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Abstract 

The assessment of effective hydraulic properties at the catchment scale, i.e. hydraulic conductivity (𝐾) and transmissivity (𝑇), 

is particularly challenging due to the sparse availability of hydrological monitoring systems through stream gauges and 15 

boreholes. To overcome this challenge, we propose a calibration methodology which only considers information from the 

digital elevation model (DEM) and the spatial distribution of the stream network. The methodology is built on the assumption 

that the groundwater system is the main driver controlling the stream density and extension, where the perennial stream 

network reflects the intersection of the groundwater table with the topography. Indeed, the groundwater seepage at the surface 

is primarily controlled by the topography, the aquifer thickness, and the dimensionless parameter 𝐾/𝑅, where 𝑅 is the average 20 

recharge rate. Here, we use a process-based and parsimonious 3D groundwater flow model to calibrate 𝐾/𝑅 by minimizing 

the relative distances between the observed and the simulated stream network generated from groundwater seepage zones. By 

deploying the methodology on 24 selected headwater catchments located in north-western France, we demonstrate that the 

method successfully predicts the stream network extent for 80 % of the cases. Results show a high sensitivity of 𝐾/𝑅 to the 

extension of the low-order streams and limited impacts of the DEM resolution as long the DEM remains consistent with the 25 

stream network observations. By assuming an average recharge rate, we found effective 𝐾 values to vary between 1.0 x 10-5 

and 1.1 x 10-4 m s-1 in agreement with local estimates derived from hydraulic tests and independent calibrated groundwater 

model. With the emergence of global remote-sensing databases compiling information of high-resolution DEM and stream 

network, this approach provides new opportunities to assess hydraulic properties of unconfined aquifers in ungauged basins. 
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1 Introduction 125 

Evaluating the availability of water resources and its evolution under global changes requires quantitative assessment of water 

fluxes at the catchment scale (Fan et al., 2019). Such evaluation involves the development of advanced hydrological models 

resolving relevant hillslope to catchment-scale processes (Refsgaard et al., 2010; Holman et al., 2012; Wada et al., 2010) in a 

wide variety of high-stake areas (Elshall et al., 2020; Vergnes et al., 2020). Within the local hydrological cycle, aquifers ensure 

the storage of water during and after recharge periods, increasing the availability of the resources (Fan, 2015; Fan et al., 2015), 130 

and transfer this water to surface systems during rain-free periods (Winter, 1999; Sophocleous, 2002; Alley et al., 2002; 

Anderson et al., 2015). Quantifying groundwater fluxes remains a challenge, as the hydraulic properties of aquifers, i.e. 

hydraulic conductivity (𝐾) and transmissivity (𝑇), have classically been constrained through sparse borehole-scale 

characterization (Anderson et al., 2015; Carrera et al., 2005). They are classically estimated using hydraulic tests at centimeter 

scales for laboratory experiments up to decameter scales for well tests (Renard, 2005; Freeze and Cherry, 1979; Domenico and 135 

Schwartz, 1990). Other methods have been proposed at larger scales based on the analysis of streamflow dynamic (Troch et 

al., 2013; Mendoza et al., 2003; Vannier et al., 2014; Brutsaert and Nieber, 1977), earth tides (Hsieh et al., 1987; Rotzoll and 

El-Kadi, 2008) and borehole head dynamics (Zlotnik and Zurbuchen, 2003; Jiménez-Martínez et al., 2013), as well as from 

the calibration of large scale hydrological models (Eckhardt and Ulbrich, 2003; Etter et al., 2020; Chow et al., 2016). Multi-

objective calibration has been proposed to reduce uncertainties, considering complementary data like temperature (Bravo et 140 

al., 2002), groundwater ages derived from environmental tracers (Kolbe et al., 2016) or continuous geochemical monitoring 

(Schilling et al., 2019). In addition, recent advances in machine learning technics show promising results to evaluate hydraulic 

properties at the regional scale (Cromwell et al., 2021; Marçais and de Dreuzy, 2017; Reichstein et al., 2019). 

To tackle the numerous challenges related to the upscaling of hydraulic properties from the local to the regional or global 

scales, several databases provides exhaustive compilations of measurements performed all around the world (Comunian and 145 

Renard, 2009; Achtziger-Zupančič et al., 2017; Ranjram et al., 2015; Kuang and Jiao, 2014). By compiling values obtained 

from calibrated groundwater models, Gleeson et al. (2014) proposed a global-scale hydraulic conductivity map GLHYMPS, 

with an update by Huscroft et al. (2018), where values have been interpolated based on a high-resolution global lithology map 

(GLiM) (Hartmann and Moosdorf, 2012). Besides inconsistencies and methodological biases supported in Gleeson et al. 

(2014), the compiled permeabilities above the regional scale (>5 km) are not suitable at the catchment scale. Therefore, 150 

estimating subsurface hydraulic properties that correctly represent observed catchment-scale processes remains a major 

challenge for the hydrological community (Blöschl et al., 2019). New opportunities has been identified through the increasing 

availabilities of surface observations (Beven et al., 2020; Gleeson et al., 2021), specifically with application for ungauged 

basins. 

Information on the spatial distribution of groundwater seepage appears to be a critical observation to use for the calibration of 155 

subsurface hydraulic properties in hydrologic models (Grayson and Blöschl, 2000). This approach can be applied under the 

assumption that the density and extent of the stream network is primarily controlled by groundwater flow. This assumption is 
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valid under temperate and wet climates, for unconfined aquifers, where surface and subsurface hydrological systems are well 

connected (Cuthbert et al., 2019; Fan et al., 2013) with important discharge of the aquifer directly into the streams (Haitjema 

and Mitchell-Bruker, 2005). Indeed, a groundwater seepage network dominantly controls the structure of a continuous stream 

network, its spatial extent and its ramification (Vries, 1994; Devauchelle et al., 2012; Strahler, 1964; Leibowitz et al., 2018; 250 

Pederson, 2001). Under steady state conditions, the distribution of groundwater seepage is then controlled by the characteristic 

hillslope geometry, the recharge rate (𝑅), and the aquifer transmissivity (𝑇), i.e. the product of the hydraulic conductivity (𝐾) 

and the saturated aquifer thickness (𝑑𝑠𝑎𝑡) (Litwin et al., 2022; Luijendijk, 2021; Bresciani et al., 2014; Haitjema and Mitchell-

Bruker, 2005; Gleeson and Manning, 2008). At a given recharge rate, low transmissive aquifers display high groundwater 

table elevations and, consequently, dense stream networks in the upper part of the catchments. Conversely, highly transmissive 255 

aquifers will display lower groundwater tables, higher discharge rates in fewer seepage areas, and, consequently, sparser str eam 

networks confined in the lower elevation valleys (Day, 1980; Lovill et al., 2018; Dunne, 1975; Luo et al., 2016; Dietrich and 

Dunne, 1993; Godsey and Kirchner, 2014; Prancevic and Kirchner, 2019). 

