2016; Dietrich and Dunne, 1993; Godsey and Kirchner, 2014; Luijendijk, 2021; Prancevic and Kirchner, 2019). Thus, the spatial extent of the stream network, its ramification (Vries, 1994; Devauchelle et al., 2012; Strahler, 1964) and the discharge rates in the seepage areas are controlled by the hydraulic conductivity K [L T$^{-1}$] divided by the recharge rate R [L T$^{-1}$] (Haitjema and Mitchell-Bruker, 2005; Bresciani et al., 2016; Goderniaux et al., 2013; Gleeson and Manning, 2008).
According to Grayson and Blöschl (2000), observed spatial patterns are suitable for calibrating and evaluating distributed hydrologic models. Most approaches have provided means to predict the organization of the observed stream network but have not been designed to infer subsurface hydraulic properties. It is the case of studies that determine stream networks from the topographic information of the digital elevation model (DEM) when the modeled runoff accumulation exceeds a predefined threshold (Mardhel et al., 2021; Le Moine, 2008; Schneider et al., 2017; Luo and Stepinski, 2008; Lehner et al., 2013). Lumped parameter models, such as TOPMODEL (Beven and Kirkby, 1979), have also been extensively used to predict the spatial patterns of seepage areas at large scale (Merot et al., 2003; Blazkova et al., 2002; Güntner et al., 2004; Franks et al., 1998), but have not been used for the characterization of subsurface properties. Exceptions are the works proposed by Luo et al. (2010) and Stoll and Weiler (2010). Relying on explicit simulations of the spatial stream network, Stoll and Weiler (2010) have assessed the hydraulic properties in order to guide the calibration of hydrological models in ungauged basins. In their study, the authors optimize the parameters of their process-based hillslope model, primarily transmissivity, to get the best match between the simulated stream network and a reference. Luo et al. (2010) has calibrated a simplified 1D groundwater model on drainage dissection patterns to assess the spatial distribution of hydraulic conductivities. One of the main obstacles to the development of these approaches is gradually being resolved. Advances in remote sensing are progressively improving the description of global river networks (Yamazaki et al., 2019; Schneider et al., 2017; Lehner and Grill, 2013), wetlands (Tootchi et al., 2019) and soil moisture (Vergopolan et al., 2021). Lidar and high-resolution satellite imagery offers new opportunities to determine the surface characteristics of landscapes (Levizzani and Cattani, 2019; Blöschl et al., 2019) and, by extension, the hydrological parameters of local to continental ungauged catchments (Barclay et al., 2020; Dembélé et al., 2020).

We investigate the capacity to calibrate the catchment-scale effective hydraulic conductivities of shallow aquifers from the observed stream network with the help of a parsimonious 3D groundwater model to link groundwater flows and surface observations. We propose a novel performance criterion to assess the similarity between the simulated seepage areas and the observed stream network. We present the full methodology and its sensitivity to different stream network observation products on 24 catchments covering various geological contexts in north-western France. We discuss its relevance and perspectives to extensively characterize shallow aquifers from continuous surface information as proposed by Gleeson et al. (2021).

2 Materials and Methods

2.1 Model workflow

An overview of the model workflow is illustrated in Figure 1. Each block refers to a specific sub-section detailed below (from 2.2.1 to 2.2.5).

1. A digital elevation method (DEM) is used as the top boundary of the groundwater flow model (section 2.2.1);
2. 3D groundwater flow is solved in the model domain and simulated seepage areas are extracted (section 2.2.2);
3. A selected stream network independent of the DEM is taken as the observed reference (section 2.2.3);
4. The simulated seepage areas are compared with the observed stream network (section 2.2.4);
5. The dimensionless ratio K/R [-] is calibrated to find the best match between the simulated seepage areas and the extent of the observed stream network (section 2.2.5).

![Figure 1. Workflow to constrain the hydraulic conductivity of the subsurface from an observed stream network.](image)

2.1.1. Topography and model geometry

We first select the digital elevation model (DEM) that will be defined as the upper boundary of the groundwater model. In this study, we use the 75 m grid resolution DEM available at the scale of France. It is generated from photogrammetric restitution and provided by BD ALTI (IGN, 2021). We also explore the impact of different DEM resolutions on the final estimations of K/R. We consider two higher resolution DEMs of 5 m and 25 m also provided by BD ALTI. For coarser resolutions, the 25 m DEM was downsampled with nearest neighbour option to larger cell sizes, i.e. 100 m, 200 m, and 300 m.

