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Abstract. In a recently introduced parameterization for the soil water retention curve (SWRC) with a 

sigmoid wet branch and a logarithmic dry branch, the matric potential at the junction point of the sigmoid 

and the logarithmic branch (hj) was a fitting parameter, while that at oven–dryness (hd) was derived from 

the fitting parameters. The latter is undesirable, especially if reliable data in the dry range are limited. 10 

Therefore, an alternative is presented in which shape parameter α instead of hd is a derived parameter, and 

hd can be fitted or fixed. The resulting relationship between α and hj is such that it prevents correct fits for hj. 

Fortunately, an expression for hj is found that allows it to be replaced by α as a fitting parameter. The 

corresponding parameter space is well–behaved and has fewer internal bounds defined by restraining 

relationships between parameters than the space for hj as a fitting parameter. The few available values of hj 15 

in the literature are in line with those according to the new expression. The reformulated SWRC is fitted to 

data of 21 soils by shuffled complex evolution. The paper gives the main features of an accompanying open–

source fitting code. The curves fit the data well, except for some clayey soils. A theoretical value of hd 

performs well for a wide range of soils. The new SWRC simplifies to an earlier junction model of the SWRC 

based on a well–known power–law SWRC if α is very large. 20 
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1 Introduction 

Recently, de Rooij et al. (2021) proposed a closed–form expression for the SWRC with a distinct 

air–entry value, like the SWRC proposed by Ippisch et al. (2006), a sigmoid shape in the intermediate range 

according to van Genuchten (1980), and a logarithmic dry branch terminating at a finite matric potential 25 

(hd (L)) at which the soil was oven–dry, with the water content essentially zero. The volumetric water 

contents and derivatives of the sigmoid and logarithmic branches were matched at the matric potential of 

their junction according to Rossi and Nimmo (1994). The rationale for developing the function was to 

preserve the desirable sigmoid shape of van Genuchten’s (1980) curve while removing the physically 

unrealistic asymptote at some non–zero residual water content (Du, 2020), eliminating the non–converging 30 

integral of the SWRC for commonly occurring parameter values (Fuentes et al., 1991), and avoiding the 

detrimental effect of the non–zero slope at saturation on hydraulic conductivity near saturation (Durner, 

1994; Assouline and Or, 2013;  Wang et al., 2022). 

Erroneous measurements in the dry range can lead to unrealistically low values of the matric 

potential at oven dryness, hd (L) (de Rooij et al., 2021). Unfortunately, hd was not fitted independently but 35 

expressed as a function of other parameters that were fitted. Data in the dry range can be unreliable due to 

lack of equilibrium or other causes (Bittelli and Flury, 2009; Solone et al., 2012). If they are, it would be 

helpful to fix hd at a reasonable value, e.g. –106.8 cm H2O (Schneider and Goss, 2012), and either give the 

unreliable data points a lower weight during the fitting process or remove them altogether. An SWRC with 

improved behavior in the dry range even if dry–range data are scant can help improve the behavior of 40 

Richards’ solvers (e.g. SWAP Soil Water Atmosphere Plant, 2022; Šimůnek et al., 2016), be useful to improve 

conceptualizations of the soil reservoirs in large scale hydrological models (e.g., Lawrence et al., 2019), and 

for investigating dielectric properties of dry soil and associated soil backscatter (Ferré and Topp, 2002; 

Davis and Annan, 2002). 

This note presents an alternative to de Rooij et al.’s (2021) model in which hd is a fitting parameter. 45 

In doing so, it uncovers the peculiar behavior of shape parameter α (L–1), which makes it essentially 

impossible for any fitting algorithm to avoid a local minimum with very inaccurate parameter values. The 

main objective is therefore to elucidate the behavior of α and formulate a version of de Rooij’s (2021) SWRC 

that has hd as a fitting parameter but avoids the difficulties caused by the behavior of shape parameter α.  

In the testing phase, it was found that a commonly used convergence criterion used in parameter 50 

optimization not necessarily gave the best parameter values if the objective function was challenging. The 

second objective is therefore to present a parameter fitting algorithm that employs multiple convergence 
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criteria, and optionally explores the parameter space prior to the fitting operation to reduce the search area 

during fitting. The corresponding open–source code for fitting the improved SWRC is provided.  

2 Theory 55 

De Rooij et al. (2021) introduced a unimodal model for the SWRC by combining those of Rossi and 

Nimmo (1994) and Ippisch et al. (2006), dubbed ‘RIA’. 
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Here h denotes the matric potential in equivalent water column (L), subscripts ‘d’ and ‘ae’ denote the value 

at which the water content reaches zero and the air–entry value, respectively, and subscript ‘j’ indicates the 

value of h at which the logarithmic and sigmoid branch are joined. The volumetric water content is denoted 

by θ, with the subscript ‘s’ denoting its value at saturation. Parameters α (L−1) and n determine the shape of 

the sigmoid branch (van Genuchten, 1980), while parameter β does so for the logarithmic branch. By 65 

assuming that for h ≤ hj, all water is adsorbed and for h > hj, the adsorbed water content is equal to θ(hj), 

the total water content can be partitioned in a capillary water content θc and an adsorbed water content θa. 