Previous studies have focused on the comparison of an observed hydrographic network with a simulated hydrographic network 

computed from different methods. The organization of stream networks has been predicted directly from a digital elevation 260 

model (DEM) based on a predefined accumulation threshold value determining whether an upstream surface is capable of 

producing significant flow (Mardhel et al., 2021; Le Moine, 2008; Schneider et al., 2017; Luo and Stepinski, 2008; Lehner et 

al., 2013). Lumped parameter models, such as TOPMODEL (Beven and Kirkby, 1979), have also been extensively used to 

predict the spatial patterns of seepage areas (Merot et al., 2003) allowing to constrain the subsurface hydraulic properties 

(Blazkova et al., 2002; Güntner et al., 2004; Franks et al., 1998). (Luo et al., 2010) proposes a method leading to a spatial 265 

distribution of hydraulic conductivities by constraining a 1D groundwater model based on Dupuit-Forcheimer (DF) assumption 

on drainage dissection patterns. However, these approaches are limited to consider a subsurface flowpath equal and parallel to 

the downslope topography (Luo and Stepinski, 2008). Relying on explicit simulations of the spatial stream network with a 

process-based hillslope model following the DF assumption (Weiler and McDonnell, 2004), Stoll and Weiler (2010) proposes 

to overcome limitation by routing the downslope subsurface flow from the groundwater table by a grid cell by grid cell 270 

approach (Wigmosta and Lettenmaier, 1999). The assessed subsurface hydraulic properties are intended to guide the 

calibration of hydrological models in ungauged basins, only using only a DEM and a hydrographic network map. These 

approaches are especially relevant as rapid advances in remote sensing are improving the description of global river networks 

(Schneider et al., 2017; Lehner and Grill, 2013), wetlands (Tootchi et al., 2019; Rapinel et al., 2023) or soil moisture 

(Vergopolan et al., 2021). Lidar and high-resolution satellite imagery offers new opportunities to determine the surface 275 

characteristics of landscapes (Levizzani and Cattani, 2019; Blöschl et al., 2019) and, by extension, the hydrological parameters 

of local to continental ungauged catchments (Barclay et al., 2020; Dembélé et al., 2020). 

In this work, we propose a new methodology to quantify effective hydraulic properties of unconfined aquifers from 

topographical and stream network observations now available at high resolution. From a parsimonious 3D groundwater flow 
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model, we aim at estimating the catchment-scale 𝐾, based on surface information only, the spatial distribution of the stream 

network. We propose a novel performance criterion to assess the similarity between the simulated seepage areas and the 

observed stream network, coupled with a stand-alone calibration procedure. We present the full methodology and its sensitivity 

to different hydrographic network observation products on 24 catchments covering various geological contexts in north-315 

western France. We finally discuss opportunities and perspectives to systematically characterize aquifers in ungauged 

catchments from surface observations. 

2 Materials and Methods 

An overview of the method workflow is illustrated in Figure 1. Each block refers to a specific sub-section detailed below (from 

2.1 to 2.5).  320 

1. A digital elevation method (DEM) is used as the top boundary of the groundwater flow model (section 2.2.1); 

2. 3D groundwater flow is solved in the model domain and simulated seepage areas are extracted (section 2.2.2); 

3. A selected stream network independent of the DEM is taken as the observed reference (section 2.2.3);  

4. The dimensionless ratio 𝐾/𝑅 [-] is calibrated to reach the best match between the simulated seepage areas and the 

extent of the observed stream network (section 2.2.4); 325 

5. From the optimized 𝐾/𝑅, the optimal hydraulic conductivity 𝐾𝑜𝑝𝑡𝑖𝑚 [L T-1] is deduced by considering the recharge 

𝑅. The optimal transmissivity 𝑇𝑜𝑝𝑡𝑖𝑚 [L2 T-1]is obtained considering the average thickness of the saturated aquifer 

𝑑𝑠𝑎𝑡  [L ]computed by the model (section 2.2.5). 

2.1 Definition of the model domain based on the analysis of the topography 

We first select the digital elevation model (DEM) that will be defined as the upper boundary of the groundwater model. In this 330 

study, we use the 75 m grid resolution DEM available at the scale of France. It is generated from photogrammetric restitution 

and provided by BD ALTI (IGN, 2021). We also explore the impact of different DEM resolutions on the final estimations of 

𝐾/𝑅. We consider two higher resolution DEMs of 5 m and 25 m also provided by BD ALTI. For coarser resolutions, the 25 m 

DEM was downsampled with nearest neighbour option to larger cell sizes, i.e. 100 m, 200 m, and 300 m.  

Geospatial processing is performed using the software WhiteBoxTools available in Python (Lindsay, 2016), labelled WBT 335 

with the respective functions quoted in brackets in the following. First, the raw DEM is corrected by filling all depressions and 

by removing flat areas (WBT.FillDepressions) to ensure continuous flow between grid cells. The vector point shapefile of the 

outlet is moved to the location coincident with the highest flow accumulation value (WBT.D8FlowAccumulation) within a 

specified maximum distance taken as twice the DEM resolution (e.g. 150 m for a 75 m resolution DEM) 

(WBT.SnapPourPoints). A flow direction raster (WBT.D8Pointer) is used to extract the drainage basin (WBT.Watershed). 340 
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Figure 1. Model workflow for the calibration of subsurface hydraulic properties from observed stream network. 

 360 

2.2 Groundwater flow model parameterization 

The MODFLOW software suite is used to solve the groundwater flow equation under steady state conditions for unconfined 

aquifer using a three-dimensional finite difference approach (Harbaugh, 2005; Niswonger et al., 2011). The hydraulic head, ℎ 

[L], is calculated as a function of the hydraulic conductivity, 𝐾 [L T-1], and the recharge rate, 𝑅 [L T-1], applied on top of the 365 

water column.  At the surface of the model domain, the drain package (DRN) of MODFLOW (Harbaugh, 2005) accounts for 

the intersection of the groundwater table with the surface, and for the induced seepage. Overland flows and surface water 

reinfiltration are not integrated as remaining marginal in the conditions of temperate climate and low topographical gradients 

of the studied sites. 