Geospatial processing is performed using the software WhiteBoxTools available in Python (Lindsay, 2016), labelled WBT in the following. All functions of WBT used are quoted in brackets in the following. First, the raw DEM is corrected by filling all depressions and by removing flat areas (WBT.FillDepressions) to ensure continuous flow between grid cells. The vector point shapefile of the outlet is moved to the location coincident with the highest flow accumulation value.
WBT.D8FlowAccumulation) within a specified maximum distance taken as twice the DEM resolution (e.g., 150 m for a 75 m resolution DEM) (WBT.SnapPourPoints). A flow direction raster (WBT.D8Pointer) is used to extract the drainage basin (WBT.Watershed).

2.1.2. Groundwater flow model

The MODFLOW software suite is used to solve the depth-integrated groundwater flow equation under steady state conditions (Eq. (1)) using a three-dimensional finite difference approach (Harbaugh, 2005; Niswonger et al., 2011):

\[
\frac{\partial}{\partial x} \left[h \ K_{xx} \frac{\partial h}{\partial x} \right] + \frac{\partial}{\partial y} \left[h \ K_{yy} \frac{\partial h}{\partial y} \right] + \frac{\partial}{\partial z} \left[h \ K_{zz} \frac{\partial h}{\partial z} \right] = W
\]

where \(h \) [L] is the hydraulic head, \(K \) [LT\(^{-1}\)] is the hydraulic conductivity along the \(x \), \(y \), and \(z \) coordinate axes, \(W \) [T\(^{-1}\)] is the volumetric flux per unit volume from the porous medium.

We use the FloPy Python package (Bakker et al., 2016) to set and handle simulations. To reduce uncertainties linked to potential flow across topographic boundaries, a buffer zone is added to the topographical catchment boundaries, increasing the modelled domain area by 10%. The model domain is discretized using the regular mesh of the DEM. In agreement with field observations in the region, the thickness of the domain is set to a constant value of 30 m representing the typical depth of the interface between the weathered/fractured zone and the fresh bedrock (Kolbe et al., 2016; Dewandel et al., 2006; Roques et al., 2016). The hydraulic conductivity, \(K \), is assumed to be uniform and isotropic. The recharge \(R \) is uniform over the domain with the top boundary set in the MODFLOW model as a drain to simulate head-dependent inflows (recharge) and outflows (discharge) (Harbaugh, 2005). Recharge operates on each cell while seepage areas and groundwater discharge only occur where the water table reaches the surface. The topography, the recharge and the aquifer thickness being fixed, the elevation of the groundwater table is only controlled by the hydraulic conductivity. The porosity of the aquifer does not intervene at steady state.

2.1.3. Observation data of the stream network

The observed stream network is extracted from the most precise hydrographic network database available for France, the BD TOPAGE, as a vector format at scale of 1:10 000 (IGN and OFB, 2019). The main vector file labelled “Cours d’eau” (Rivers) of the BD TOPAGE represents a majority of perennial sections of the stream network, i.e. filled and/or continuous-flow segments throughout the year. Note that the information classifying perennial or intermittent streams collected in the database is still under development to gain accuracy (Schneider et al., 2017). It has been rasterized at the grid resolution of the groundwater flow model to compare it to the simulated stream network (WBT.VectorLinesToRaster). Due to the uncertainty of the positioning of the stream network vector with respect to the DEM, the error is of the order of a pixel of the rasterization (plus or minus 75 m). The influence of this error is analyzed in the results presented in section 3.1 (Figure 4). We also consider 5 other hydrographic network products to quantify their impact on the estimation of \(K/R \). These products were compiled in
2.1.4. Evaluation of the simulated seepage patterns and calibration criterion

For each pixel where seepage is simulated by the groundwater flow model, we trace the nearest downslope flowpath to the observed stream and compute its distance D_{so} [L] ($WBT.TraceDownslopeFlowpaths$) (Figure 2). The discontinuous pattern of pixels with seepage is then converted into a continuous simulated stream network (Figure 2).

![Figure 2](https://example.com/figure2.jpg)

Figure 2. a) Definition of the main metrics used for calibration, with D_{so}, the average distance of D_{so} from observed stream pixels (in blue) to the nearest (downslope flowpath) simulated seepage zone (in orange), and D_{os} the average distance of D_{os} between simulated seepage pixels to the nearest (downslope flowpath) observed stream. b) 3D conceptual diagram of the groundwater flow model and of a cross section through the catchment. Continuous streams are generated from pixels where the simulated water table intercepts the topography. By comparison with the observed stream network, some of the simulated streams are correctly estimated (valid in green), over-estimated (excess in red), or under-estimated (missing in blue).