By requiring the derivatives of the sigmoidal and logarithmic branches to match at hj, parameter β 

can be expressed in terms of the other parameters (de Rooij et al., 2021).  

 70 

𝛽𝛽 = (𝑛𝑛 − 1)�𝛼𝛼ℎj�
𝑛𝑛(1 + |𝛼𝛼ℎae|𝑛𝑛)1−1

𝑛𝑛�1 + �𝛼𝛼ℎj�
𝑛𝑛�

1
𝑛𝑛−2

       (2) 

 

Using this expression to eliminate β from the equality that arises when the values of both branches are 

matched at hj, the resulting expression can be solved for α to establish hd as one of the fitting parameters. 

The expression can also be found by rearranging Eq. (9) of de Rooij et al., (2021). 75 
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The five fitting parameters are: hae, hj, hd, θs, and n. Equation (3)is only valid if the bracketed term is positive. 

This is the case if the following criterion is met. 80 

 

�ℎj� < |ℎd|e
1

1−𝑛𝑛           (4) 

 

Many soils for which SWRCs of van Genuchten (1980) or de Rooij et al. (2021) are fitted have values 

for α  between roughly 0.001 and 0.3, with sandy soils generally having higher values than fine–textured 85 

soils (e.g., de Rooij et al., 2021). When hd is fixed at –106.8 cm H2O, α is a function of n and hj only. Its contour 

map is depicted in Fig. 1. De Rooij et al. (2021) reported four soils with data sets without suspect data points 

above pF 3 for soils with n > 1.2 (soils 1142, 1143, 2110, and 2126, all sands or loamy sands). De Rooij et 

al.’s (2021) values of α and n for these soils give values of hj that are all larger (closer to zero) than –150 

cm, which is unrealistic. For soil 2126 the value even exceeds hae, which is not physically acceptable. 90 

 

 
Figure 1: The logarithm of shape factor α (cm–1) as a function of shape factor n and the matric potential at 

the junction point hj (cm H2O) according to Eq. (3), with hd fixed at –106.8 cm. The labels of the contour lines 

represent log(α). The transparent yellow curve is the limit of the valid domain according to Eq. (4). The 95 

black area is the invalid part of the domain. 
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It therefore appears from Fig. 1 that plausible combinations of α and hj are not feasible, but Eq. (3) 

reveals that the relationship α(hj) is non–monotonous. A combination of large values of both α  and hj is 

possible in a band too narrow to be visible in Fig. 1, located immediately below the maximum allowed value 100 

of hj, marked by the transparent yellow curve in Fig. 1. In that band, α goes to infinity when hj approximates 

its limiting value defined in Eq. (4) (Fig. 2). The partial derivative of Eq. (3) with respect to hj is as follows. 
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 105 

 

 

 
Figure 2: A transect of Figure 1 for n = 1.4 that shows the sharp increase of shape factor α (cm–1) as the 

matric potential at the junction point hj (cm H2O) reaches its physical limit defined in Eq. (4).  110 

 

The value of α is at its minimum where its derivative is zero. From Eq. (5) follows this occurs when the 

following equality holds.  
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           (6) 115 

 

Because Fig. 1 shows that realistic values of α require excessively low values of hj in much of the parameter 

space, it may be better to use Eq. (6) to set a lower limit on the permissible values of hj as follows. 

 

�ℎj� > |ℎd|e
2𝑛𝑛−1
𝑛𝑛−𝑛𝑛2           (7) 120 

  

Figure 3 shows the band of valid values of hj enveloped by the limits set by Eqs. (4) and (7). A large 

part of the parameter space between these limits of hj has an excessively large ∂α/∂hj. Finding the optimum 

will therefore be very difficult for any parameter fitting algorithm. But if the lower limit is not enforced, trial 

fits showed that the shuffled complex evolution algorithm (SCE, Duan et al., 1992, 1993) consistently ended 125 

up in the region of Fig. 1 corresponding to the area below the lower limit in Fig. 3. 

  

 
Figure 3: The limits imposed on the matric potential at the junction point hj (scaled by the matric potential at 

oven–dryness hd) by the requirement that shape factor α be positive (upper limit) and by the minimum 130 

value of α for any specific value of n (lower limit). The shading indicates the area with plausible parameter 
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combinations. The dots represent de Rooij et al.’s (2021) fits of Eq. (1) with α instead of hd as a fitting 

parameter for 21 soils. 

 

De Rooij et al. (2021) already fitted Eq. (1) with α instead of hd as a fitting parameter and without 135 

any restrictions other than minimum and maximum values imposed on any of the fitting parameters. By 

calculating hd from the fitted values of α, n, and hj according to their Eq. (10), it was possible to see if their 

fits fell within the limits defined above. Figure 3 shows that the values of all 21 soils fell on the upper limit. 