We use the FloPy Python package (Bakker et al., 2016) to set and handle simulations. To reduce uncertainties linked to 370 

potential flow across topographic boundaries, a buffer zone is added to the topographical catchment boundaries, increasing the 

modelled domain area by 10 %. The 3D model domain is discretized laterally using the regular mesh of the DEM, and vertically 

into 6 layers of equal thickness. Convergence tests have been performed to ensure the stability of the result independently of 

the numerical discretization. In agreement with field observations undertaken in the region, a homogeneous thickness of the 

aquifer, 𝑑 [L], is set to a constant value of 30 m. This thickness represents the typical depth of the interface between the shallow 375 
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weathered/fractured zone with the underlying fresh bedrock (Dewandel et al., 2006; Roques et al., 2016; Mougin et al., 2008; 

Kolbe et al., 2016). The model assumes a uniform and isotropic hydraulic conductivity.  385 

The recharge is estimated by the land EXternalized SURFace model SURFEX version 8.1

 (Le Moigne et al., 2020). For more detailed information, the reader is referred to https://www.umr-cnrm.fr/surfex/. Supplied 

by meteorological variables, SURFEX computes the energy and water fluxes at the interfaces between soil, vegetation, and 

atmosphere (Noilhan and Mahfouf, 1996). The groundwater recharge of SURFEX is computed as the proportion of the water 

mobilized down to the aquifer after infiltrating through the soil column (Vergnes et al., 2020). SURFEX was supplied by the 390 

SAFRAN meteorological reanalysis (Vidal et al., 2010; Quintana-Seguí et al., 2008), available over the French metropolitan 

area at an 64 km2 (8 x 8 km) resolution. Here, we took the steady-state recharge as the long-term average recharge rates 

computed over the period 1960-2019 and applied uniformly over the surface of the 3D domain. 

2.3 Spatial distribution of observed stream network 

The observed stream network is extracted from the French hydrographic network database BD TOPAGE as a vector format at 395 

the scale of 1:10 000 (IGN and OFB, 2019). The main vector file labelled “Cours d’eau” (Rivers) of the BD TOPAGE 

represents a majority of perennial sections of the stream network, i.e. filled and/or continuous-flow segments throughout the 

year. Note that the information classifying perennial or intermittent streams collected in the database is still under development 

to gain accuracy (Schneider et al., 2017). It has been rasterized at a grid resolution similar of the groundwater flow model in 

order to facilitate the comparison of the results (WBT.VectorLinesToRaster). Due to the uncertainty of the positioning of the 400 

stream network vector with respect to the DEM, an error of the order of a pixel is considered (plus or minus 75 m in this case). 

The influence of this error is analyzed in the results presented in section 3.1 (Figure 4). We also quantify the impacts of other 

DEM product resolutions by considering 5 other hydrographic network products from 3 different sources: the global-scale 

database HydroRIVERS (labelled case A), the French database BD TOPAGE (cases B, C and D), and local scale inventories 

(cases E and F) performed within the framework of the SAGE (Schéma d'Aménagement et de Gestion des Eaux The 405 

HydroRivers product is derived from the processing of the DEM at lower resolution (approximately 500 m at the equator), 

while the local inventories are completed by more detailed field observations. More information on these products can be 

found in Appendix A. 

2.4 Calibration criteria between observed and simulated spatial patterns 

For each pixel where seepage is simulated by the groundwater flow model, we trace the nearest downslope flowpath to the 410 

observed stream and compute its distance 𝐷𝑠𝑜 [L] (WBT.TraceDownslopeFlowpaths) (Figure 2a). This function of 

WhiteToolBox uses the topographic structure to compute the path from cells on the surface to the catchment outlet. This 

procedure converts the initial discontinuous spatial pattern of seepage zones simulated by the groundwater flow model into a 

continuous stream network (Figure 2b). 
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Figure 2. a) Definition of the main metrics used for calibration, with 𝑫𝒔𝒐
̅̅ ̅̅ ̅, the average distances computed from simulated stream 

pixels (in orange) to the nearest (downslope flowpath) observed stream pixels (in blue), and 𝑫𝒐𝒔
̅̅ ̅̅ ̅ the average distances obtained 

conversely. b) 3D conceptual diagram of the groundwater flow model and of a cross section through the catchment. Continuous 500 
streams are generated from pixels where the simulated groundwater table intercepts the topography. By comparison with the 

observed stream network, some of the simulated streams are correctly estimated (valid in green), over-estimated (excess in red), or 

under-estimated (missing in blue). 

 

The distances of the simulated stream network to the observed 𝐷𝑠𝑜 are calculated and averaged into the criterion labelled 𝐷𝑠𝑜
̅̅ ̅̅̅. 505 

(WBT.DownslopeDistanceToStream). High 𝐷𝑠𝑜
̅̅ ̅̅̅ values are characteristic of stream networks extending far away from the 

observed steams. We also compute the mean distance of the observed to the simulated stream networks following a similar 

procedure. The distance 𝐷𝑜𝑠 [L] from each observed stream network pixel to the simulated stream is computed along the 

steepest downslope path. In the following, we consider its average 𝐷𝑜𝑠
̅̅ ̅̅̅ obtained over all pixels of the observed streams. High 

𝐷𝑜𝑠
̅̅ ̅̅̅ values are characteristic of an underdeveloped stream network. The minimum absolute difference between 𝐷𝑠𝑜

̅̅ ̅̅̅ and 𝐷𝑜𝑠
̅̅ ̅̅̅ 510 

(Eq. (1)), labelled 𝐽, is used as the calibration criterion expressing the closest match of the observed and simulated streams or, 

in other words, the most relevant combination of missing and excess streams (Figure 2):  

 𝐽 = |𝐷𝑠𝑜
̅̅ ̅̅̅ − 𝐷𝑜𝑠

̅̅ ̅̅̅| 
(1) 

𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ intersect when the calibration criterion 𝐽 is met. This criterion based on both 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ achieves the best 

equilibrium between over- and under-estimations. 

At this point, we define the distance 𝐷𝑜𝑝𝑡𝑖𝑚 [L] as the average of 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ (Eq. (2)): 515 

 𝐷𝑜𝑝𝑡𝑖𝑚  =  
𝐷𝑠𝑜  +  𝐷𝑜𝑠

2
 

(2) 
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The smaller the value of 𝐷𝑜𝑝𝑡𝑖𝑚, the better is the match of the simulated seepage pattern and the observed stream network. 