The distances of the simulated stream network to the observed one are averaged and labelled D_{so}. ($WBT.DownslopeDistanceToStream$). High D_{so} values are characteristic of stream networks extending far away from the observed streams. We also compute the mean distance of the observed to the simulated stream networks following a similar procedure. The distance D_{os} [L] from each observed stream network pixel to the simulated stream is computed along the steepest downslope path. In the following, we consider its average D_{os} obtained over all pixels of the observed streams. High D_{os} values are characteristic of underdeveloped stream network. The minimum absolute difference between D_{so} and D_{os}...
(Eq. (2)), labelled J, is used as the calibration criterion expressing the closest match of the observed and simulated streams or, in other words, the most relevant combination of missing and excess streams (Figure 2):

$$J = |\overline{D_{so}} - \overline{D_{os}}|$$

2.1.5. Estimate of the hydraulic conductivity

The K/R ratio is calibrated by minimizing the objective function (Appendix B) defined by Eq. (2). Optimization is performed by a dichotomy approach (Burden and Faires, 1985). Convergence criterion is reached when K/R varies by less than 1%. The optimal catchment scale effective hydraulic conductivity K_{optim} is derived from the optimized K/R ratio by considering the average groundwater recharge rate R estimated by the land surface model SURFEX (version 8.1), for EXternalized SURFace (Le Moigne et al., 2020) (for more detailed information, the reader is referred to https://www.umr-cnrm.fr/surfex/). Supplied by meteorological variables, SURFEX computes the energy and water fluxes at the interfaces between soil, vegetation, and atmosphere (Noilhan and Mahfouf, 1996). The groundwater recharge of SURFEX is computed as the proportion of the water mobilized down to the aquifer after infiltrating through the soil column (Vergnes et al., 2020). SURFEX was supplied by the SAFRAN meteorological reanalysis (Vidal et al., 2010; Quintana-Seguí et al., 2008), available over the French metropolitan area at an 8 x 8 km resolution. Here, we consider that R is equal to the long-term average recharge rates computed over almost sixty years (1960-2019).

2.2 Study sites

The approach is applied on 24 selected catchments located in Brittany and Normandy (France) (Figure 3), where an oceanic and temperate climate prevails. The average catchment area ranges from 12 to 141 km2 with an average of 58 km2 (Table 1), which corresponds to an average of 10 300 elements for the domain model discretization. These catchments were selected because of the diversity of their geological and geomorphological settings. Most of them are also subject to extensive research activities for their importance in providing freshwater to the nearby cities (sites 1, 2, 3, 4, 5, 6, 15, 16, 18, 19) or flooding dynamics (Sites 20, 21, 22, 23, 24). Some of these sites are also studied in collaboration with local stakeholders on issues related to water quality and river restoration (Sites 8, 9, 10, 11, 12, 13, 14, 17, 18, 19) or within observatories and research infrastructure (Site 7: Long-Term Socio-Ecological Research (LTSEr) “Zone Atelier Armorique (ZAAr)” and Sites 17, 18, 19: French network of Critical Zone Observatories (OZCAR) “Ploemeur-Guidel CZO”). None of these catchments present any reservoir or stream obstacle that would significantly alter the stream network. The study sites cover 5 major lithologies including: Brioverian schist (sedimentary rock), Paleozoic sandstone and schist (sedimentary rock), plutonic rocks (mainly granite), micaschist (metamorphic sedimentary rock) and limestone (sedimentary rock). Sites have a homogeneous lithology (1:1 000 000 scale) throughout the catchment except for 5 sites (Sites 7, 8, 17, 18, 19) that present 2 lithologies.
Figure 3. a) Localization of the studied catchments (Armorican Massif in Brittany and Normandy, North-Western part of France). b) Zoom on sites on top of a simplified geological map (1:1 000 000 scale) for the 4 center and right-hand side subpanels.

3 Results

3.1 Application of the methodology

Before presenting the results obtained for all 24 study sites, we first illustrate the results of the methodology on one specific site, the Gael catchment (Figure 3, Site 1). We provide details on the different steps of the numerical method and assess their performance. Results are presented for 3 different values of K/R (Figure 4a). The dimensionless ratio K/R strongly controls the spatial distribution of the hydraulic head, the shape of the groundwater table and its intersection with the surface (Figure 4a). An animated figure representing 2D map views of the simulated seepage areas as a function of K is available in the supplementary material (Supplement 1). As K/R increases, the head gradient decreases, the aquifer progressively disconnects from the surface and the seepage areas become sparser, mostly organized downstream, close to the catchment outlet. Inversely, lower K/R values expand the seepage areas along the valleys and depressions towards the head of the catchment. Figure 4a shows the sensitivity of the distances $\overline{D_{so}}$ and $\overline{D_{os}}$ varying between 0 m and 900 m. It confirms that the distance from the observed to the simulated stream network $\overline{D_{so}}$ increases with K/R and inversely that the distance from the observed to the simulated stream network $\overline{D_{os}}$ decreases with K/R. $\overline{D_{so}}$ and $\overline{D_{os}}$ intersect when the calibration criterion J is met, defining the optimum value of the effective hydraulic conductivity through its ratio with the recharge K_{optim}/R. At this point, we define the distance D_{optim} [m] as the average of $\overline{D_{so}}$ and $\overline{D_{os}}$ (Eq. (3)):

$$D_{optim} = \frac{\overline{D_{so}} + \overline{D_{os}}}{2}.$$ (3)
The smaller the value of \(D_{\text{optim}} \), the better is the match of the simulated seepage pattern and the observed stream network. \(D_{\text{optim}} \) will thus be used as an indicator of the calibration performance. It will be compared to the DEM resolution \(\text{DEM}_{\text{res}} \) [m] as \(r_{\text{optim}} \) [-]:

\[
r_{\text{optim}} = \frac{D_{\text{optim}}}{\text{DEM}_{\text{res}}}.
\]

(4)

\(r_{\text{optim}} \) should remain small to ensure the consistency of the observed and simulated stream networks. It will practically be limited to 2 considering that the mismatch cannot exceed the resolution of two pixels:

\[
r_{\text{optim}} \leq 2.
\]

(5)

High-order streams are accurately predicted in all three simulations as shown by the green pixels (Figure 4a). However, low-order streams are obviously more sensitive and drive most of the variations of \(D_{so} \) and \(D_{os} \) as shown by the evolving red to green pixels when changing \(K/R \). In other words, the calibration is controlled by the spatial extent of the streams from the valleys to the headwaters following the topographic depressions. \(D_{\text{optim}} \) is equal to 143 m and remains smaller than twice the resolution of the DEM indicating a close match of the observed streams. Using the DEM resolution of 75 m as an indicator of uncertainty, \(K/R \) ranges between 3 054 and 10 000 (shaded area in Figure 4b, results of the maps are available in Appendix B), corresponding to an hydraulic conductivity ranging between \(1.9 \times 10^{-5} \) and \(6.4 \times 10^{-5} \) m s\(^{-1}\) for a recharge rate \(R \) of 201 mm y\(^{-1}\). The optimal hydraulic conductivity \(K_{\text{optim}} \) estimated from the \(K_{\text{optim}}/R \) of 7 090 is equal to \(4.5 \times 10^{-5} \) m s\(^{-1}\).
The method has been applied to the 23 other catchments displayed on Figure 3. Both D_{so} and D_{os} were found to systematically intersect, defining an optimal effective hydraulic conductivity K_{optim} and a mean distance D_{optim}, both reported in Table 1.

Most D_{optim} distances remain limited to less than 2 pixels (Eq. (5)), showing the good consistency between the simulated stream network and the observed stream network (Figure 5). K_{optim}/R values range over one order of magnitude, from 1 239 to 14 883, resulting in K_{optim} values from 8.9×10^{-6} to 8.6×10^{-5} m s$^{-1}$ (Figure 5). These values range from 2.4×10^{-6} to 2.5×10^{-4} m s$^{-1}$ using the DEM resolution of 75 m as an uncertainty indicator. The model captures correctly the features of the observed stream network even in the presence of singular topographical features such as extended depressions or sharp changes in slope (Gauvain et al., 2021; Schumm et al., 1995). This is especially the case on the site 7 where the seepage along thefoot-slope issued by a steep slope transition (6 % on 1000 m of length) located along a lithological contact is well represented both by the model and in the observations as a significant and perennial groundwater spring/wetlands (Vautier et al., 2019; Kolbe et al., 2016).