𝐷𝑜𝑝𝑡𝑖𝑚 will thus be used as an indicator of the calibration performance. In order to compare cases with different DEM 

resolution 𝐷𝐸𝑀𝑟𝑒𝑠 [L], 𝐷𝑜𝑝𝑡𝑖𝑚 is normalized by the DEM resolution: 

 𝑟𝑜𝑝𝑡𝑖𝑚  =  
𝐷𝑜𝑝𝑡𝑖𝑚

𝐷𝐸𝑀𝑟𝑒𝑠

 
(3) 

𝑟𝑜𝑝𝑡𝑖𝑚 [-] should remain small to ensure the consistency of the observed and simulated stream networks. It will practically be 

limited to 2 considering that the mismatch cannot exceed the resolution of two pixels:  520 

 𝑟𝑜𝑝𝑡𝑖𝑚  ≤  2 
(4) 

2.5 Estimating the optimal hydraulic conductivities  

The model parameter 𝐾/𝑅 ratio is calibrated by minimizing the objective function defined by Eq. (1), for a given aquifer 

thickness (𝑑). Optimization is performed by a dichotomy approach (Burden and Faires, 1985). The convergence criterion is 

reached when 𝐾/𝑅 varies by less than 1 %.  In order to ensure that 𝐾 estimates are representative of catchment-scale processes 

driving the spatial distribution of the stream network, independently of the aquifer thickness set in the model, we computed 525 

the equivalent normalized transmissivity, 𝑇/𝑅 [-], by multiplying 𝐾/𝑅 by the average saturated aquifer thickness (𝑑𝑠𝑎𝑡) 

computed by the model at the catchment-scale (Figure 2b). In our modeling approach, 𝐾 and 𝑑 are input parameters of the 

model, while 𝑇 is an output including the computed 𝑑𝑠𝑎𝑡 . Finally, optimal transmissivity 𝑇𝑜𝑝𝑡𝑖𝑚 and hydraulic conductivity 

𝐾𝑜𝑝𝑡𝑖𝑚 are evaluated assuming the applied average groundwater recharge rate, 𝑅, and under known aquifer thickness. 

 530 

2.6 Testing the methodology on selected pilot catchments 

The approach is deployed on 24 selected catchments located in Brittany and Normandy (France) (Figure 3), where an oceanic 

and temperate climate prevails. The average catchment area ranges from 12 to 141 km2 with an average of 58 km2 (Table 1), 

which corresponds to an average of 61 800 elements for the domain model discretization. These catchments were selected 

because of the diversity of their geological and geomorphological settings. Most of them are also subject to extensive research 535 

activities for their importance in providing freshwater to the nearby cities (sites 1, 2, 3, 4, 5, 6, 15, 16, 18, 19) or flooding 

dynamics (sites 20, 21, 22, 23, 24). Some of these sites are also studied in collaboration with local stakeholders on issues 

related to water quality and river restoration (sites 8, 9, 10, 11, 12, 13 ,14, 17, 18 19) or within observatories and research 

infrastructures (site 7: Long‐Term Socio‐Ecological Research (LTSER) “Zone Atelier Armorique (ZAAr)” and sites 17, 18, 

19: French network of Critical Zone Observatories (OZCAR) “Ploemeur-Guidel CZO”). None of these catchments present 540 

any reservoir or stream obstacle that would significantly alter the stream network. The study sites cover 5 major lithologies 
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including: Brioverian schist (sedimentary rock), Paleozoic sandstone and schist (sedimentary rock), plutonic rocks (mainly 

granite), micaschist (metamorphic sedimentary rock) and limestone (sedimentary rock). Sites have a homogeneous lithology 

(1:1 000 000 scale) throughout the catchment except for 5 sites (sites 7, 8, 17, 18, 19) that present 2 lithologies. 550 

 

Figure 3. a) Location of the pilot catchments (Armorican Massif in Brittany and Normandy, North-Western part of France). b) 

Zoom on sites along with a simplified map of the main lithological units (1:1 000 000 scale) in sub-panels A, B, C and D. 

 

3 Results 555 

3.1 Detailed analysis of model results on a single site 

Before presenting the results obtained for the ensemble of pilot sites, we first illustrate the results of the methodology on one 

specific site, the Canut catchment (Figure 3, site 6). We provide details on the different steps of the numerical method and 

assess their performance. The main results of the calibration method are presented in Figure 4. The dimensionless ratio 𝐾/𝑅 

strongly controls the spatial distribution of the hydraulic head, i.e. the saturated aquifer thickness 𝑑𝑠𝑎𝑡 , the shape of the 560 

groundwater table, and its intersection with the surface (Figure 4a). As 𝐾/𝑅 increases, the head gradient decreases and 

progressively disconnects from the surface. This implies that the seepage areas become sparser, mostly organized downstream 

close to the catchment outlet. Inversely, lower values of 𝐾/𝑅 tend to expand the seepage patterns along the valleys and 

depressions towards the head of the catchment. Figure 4a shows the sensitivity of 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ considering 3 values of 𝐾/𝑅. It 

confirms that the distance from the observed to the simulated stsream network 𝐷𝑜𝑠
̅̅ ̅̅̅ increases with 𝐾/𝑅 and inversely that the 565 

distance from the simulated to the observed stream network 𝐷𝑠𝑜
̅̅ ̅̅̅ decreases with 𝐾/𝑅. 

High-order streams are accurately predicted in all three simulations as shown by the green pixels (Figure 4a). Low-order 

streams are more sensitive and drive most of the variations of 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ as shown by the evolving red to green pixels when 570 

changing K/R. In other words, the calibration is controlled by the spatial extent of the streams from the valleys to the headwaters 
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following the topographic depressions. 𝐷𝑜𝑝𝑡𝑖𝑚 is equal to 147 m and remains smaller than twice the resolution of the DEM 

indicating a close match of the observed streams (Figure 4b). Using the DEM resolution of 75 m as an indicator of uncertainty, 

𝐾/𝑅 ranges between 1 458 and 7 082 (shaded area in Figure 4b), corresponding to an hydraulic conductivity ranging between 

1.1 x 10-5 and 4.8 x 10-5 m s-1 for an estimated average recharge of 215 mm y-1. In this case, the optimal hydraulic conductivity 720 

𝐾𝑜𝑝𝑡𝑖𝑚 is estimated at 1.8 x 10-5 m s-1. We deduce the optimal transmissivity 𝑇𝑜𝑝𝑡𝑖𝑚 of 5.1 x 10-4 m2 s-1 considering an average 

saturated thickness of 28.1 m simulated by the model (Figure 4b). 