Figure 5. D_{optim} and r_{optim} criteria as a function of K_{optim} estimated for the 24 sites. The shaded area corresponds to sites with a $r_{optim} > 2$. The DEM resolution is 75 m and the aquifer thickness is 30 m. The error bars correspond to the estimated K_{optim} considering the DEM resolution as an uncertainty indicator.
Five sites (8, 18, 21, 22 and 23) display a lower match of the simulated and observed stream networks ($r_{optim} > 2$) with D_{optim} values ranging from 190 m to 477 m (Figure 5). The differences come essentially from the data themselves rather than from the model. Figure 6 maps the simulation results for these 5 sites. For the sites 21 and 22, the main errors come from a non-reported subsurface flow in the observed stream network within a karstic system however well represented by the model due to a topographic depression along this area. For the site 23, the large error comes from inconsistencies between the observed stream network and the DEM. The depressions in the topography given by the DEM are far away from the observed stream network resulting in high distances and a high D_{optim} value. The site 18 displays similar issues where an extended seepage zone induced by a topographic depression is not reported on the observed river network. For site 8 only, differences come from the model and, more specifically, from the assumption of a uniform hydraulic conductivity. The predictions are more accurate in the Brioverian schist and Paleozoic sandstone/schist areas than in the plutonic rocks where the drainage density is higher and for which the hydraulic conductivity should be lower.

Figure 6. For the 5 sites corresponding to $r_{optim} > 2$, representation of the observed stream network on top of the simplified geological map (1:1 000 000 scale) with the downslope flowpaths distances of the simulated seepage areas projected to the observed streams. For site 8, differences are larger on the plutonic rocks. For the other sites, the white square identifies the area where errors are the largest.
Table 1. Main landscape characteristics, model input parameters and estimated results of the 24 catchment sites studied.

<table>
<thead>
<tr>
<th>Catchment</th>
<th>Site ID</th>
<th>Main lithology</th>
<th>Area</th>
<th>Slope</th>
<th>Drainage density</th>
<th>R</th>
<th>K_{optimal}/R</th>
<th>D_{optimal}</th>
<th>K_{optimal}</th>
<th>Mean of K_{optimal}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basance</td>
<td>15</td>
<td>Plutonic rocks</td>
<td>26</td>
<td>4.0</td>
<td>1.8</td>
<td>237</td>
<td>1656</td>
<td>40</td>
<td>1.2 x 10^{-5}</td>
<td>1.1 x 10^{-5}</td>
</tr>
<tr>
<td>Nancon</td>
<td>16</td>
<td>Plutonic rocks</td>
<td>65</td>
<td>3.3</td>
<td>1.5</td>
<td>237</td>
<td>1341</td>
<td>72</td>
<td>1.0 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>Serein</td>
<td>4</td>
<td>Paleozoic sandstone/schist</td>
<td>13</td>
<td>3.7</td>
<td>0.8</td>
<td>226</td>
<td>1239</td>
<td>82</td>
<td>8.9 x 10^{-5}</td>
<td>2.3 x 10^{-5}</td>
</tr>
<tr>
<td>Cheze</td>
<td>5</td>
<td>Plutonic rocks</td>
<td>12</td>
<td>2.5</td>
<td>0.8</td>
<td>226</td>
<td>2960</td>
<td>59</td>
<td>2.1 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>Canut</td>
<td>6</td>
<td>Plutonic rocks</td>
<td>28</td>
<td>2.2</td>
<td>0.7</td>
<td>215</td>
<td>2359</td>
<td>134</td>
<td>1.6 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>Gael</td>
<td>1</td>
<td>Plutonic rocks</td>
<td>132</td>
<td>2.5</td>
<td>0.7</td>
<td>201</td>
<td>7090</td>
<td>143</td>
<td>4.5 x 10^{-5}</td>
<td></td>
</tr>
<tr>
<td>Garan</td>
<td>2</td>
<td>Plutonic rocks</td>
<td>96</td>
<td>2.4</td>
<td>0.7</td>
<td>175</td>
<td>6270</td>
<td>148</td>
<td>3.5 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Vauvoie</td>
<td>3</td>
<td>Plutonic rocks</td>
<td>62</td>
<td>2.7</td>
<td>0.8</td>
<td>168</td>
<td>5010</td>
<td>95</td>
<td>2.7 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Estret</td>
<td>9</td>
<td>Plutonic rocks</td>
<td>14</td>
<td>2.9</td>
<td>0.9</td>
<td>161</td>
<td>3487</td>
<td>102</td>
<td>1.8 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Linonlac</td>
<td>10</td>
<td>Plutonic rocks</td>
<td>16</td>
<td>2.9</td>
<td>0.9</td>
<td>164</td>
<td>5831</td>
<td>105</td>
<td>3.0 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Bouteille</td>
<td>11</td>
<td>Plutonic rocks</td>
<td>24</td>
<td>2.9</td>
<td>0.9</td>
<td>161</td>
<td>5919</td>
<td>86</td>
<td>3.0 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Plume</td>
<td>12</td>
<td>Plutonic rocks</td>
<td>134</td>
<td>2.9</td>
<td>0.9</td>
<td>161</td>
<td>3253</td>
<td>103</td>
<td>1.7 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Vignoc</td>
<td>13</td>
<td>Plutonic rocks</td>
<td>41</td>
<td>3.0</td>
<td>0.9</td>
<td>172</td>
<td>3136</td>
<td>87</td>
<td>1.7 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Neal</td>
<td>14</td>
<td>Plutonic rocks</td>
<td>95</td>
<td>2.7</td>
<td>0.9</td>
<td>175</td>
<td>2740</td>
<td>105</td>
<td>1.5 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Seules</td>
<td>23</td>
<td>Plutonic rocks</td>
<td>134</td>
<td>4.7</td>
<td>1.1</td>
<td>274</td>
<td>4659</td>
<td>342</td>
<td>4.0 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>7</td>
<td>Plutonic rocks</td>
<td>19</td>
<td>2.4</td>
<td>1.0</td>
<td>190</td>
<td>1568</td>
<td>137</td>
<td>9.4 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Arguenon</td>
<td>8</td>
<td>Schist/</td>
<td>103</td>
<td>4.7</td>
<td>0.8</td>
<td>234</td>
<td>7559</td>
<td>190</td>
<td>5.6 x 10^{-4}</td>
<td>4.5 x 10^{-4}</td>
</tr>
<tr>
<td>Guidel</td>
<td>17</td>
<td>Plutonic rocks</td>
<td>24</td>
<td>3.8</td>
<td>1.0</td>
<td>307</td>
<td>7090</td>
<td>111</td>
<td>6.9 x 10^{-4}</td>
<td>8.0 x 10^{-4}</td>
</tr>
<tr>
<td>Lannenec</td>
<td>18</td>
<td>Plutonic rocks</td>
<td>13</td>
<td>3.1</td>
<td>0.9</td>
<td>234</td>
<td>7911</td>
<td>220</td>
<td>5.9 x 10^{-4}</td>
<td>8.0 x 10^{-4}</td>
</tr>
<tr>
<td>Ploemeur</td>
<td>19</td>
<td>Plutonic rocks</td>
<td>15</td>
<td>2.9</td>
<td>0.9</td>
<td>307</td>
<td>3077</td>
<td>87</td>
<td>3.0 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Mue</td>
<td>20</td>
<td>Limestone</td>
<td>99</td>
<td>1.5</td>
<td>0.4</td>
<td>179</td>
<td>14883</td>
<td>139</td>
<td>8.4 x 10^{-4}</td>
<td>8.0 x 10^{-4}</td>
</tr>
<tr>
<td>Laizon</td>
<td>21</td>
<td>Limestone</td>
<td>141</td>
<td>2.2</td>
<td>0.5</td>
<td>182</td>
<td>14883</td>
<td>477</td>
<td>8.6 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Thue</td>
<td>22</td>
<td>Limestone</td>
<td>52</td>
<td>1.9</td>
<td>0.5</td>
<td>172</td>
<td>12305</td>
<td>222</td>
<td>6.7 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Gronde</td>
<td>24</td>
<td>Limestone</td>
<td>25</td>
<td>1.7</td>
<td>0.4</td>
<td>179</td>
<td>14883</td>
<td>127</td>
<td>8.4 x 10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>