 

Figure 4. a) 2D map views of distances computed along the steepest slope from simulated stream pixels to the nearest observed ones 

(𝑫𝒔𝒐) and from the observed stream pixels to the nearest simulated ones (𝑫𝒐𝒔) for the Canut catchment. Results are presented for 725 
the lowest, optimal and highest 𝑲/𝑹 values explored. b) Average distances 𝑫𝒔𝒐

̅̅ ̅̅ ̅, and 𝑫𝒐𝒔
̅̅ ̅̅ ̅ as functions of 𝑲/𝑹. The shaded areas in 

grey around the curves correspond to the 75 m uncertainty range equal to the resolution the DEM. The optimal simulation is 

obtained for 𝑲𝒐𝒑𝒕𝒊𝒎/𝑹 at the intersection between the two curves. At this point 𝑫𝒔𝒐
̅̅ ̅̅ ̅ and 𝑫𝒐𝒔

̅̅ ̅̅ ̅ are both equal to 𝑫𝒐𝒑𝒕𝒊𝒎 and, in this 

case, 𝒓𝒐𝒑𝒕𝒊𝒎 is close to 2. The optimal hydraulic conductivity estimated 𝑲𝒐𝒑𝒕𝒊𝒎 is derived by using the recharge rate provided by 

SURFEX, and 𝑻𝒐𝒑𝒕𝒊𝒎 is obtained considering the mean saturated aquifer thickness (𝒅𝒔𝒂𝒕). To further illustrate the methodology, an 730 

animated figure representing 2D map views of the simulated seepage areas as a function of 𝑲/𝑹 is available in the supplementary 

material (Supplement 1) with the associated objective minimization function results in Appendix B. 

 

We evaluate the impact of the maximum aquifer thickness on 𝑇𝑜𝑝𝑡𝑖𝑚 by running the calibration procedure considering five 

different values of 𝑑:  5, 10, 50, 100 and 300 m. We found that the simulated stream network matches the observed one for all 735 

thicknesses (𝑑) (Figure 5a1, A to F). However, we found differences in the estimated 𝑇𝑜𝑝𝑡𝑖𝑚 (Figure 5a2). For cases C, D, E 

and F, where the maximum aquifer thicknesses are greater than 30 m, the optimal transmissivity 𝑇𝑜𝑝𝑡𝑖𝑚  remains constant at 

around 4.0 x 10-4 m2 s-1. For cases A and B with smaller thicknesses (<30m), 𝑇𝑜𝑝𝑡𝑖𝑚 reach much larger values of 4.1 x 10-3 and 

1.8 x 10-3 m2 s-1 respectively. Such divergences come from the breakdown of the Dupuit-Forchheimer assumption. Small 

thicknesses bring the flow lines closer to the surface and widen the seepage areas (Bresciani et al., 2014), effects that must be 740 

offset by substantially higher hydraulic conductivities and transmissivities to lower the water table.  
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We also investigate the sensitivity of the resolutions of both the DEM (Figure 5b) and the observed stream network (Figure 

5c) on the estimations of 𝑇𝑜𝑝𝑡𝑖𝑚. The resolution of the DEM has only a minor influence on the estimation of optimal 

transmissivity, while the resolution of the stream network has a major impact. Figure 5b1 shows that the simulated stream 

network corresponds well to the observed network for the different DEM resolutions. However, the estimated optimal 765 

transmissivities vary significantly across the different cases (Figure 5b2). For cases C, D, and E, the estimated 𝑇𝑜𝑝𝑡𝑖𝑚 values 

remain close to each other, ranging from 5.0 x 10-5 to 5.6 x 10-5 m2 s-1. For the case F, it reaches a value of 2.9 x 10-4  m2 s-1 

while for A and B it takes values of 1.9 x 10-3 and 9.7 x 10-4 m2 s-1 respectively. For cases C to F, the 𝑟𝑜𝑝𝑡𝑖𝑚 criterion (Eq. (3)) 

remains close to 1 (from 0.5 to 1.8), smaller than the threshold of 2 (Eq. (4)). However, for the 5 and 25 m resolutions tested 

(cases A and B), the distances 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ are highly sensitive to the mismatch between an increasingly accurate DEM and a 770 

coarsely defined stream network. The main factor driving 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ is no longer the hydraulic conductivity but the mismatch 

between the DEM and the observed stream network with 𝑟𝑜𝑝𝑡𝑖𝑚 values becoming larger (respectively 46.5 and 7.7 for the 

5 and 25 m resolutions tested). These results emphasize that DEMs with too fine resolutions, here 5 and 25 m, cannot be used 

with the observed stream network selected in this study, at least at the current stage of the methodological development. 

Resolutions of 75 m and coarser lead however to consistent estimations of the hydraulic conductivity confirming the validity 775 

of the modeling approach. 

We have systematically tested the method using six different stream network products issued by global, national, and local 

databases (Figure 5c1). These products display important differences in the extent and densities of the stream network coming 

from their origin and scale of observations (Appendix A). For case A, the global-scale product HydroRIVERS (Lehner et al., 

2013) locates rivers away from the topographic valleys of the DEM, with consequently a 𝐷𝑜𝑝𝑡𝑖𝑚 value more than ten times 780 

larger than 𝐷𝐸𝑀𝑟𝑒𝑠. For cases B to F, the criterion 𝑟𝑜𝑝𝑡𝑖𝑚 (Eq. (3)) remains smaller than 2, the hydrographic network is well 

captured and the method consistently estimate 𝑇𝑜𝑝𝑡𝑖𝑚 (Figure 5c2). 𝑇𝑜𝑝𝑡𝑖𝑚 varies over one order of magnitude from 2.0 x 10-4 

to 3.8 x 10-3 m2 s-1 and logically tends to decrease when the density and extent of the mapped stream network increases. Indeed, 

for a fixed recharge rate, lower transmissivities raise the groundwater table and broaden the headwater streams (Figure 5c, E 

and F). Conversely, higher values of 𝑇 contract the hydrographic networks with streams located mainly at lower elevations 785 

(Figure 5c1, A and B). The extent of the stream system and the first-order stream locations appear to be highly sensitive to the 

estimated transmissivity confirming its capacities to inform the hydraulic conductivity. 
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Figure 5. Sensitivity analysis of the method for the Canut catchment (site 6) to a) the DEM resolution, b) the density and extent of 

the steam network displayed by different stream network products, and c) the aquifer thickness. Left pictures (a1, b1, c1) show the 790 
downslope flowpath distances of the simulated stream pixels projected onto the observed reference stream network, for the 

𝑲𝒐𝒑𝒕𝒊𝒎./𝑹. Right graphs (a2, b2, c2) show the 𝒓𝒐𝒑𝒕𝒊𝒎 as a function of 𝑻𝒐𝒑𝒕𝒊𝒎. 
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3.2 Application to the ensemble of catchments 

The method has been applied to the 23 other catchments (Figure 3) with the same DEM resolution of 75 m, product for the 795 

observed reference stream network, and aquifer thickness of 30 m. Both 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ were found to systematically intersect 

defining optimal 𝐷𝑜𝑝𝑡𝑖𝑚 (Figure 6) and 𝐾𝑜𝑝𝑡𝑖𝑚/𝑅 values (Table 1). For 19 sites, the values of 𝐷𝑜𝑝𝑡𝑖𝑚 is less than 2 pixels 