3.2 Sensitivity of the calibrated hydraulic conductivity to input products, DEM resolution and model parameters

To further analyze the robustness of the method, we determine its sensitivity to the DEM resolution and to the observed stream network (Figure 7). The resolution of the DEM has only a minor influence on the optimal hydraulic conductivity when it remains consistent with the resolution of the stream network description. In the case of the Canut catchment (Figure 3, Site 6), the simulated streams are consistent with the observed streams (Figure 7a1). The estimated K_{optimal} values are close to each other from 1.2 x 10^{-5} to 1.7 x 10^{-5} m s^{-1}. The r_{optimal} criterion (Eq. (4)) remains close to 1 (from 0.5 to 1.8), smaller than the threshold of 2 (Eq. (5)) (Figure 7a2). However, for the 5 m and 25 m resolutions tested, the distances \(\overline{D}_{eo} \) and \(\overline{D}_{os} \) are highly sensitive to the mismatch between an increasingly accurate DEM and a coarsely defined stream network, the same issue as the one reported on several sites in the previous section. The main factor determining the distances is no longer the hydraulic conductivity but the mismatch between the DEM and the observed stream network with r_{optimal} values becoming larger (respectively 51.1 and 8.2 for the 5 m and 25 m resolutions tested). Because they highlight the inconsistency in the data between the DEM and the observed stream network, the finer DEM resolutions of 5 m and 25 m cannot be used, at least at this stage of the development of stream network observations and for this region. Resolutions of 75 m and coarser than 75 m lead however to consistent estimations of hydraulic conductivity showing the validity of the modeling approach.
As an additional indication of the quality of the method, the estimated hydraulic conductivity is sensitive to the extension of the observed stream network. We have systematically tested the method using six hydrographic networks issued by different global, national, and local databases (Figure 7b1). These products display largely evolving densities coming from the origin, nature, and scale of observations (Appendix A). For DEM_{res} = 75 m, the criterion r_{optim} (Eq. (4)) remains smaller than 2 for cases B to F qualifying them to estimate K_{optim} (Figure 7b2). For case A only, the global-scale product HydroRIVERS (Lehner et al., 2013) locates rivers away from the topographic valleys of the DEM issuing a D_{optim} value more than ten times larger than DEM_{res}. For cases B to F, the hydrographic network is well captured. Values of K_{optim} vary over one order of magnitude from 7 x 10^{-6} to 6 x 10^{-5} m s^{-1}. K_{optim} decreases with more extended and denser hydrographic networks. Indeed, dense river networks are generated by low hydraulic conductivities enabling high water table and headwater streams to develop upwards in the catchment (Figure 7b, E and F). Conversely, sparser hydrographic networks with streams located only at lower elevations require higher hydraulic conductivities (Figure 7b, A and B). The estimated hydraulic conductivity appears to be highly
sensitive to the elevation of wetlands and to the first-order stream locations confirming the capacity of the hydrographic density to inform the hydraulic conductivity.

4 Discussion and conclusion

We present a process-based groundwater modeling approach for the assessment of catchment-scale hydraulic conductivities that solely requires information on the density and spatial extent of the stream network. Based on this similar approach, Stoll and Weiler (2010) have estimated hydraulic conductivities in different catchments ranging from 10^{-6} to 10^{-7} m s$^{-1}$ for metamorphic rocks, 10^{-5} m s$^{-1}$ for sandstone, and 10^{-3} to 10^{-7} m s$^{-1}$ for quaternary materials. Similar to our results, they show a strong control of transmissivity on the spatial distribution of simulated streams i.e., a larger spatial extent of the stream network when transmissivity is lower, and inversely. Luo et al. (2010) also proposed a similar modelling strategy considering local drainage density map to constrain a groundwater analytical model. These authors found a high variability of hydraulic conductivity for volcanic aquifers in the Oregon Cascades, ranging from 10^{-8} to 10^{-6} m s$^{-1}$ for the older landscapes, and from 10^{-5} to 10^{-2} m s$^{-1}$ for younger ones. While they fixed the flow-path length equal to the topographical downslope distance to the nearest stream (Luo and Stepinski, 2008), we propose a more general approach based on the mapping of the groundwater seepage from 2D vertically integrated flow simulations. This approach presents the advantage to remain valid in conditions for which the water table is not a strict replicate of the topography (Haitjema and Mitchell-Bruker, 2005), and the seepage structure is discontinuous and partly disconnected from the topography. The method calibrates the dimensionless parameter K/R by matching the modeled groundwater seepage zones to the observed stream network minimizing their respective distances. The nearest downslope flowpath distances (\overline{D}_{so} and \overline{D}_{os}) improve the Euclidean distance of the cell-by-cell and cell-by-neighborhood analysis (Franks et al., 1998; Günther et al., 2004) by constraining the observed-to-simulated and simulated-to-observed stream networks to the topographical structures. The high sensitivity of the computed K/R with both the density and spatial extent of the observed stream network highlights the requirements to use high-quality observed stream products and, when necessary, to improve them. River maps available on national to global databases are often incomplete compared to local databases compiled by stakeholders on direct field observations leading to an overestimation of the effective hydraulic conductivities. Moreover, the results showed that the resolution of DEM should not be much higher than the resolution of the hydrographic network to ensure the consistency of the observed stream network with the DEM.

For the 19 catchments for which the method is successfully applied, the method predicts a distribution of K values that remains surprisingly restricted within one order of magnitude despite the broad range of lithological units investigated (Figure 5). However, within this low variability of estimated K, we found clear distinction between lithologies. For example, we found lower values of K for plutonic rocks dominated catchments, suggesting high water table elevation with high drainage density, while limestones are significantly more permeable with lower drainage density. Although our results show evidences that effective hydraulic conductivities are related to variations in dominant lithologies, it is also clear that other reported factors
like erosion, bedrock weathering and fracturing may tend to homogenize the hydraulic properties under similar erosion/weathering settings (Luo et al., 2016; Yoshida and Troch, 2016; Jefferson et al., 2010; Litwin et al., 2022).

Global syntheses compiling accurate predictions of hydraulic properties of the subsurface are critically needed to predict water resources availabilities (Fan et al., 2019) in ungauged catchments (Sivapalan et al., 2003; Hrachowitz et al., 2013) and to assess the impact of hillslope- and catchment-scale hydrology on global change predictions (Taylor et al., 2013). The methodology presented in this article is aimed to be deployed at multiple spatial scales taking advantages of global-scale databases compiling topographic, hydrologic, and climatic information. Such deployment would leverage the current innovations in remote sensing and crowdsourcing (Etter et al., 2020) that now provide high resolution surface DEM products (Hawker et al., 2022; Yamazaki et al., 2017) and mapping of perennial stream networks (Fovet et al., 2021; Messager et al., 2021; Grill et al., 2019).
Appendices

Appendix A: Hydrographic network products information.

Global database: HydroRIVERS (available on this website: https://www.hydrosheds.org/page/hydrorivers) (Linke et al., 2019) is derived from HydroSHEDS (Lehner et al., 2013), a mapping product that provides hydrographic information for regional and global-scale applications, based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator).

National database: The BD TOPAGE (available on this website: https://bdtopage.eaufrance.fr) database classifies streams as perennial or intermittent based on historical photogrammetric reconstructions.

Local database: The local stream and wetland inventory maps are based on observations and field surveys validated by the “Schéma d’Aménagement et de Gestion des Eaux (SAGE)” (available on this website: https://sdage.sage.eau-loire-bretagne.fr/home.html).

Appendix B: Objective function of the calibration criteria.

Fig. B1. a) 2D map views of simulated seepage areas and nearest downslope flowpaths distances (simulated to observed and observed to simulated) for the two \(K/R \) at the bounds of the uncertainty (lower and higher). b) Objective function based on the developed performance criteria obtained for the Gael (Site 1) catchment.
Supplements

Supplement 1: Evolution of the simulated hydrographic network as a function of K.

The animated figure in a *.gif format is provided in a *.zip archive.

Fig. S1. Animated figure at the scale of the Gael catchment representing the 2D map views of simulated seepage areas and nearest downslope flowpaths distances (simulated to observed and observed to simulated). The maps come from an exploration of a wide range K/R [100 to 100 000].

Code and data availability

The code to test the method from an example is available online at the reviewers' request:

https://github.com/RonanAbherve/stream-network_beta

Author contribution

All co-authors were involved in conceptualization and identified the research questions. RA and AG developed the model, performed the simulations, and analyzed the results. All co-authors participated in the interpretation of the results. RA created the figures. RA prepared the first draft of the manuscript. All co-authors reviewed and edited the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

This work was supported by “Eaux et Territoires” research chaire driven by the Fondation Rennes 1. Clément Roques acknowledges financial supports from the Rennes Métropole research chair “Ressource en Eau du Futur” and the European project WATERLINE, project id CHIST-ERA-19-CES-006. Alexandre Guavain acknowledges funding from the RIVAGES Normands 2100 project. The investigations benefited from the support of OZCAR, H+.
References

Holman, I. P., Allen, D. M., Cuthbert, M. O., and Goderniaux, P.: Towards best practice for assessing the impacts of climate

Linke, S., Lehner, B., Ouellet Dallaire, C., Ariwi, J., Grill, G., Anand, M., Beames, P., Burchard-Levine, V., Maxwell, S.,

Le Moine, N.: Le bassin versant de surface vu par le souterrain: une voie d’amélioration des performances et du réalisme des

Sophocleous, M.: Interactions between groundwater and surface water: the state of the science, Hydrogeol. J., 10, 52–67,