(Figure 6), showing good consistency between the simulated and the observed stream network and 𝐾𝑜𝑝𝑡𝑖𝑚/𝑅 vary between 

1 397 to 19 687. Considering 𝑑𝑠𝑎𝑡  computed by the model, 𝑇𝑜𝑝𝑡𝑖𝑚 values range over one order of magnitude from 2.9 x 10-4 

to 3.2 x 10-3 m2 s-1 (Figure 6), resulting in 𝐾𝑜𝑝𝑡𝑖𝑚 values between 1.0 x 10-5 and 1.1 x 10-4 m s-1 (Table 1). The model captures 800 

correctly the features of the observed stream network even in the presence of singular topographical features such as extended 

depressions or sharp changes in slope (Gauvain et al., 2021; Schumm et al., 1995). This is especially the case on the site 7 

where the seepage along the foot-slope issued by a steep slope transition (6 % on 1000 m of length) located along a lithological 

contact is well represented both by the model and in the observations as a significant and perennial groundwater spring/wetland 

(Vautier et al., 2019; Kolbe et al., 2016). 805 

 

Figure 6. 𝑫𝒐𝒑𝒕𝒊𝒎 and 𝒓𝒐𝒑𝒕𝒊𝒎 criteria as functions of 𝑻𝒐𝒑𝒕𝒊𝒎 estimated for the 24 sites. The optimal transmissivity 𝑻𝒐𝒑𝒕𝒊𝒎 is obtained 

by considering 𝑲𝒐𝒑𝒕𝒊𝒎 and the mean saturated aquifer thickness 𝒅𝒔𝒂𝒕 computed. The shaded area corresponds to sites with 𝒓𝒐𝒑𝒕𝒊𝒎 >

𝟐. The DEM resolution is 75 m and the aquifer thickness is 30 m. The error bars correspond to the estimated 𝑻𝒐𝒑𝒕𝒊𝒎 considering the 

DEM resolution as an uncertainty indicator. 810 
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Table 1. Main landscape characteristics, model input parameters, and modeling results, including hydraulic conductivities and 835 
transmissivities for the 24 catchments studied. 

 

4 Discussion 

4.1 A new calibration method for the assessment of effective catchment-scale hydraulic properties 

We have presented a process-based groundwater modeling approach to assess effective catchment-scale hydraulic properties 840 

(𝐾 and 𝑇) from the sole information of the density and spatial extent of the stream network. The proposed method 1) simulates 

the stream network by physically representing the 3D groundwater flows, 2) quantifies the mismatch between observed and 

simulated stream networks through distance-based spatial indicators, and 3) calibrates the subsurface hydraulic properties by 

minimizing a performance criterion. We compare it with existing approaches and indicators. 

Previous modeling approaches were mostly based on TOPMODEL applications (Blazkova et al., 2002; Güntner et al., 2004; 845 

Franks et al., 1998) or hillslope scale flows (Luo et al., 2010). They presented the advantage of simplicity but were limited in 

simple cases where flows are topography-driven. As the 1D hillslope-scale approach of Stoll and Weiler (2010), our 3D 

distributed- and process-based groundwater approach remains valid in conditions where the groundwater table is not a strict 

replicate of the topography becoming “recharge controlled” (Haitjema and Mitchell-Bruker, 2005). It also accounts for the 

discontinuities of the seepage structure coming from the irregular connections of the subsurface flows with the surface (Godsey 850 

and Kirchner, 2014; Whiting and Godsey, 2016; Warix et al., 2021). It follows numerous field observations and synthetic 

Catchment 

Site Main Area Slope Drainage  R Koptim/R Doptim Koptim dsat Toptim 

ID lithology [km2] [%] 
density 

[km-1] 
[mm y-1] [-] [m] [m s-1] [m] [m2 s-1] 

Basance 15 Plutonic 
rocks 

26 4.0 1.8 237 1783 40 1.3 x 10-5 27.9 3.7 x 10-4 
Nancon 16 65 3.3 1.5 237 1397 73 1.1 x 10-5 28.0 2.9 x 10-4 

Serein 4 
Paleozoic 

sandstone/schist 

13 3.7 0.8 226 1514 87 1.1 x 10-5 27.7 3.0 x 10-4 

Cheze 5 12 2.5 0.8 226 3125 106 2.3 x 10-5 27.5 6.2 x 10-4 
Canut 6 30 2.2 0.7 215 2677 147 1.8 x 10-5 28.1 5.1 x 10-4 

Gael 1 

Brioverian 

schist 

132 2.5 0.7 201 7344 149 4.7 x 10-5 28.0 1.3 x 10-3 

Garun 2 96 2.4 0.7 175 5938 144 3.3 x 10-5 27.9 9.2 x 10-4 

Vaunoise 3 62 2.7 0.8 168 5469 106 2.9 x 10-5 28.0 8.2 x 10-4 
Estret 9 14 2.0 1.0 161 3985 106 2.0 x 10-5 27.6 5.6 x 10-4 

Linonlac 10 16 2.9 0.8 164 5860 97 3.1 x 10-5 28.1 8.6 x 10-4 

Bouteille 11 24 2.9 0.8 161 8281 80 4.2 x 10-5 28.0 1.2 x 10-3 
Flume 12 134 2.9 0.9 161 3243 105 1.6 x 10-5 28.0 4.6 x 10-4 

Vignoc 13 41 3.0 0.9 172 3243 82 1.8 x 10-5 27.8 4.9 x 10-4 

Neal 14 95 2.7 0.9 175 2774 107 1.5 x 10-5 27.9 4.3 x 10-4 
Seulles 23 134 4.7 1.1 274 4688 342 4.0 x 10-5 28.2 1.1 x 10-3 

Home 7 

Schist/ 

Plutonic rocks 

19 2.4 1.0 190 1739 135 1.0 x 10-5 27.8 2.9 x 10-4 

Arguenon 8 103 4.7 0.8 234 7891 190 5.8 x 10-5 28.2 1.7 x 10-3 
Guidel 17 24 3.8 1.0 307 10312 112 1.0 x 10-4 28.1 2.8 x 10-3 

Lannenec 18 13 3.1 0.9 234 10078 243 7.5 x 10-5 28.2 2.1 x 10-3 

Ploemeur 19 15 2.9 0.9 307 4063 81 3.9 x 10-5 27.8 1.1 x 10-3 

Mue 20 

Limestone 

99 1.5 0.4 179 19687 114 1.1 x 10-4 27.7 3.1 x 10-3 

Laizon 21 141 2.2 0.5 182 19375 581 1.1 x 10-4 28.0 3.2 x 10-3 

Thue 22 52 1.9 0.5 172 12031 222 6.5 x 10-5 27.8 1.8 x 10-3 

Gronde 24 25 1.7 0.4 179 19687 146 1.1 x 10-4 27.6 3.1 x 10-3 

a déplacé (et inséré) [20]
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experiments showing the strong influence of 3D groundwater flow organizations on the location of seepage zones (Goderniaux 

et al., 2013; Fleckenstein et al., 2006; Gauvain et al., 2021; Dohman et al., 2021). 

Several indicators have been proposed to compare the spatial patterns of the modeled and observed saturated areas mostly 

based on cell-by-cell and cell-neighborhood approaches. This includes the likelihood measure (Franks et al., 1998; Blazkova 

et al., 2002), the Kappa goodness-of-fit statistic (Stoll and Weiler, 2010), the Euclidean distance between cells (Güntner et al., 880 

2004). These indicators are essentially local and readily accessible from information on topography and stream networks. We 

propose more integrative indicators based on the distance between the observed and simulated stream networks computed 

along the steepest slope between them, as does the IDPR (Network Development and Persistence Index) to identify zones 

predominantly favorable to infiltration or runoff (Mardhel et al., 2021). The advantages of this procedure are to account for 

the topographical structure within the definition of the distances and to constrain the comparison on the best compromise 885 

between the over- and under-saturation, mainly driven by 𝐷𝑠𝑜
̅̅ ̅̅̅ and 𝐷𝑜𝑠

̅̅ ̅̅̅ respectively. 

 

4.2 Comparison of estimated hydraulic conductivities with previously published values 

As shown in Figure 6, the method predicts a distribution of 𝑇 values that stands within one order of magnitude despite the 

broad range of lithological units investigated. Overall, our estimates of hydraulic properties are consistent with values found 890 

in previous studies conducted for similar sites and lithologic settings (Roques et al., 2016; Mougin et al., 2008; Dewandel et 

al., 2021; Cornette et al., 2022; Leray et al., 2012). We compared the estimated hydraulic conductivity, 𝐾𝑜𝑝𝑡𝑖𝑚, with local to 

regional values found in the literature 𝐾𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (Figure 7). We focused on the comparison with local estimates from hydraulic 

tests or numerical groundwater models for 2 of the studied sites (Le Borgne et al., 2006; Kolbe et al., 2016; Jiménez-Martínez 

et al., 2013) or compiled in regional syntheses according to the lithology (Laurent et al., 2017; BRGM, 2018). Figure 7Erreur ! 895 

Source du renvoi introuvable. shows a good agreement between our results and the other values. More specifically, the local 

values extracted for catchments 7 and 19 slightly underestimate the one from the literature by about 33 % (Figure 7, diamonds). 

The hydraulic conductivities derived from regional synthesis remain within the same order of magnitude with a limited 

overestimation of a factor of 2 (Figure 7, disks). This slight overestimation might result from testing methods as well as by the 

fact that local hydraulic tests are often carried out close to transmissive geological features of major interest for water supply. 900 

Our results were also compared to the ones compiled in the global scale database GLHYMPS (Huscroft et al., 2018). From the 

database, we derived equivalent hydraulic conductivities for each of the catchments. They range over 4 orders of magnitude, 

systematically lower by one to several orders of magnitude than our estimates (Appendix C). As shown in previous studies 

(de Graaf et al., 2020; Tashie et al., 2021), we find that the hydraulic conductivity dataset compiled in GLHYMPS may be 

locally underestimated. 905 
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Figure 7. Comparison of 𝑲𝒐𝒑𝒕𝒊𝒎 obtained for the 24 catchments with values found in the literature 𝑲𝒍𝒊𝒕𝒆𝒓𝒂𝒕𝒖𝒓𝒆 grouped into 2 

categories according to the scale of investigation (local vs regional). Diamond: values from hydraulic tests and/or groundwater 

modeling compiled in regional syntheses according to lithologies (BRGM, 2018; Laurent et al., 2017). Disks: 𝑲 obtained from local 

hydraulic tests for site 19 (Le Borgne et al., 2006; Jiménez-Martínez et al., 2013) and groundwater modelling for site 7 (Kolbe et al., 910 
2016). The values provided in transmissivity by the literature are translated into hydraulic conductivities by using the same applied 

aquifer thickness of 30 m. 

 

The results also show range of values consistent with those given by classical textbooks for the investigated lithologies (Freeze 

and Cherry, 1979; Domenico and Schwartz, 1990). Crystalline rocks characterized by weathering and fractures (Roques et al., 915 

2014; Dewandel et al., 2006) have a lower hydraulic conductivity than sedimentary rocks, here represented by limestones with 

a karstic systems (IGN and OFB, 2019), displaying as expected higher conductivities. Lower conductivities suggest a high 

water table inducing a larger spatial extent of the stream network, confirmed by local knowledge, with a much higher observed 

drainage density for crystalline sites compared to limestone sites (Table 1). Although our results show evidence that effective 

conductivities are related to variations in dominant lithologies, it is also clear that other reported factors like erosion, bedrock 920 

weathering and fracturing may tend to homogenize the hydraulic properties under similar erosion/weathering settings (Luo et 

al., 2016; Yoshida and Troch, 2016; Jefferson et al., 2010; Litwin et al., 2022). 
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4.3 Sensitivity to input/model parameters and related improvements for broader applicability 

The 𝐷𝑜𝑝𝑡𝑖𝑚 indicator (Eq. (2)) provides information on the level of uncertainty. It depends on the quality of the data (observed 925 

reference stream network and the DEM) and on the model assumptions. Five sites (8, 18, 21, 22 and 23) over the 23 sites 

studied display a low match of the simulated and observed stream networks (𝑟𝑜𝑝𝑡𝑖𝑚 > 2) with 𝐷𝑜𝑝𝑡𝑖𝑚 values ranging from 190 

to 581 m (Figure 6). Figure 8 maps the simulation results for these 5 sites. For site 18, the model predicts a seepage zone 

induced by a topographic depression representing potential ponds, lakes and wetlands, which are not in the observations. For 

sites 21 and 22, the main differences are located at a non-reported subsurface flow in the observed stream network within a 930 

karstic system (IGN and OFB, 2019), however well represented by the model due to a topographic depression along this area. 

For site 23, the simulated flow at the bottom of the DEM valley appears to be parallel to the observed flow. In this case, it 

seems to be a registration error in the alignment of the stream location data within the DEM. For site 8, differences come 

principally from the model and, more specifically, from the assumption of a uniform hydraulic conductivity. For this site with 

lateral lithologic heterogeneity, we found that the model underestimates the extent and density of the stream network in the 935 

part with dominant plutonic rocks, and overestimates them in the schists. On the site 8, the IDPR (Mardhel et al., 2021) 

indicates that the granitic area is less permeable than the schist area, and generally displays the limestone sites 21 and 22 

primarily dominated by infiltration, consistent with our results. 

 

Figure 8. For the 5 sites corresponding to 𝒓𝒐𝒑𝒕𝒊𝒎 > 𝟐, representation of the observed stream network on top of the simplified 940 

geological map (1:1 000 000 scale), with the downslope flowpath distances of the simulated seepage areas projected to the observed 

streams. For site 8, differences are larger on the plutonic rocks. For the other sites, the white square identifies the area where 

differences are the largest. 
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The high sensitivity of applied 𝐾/𝑅 with both the density and spatial extent of the observed stream network highlights the 

requirements to use high-quality stream products. Several issues may arise. First, river maps available in national to global 955 

databases are often incomplete compared to local databases compiled by stakeholders on direct field observations leading to 

an overestimation of the effective hydraulic properties. Second, artificial channels, drainage ditches and any other departure 

from the geomorphic equilibrium may alter the stream network system and lead to an overestimation of the hydraulic properties 

in highly impacted zones. Third, the resolution of the DEM and reference stream network must be close. Nevertheless, the 

observed stream network layer could be adjusted to better match the DEM resolution. 960 

Major limitations and improvements may also arise from the assumptions of the hydrogeological model. The proposed 

methodology can be used with other parameterizations and model conceptualizations. The model domain can be extended, and 

the boundary conditions modified to better represent potentially longer and deeper regional groundwater circulations. If the 

information is available, the method could be tested with heterogeneous recharge at the catchment scale. The geometry of the 

aquifer could be adapted, applying flat or irregular bottom aquifers based on geophysical measurements (Pasquet et al., 2022) 965 

or depth to bedrock databases (Shangguan et al., 2017; Hengl et al., 2017; Pelletier et al., 2016). Exponentially decreasing 

conductivity with depth can be applied to the model, in order to estimate the initial value of 𝐾 at the surface or its characteristic 

decay depth. At the current stage of the method, catchment-scale lithological heterogeneities can be considered by applying 

the methodology independently on sub-areas characterized by a homogeneous lithology. For example, on the studied site 8, 

application of the methodology on granite-dominated sub-catchments should result in lower 𝐾 estimates than on the schist 970 

areas. Localized heterogeneities including weathering, fractures, faults, and other discontinuities cannot be identified. They 

should be explicitly introduced in the model and characterized by other methods. 

 

5 Conclusions 

Global syntheses compiling accurate predictions of hydraulic properties of the subsurface are critically needed to predict water 975 

resources availabilities (Fan et al., 2019) in ungauged catchments (Sivapalan et al., 2003; Hrachowitz et al., 2013) and to assess 

the impact of hillslope- and catchment-scale hydrology on global change predictions (Taylor et al., 2013). Besides the climatic 

forcing data, requiring only a stream network map to calibrate a groundwater flow model built from a DEM, the approach 

presented in this article addresses this challenge, specifically for ungauged basins. Under the assumption that the transmissivity 

(hydraulic conductivity integrated over the saturated aquifer thickness) controls the extension and density of the hydrographic 980 

network, the approach calibrates the effective hydraulic properties on the stream network. The resolution of the stream network 

and DEM should be consistent. We showed that the spatialized performance criterion based on the distances between the 

simulated and observed stream network achieves an equilibrium between over- and under-saturation of the underlying 

groundwater system, as well as an equilibrium between over- and underestimation of the stream network extent. The resulting 

estimated 𝐾 values are consistent with local values found in the literature.  985 
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A major advantage is the ease of deployment and transferability of the methodology to other catchments. Although the 

proposed methodology is limited to unconfined aquifers and particularly suited to contexts with significant subsurface-surface 

interactions, where groundwater primarily feeds streams, it aims to be deployed at multiple spatial scales by taking advantage 

of databases compiling topographic, hydrologic, and climate information. Such deployment improving subsurface 

characterization from surface information would leverage the current development in crowdsourcing (Etter et al., 2020) and 1135 

innovations in remote sensing (Biancamaria et al., 2016) that now provide high resolution surface DEM products (Hawker et 

al., 2022; Yamazaki et al., 2017), and mapping of hydrographic networks (Grill et al., 2019; Yamazaki et al., 2019) 

distinguishing the perennial and intermittent streams  (Fovet et al., 2021; Messager et al., 2021). 

 

  1140 
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Appendices 1150 

 

Appendix A: Hydrographic network products information. 

Global database: HydroRIVERS (available on this website: https://www.hydrosheds.org/page/hydrorivers) (Linke et al., 

2019) is derived from HydroSHEDS (Lehner et al., 2013), a mapping product that provides stream information for regional 

and global-scale applications, based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator). 1155 

National database: The BD TOPAGE (available on this website: https://bdtopage.eaufrance.fr) database classifies streams as 

perennial or intermittent based on historical photogrammetric reconstructions. 

Local database: The local stream and wetland inventory maps are based on observations and field surveys validated by the 

“Schéma d'Aménagement et de Gestion des Eaux (SAGE) (available on this website: https://sdage-sage.eau-loire-

bretagne.fr/home.html). 1160 

 

Appendix B: Objective function of the calibration criteria. 

Fig. B1. For the Canut catchment (site 6), a) 2D map views of simulated seepage areas and nearest downslope flowpath distances 

(simulated to observed and observed to simulated) for the two 𝑲/𝑹 at the bounds of the uncertainty (lower and higher), and b) the 

objective function based on the developed performance criteria obtained. 1165 
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Appendix C: Comparison with the GLobal HYdrogeology MaPS (GLHYMPS 2.0) permeability. 

Fig. C1. Comparison of 𝑲𝒐𝒑𝒕𝒊𝒎 obtained for the 24 catchments with values of the literature provided by the GLHYMPS 2.0 global 

permeability map (Huscroft et al., 2018), 𝑲𝑮𝑳𝑯𝒀𝑴𝑷𝑺, averaged over each catchment. 1175 

 

Supplements 

Supplement 1: Evolution of the simulated stream network as a function of 𝑲/𝑹. 

The animated figure in a *.gif format is provided in a *.zip archive. 

Fig. S1. Animated figure at the scale of the Canut catchment (site 6) representing the 2D map views of simulated seepage areas and 1180 
nearest downslope flowpath distances (simulated to observed and observed to simulated). The maps come from an exploration of a 

wide range 𝑲/𝑹 [100 to 90 000]. 

 

Code and data availability 

A Python code to test the method is available online on a shared repository: 1185 

https://github.com/RonanAbherve/stream-network_beta 
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