This opens the possibility to eliminate hj as a fitting parameter and replace it by its upper limit. This leads 

to the following additional equation augmenting Eq. (1). 140 

 

ℎj = ℎde
1

1−𝑛𝑛           (8) 

 

Combining Eq. (8) with Eq. (3) leads to an infinite α, consistent with Fig. 2. But Fig. 2 also shows that a 

minute change in hj (much smaller than a realistic number of significant digits would be able to represent) 145 

allows α to vary beyond the range of values reported in the literature. In other words: If, for given values of 

hd and n, hj is determined from Eq. (8), α can vary over its entire range. It is therefore better to treat α as a 

fitting parameter and hj as a derived parameter, by replacing Eq. (3) by Eq. (8). This has the added 

advantage that the entire parameter space defined by the minimum and maximum values of the fitting 

parameters is valid, provided the physical and mathematical limits of each parameter are respected, and 150 

the fitted or fixed value of hd is smaller (more negative) than hae. 

In the limit as α approximates infinity, the expression for the sigmoid branch of the SWRC simplifies 

to the power law proposed by Brooks and Corey (1964). 
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         (9) 155 

 

It can be easily shown that both the values and the derivatives of the dry and the wet branch match at hj if 

Eq. (9) is used for the latter. Equation (9) establishes that Rossi and Nimmo’s (1994) junction model 

(without the parabolic smoothing near saturation that Madi et al. (2018) showed to be detrimental to the 

hydraulic conductivity function) is a special case of the RIA parameterization. Incidentally, this implies that 160 

Brooks and Corey’s model (1964) is a special case of that of Ippisch et al. (2006). 
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If Eq. (8) replaces Eq. (3), the fitted value of α no longer ensures continuity at the junction point. 

The ensuing continuity gap can be closed by applying a correction factor c to the value of hd used in the 

logarithmic branch as follows. 

 165 

𝜃𝜃 = 𝜃𝜃s𝛽𝛽ln �(1+𝑐𝑐)ℎd
ℎ

�          (10) 

 

The correction factor c is defined by the following expression, which is found by replacing hd in Eq. (1) by 

(1+c)hd, requiring the logarithmic and sigmoid branches of Eq. (1) to be equal at hj, and replacing the ratio 

hd/hj in the resulting equality by exp[1/(n–1)] according to Eq. (8). 170 
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In the expression for β, hd appears indirectly. Its value should not be corrected there because β ensures 

continuity of the derivatives only if its expression is not modified. Trial calculations showed that c  is 175 

negligible, except when both α and n are small.  

Rossi and Nimmo (1994) fitted hj values for their parameterization of the SWRC between –2.6⋅106 

and –2.0⋅104 cm H2O for seven soils, with only the one clayey soil having a value more negative than –1.9⋅105 

cm H2O. Tuller and Or (2005) tentatively set the matric potential at which the capillary–bound water 

content becomes negligible –105 cm H2O, based on data from a sand mixture and six soils that mostly overlap 180 

with those of Rossi and Nimmo (1994) (Or and Tuller, 1999). Beyond this there is little guidance on the 

value of hj in the literature. When Eq. (8) is used, such guidance is not necessary. The map of hj as defined 

by Eq. (8) in Fig. 4 shows that for n below 1.4, hj is very sensitive to the value of n. For n > 2, log(–hj) is 

roughly proportional to log(–hd) for a given value of n. When hd is close to –106.8 cm H2O (Schneider and 

Goss, 2012), values of hj in the range of those reported in the literature occur for n ≥ 1.25. 185 
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Figure 4: The logarithm of the absolute value of the matric potential at the junction point (hj, cm H2O) as a 

function of the matric potential at oven–dryness (hd, cm H2O) and shape factor n, according to Eq. (8). The 

labels of the contour lines denote log(–hj). In the black region, hj > –100 cm. 190 

 

For completeness, the multimodal version of Eq. (1) is provided as well. The multimodality is 

limited to the sigmoid branch, so that the multimodal SWRC has only one value for hj. Because Eq. (8) allows 

only a single value of n in that case, only α can be varied between the constituting sigmoid curve sections.  

 195 
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For brevity, the following function was introduced in Eq. (12). 
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𝐹𝐹𝑖𝑖(𝑥𝑥) = 1 + |𝛼𝛼𝑖𝑖𝑥𝑥|𝑛𝑛          (13) 200 

 

Here, k denotes the modality, wi is the weighting factor (adding up to one) of the ith constituting curve, and 

αi (L–1) its shape factor. The expression for the multimodal βm is found be setting the derivatives of the 

logarithmic and the sigmoid branch equal at hj and invoking Eq. (8). 

 205 
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Function G is defined as follows. 
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The continuity correction factor cm can be found by requiring that the logarithmic and sigmoid branch join 

at hj. 
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Above, the subscript ‘m’ is used to distinguish multimodal versions of β and c from their single–mode 

equivalents. 

3 Materials and Methods 

3.1 Selected soils 220 

The SWRC has five fitting parameters: θs, hae, hd, α,  and n. These were fitted to data of the 21 soils 

selected from the UNSODA database (Nemes et al., 2001) by de Rooij et al. (2021), with hd either fixed at –

106.8 cm H2O, or its lower limit set at that value. These soils cover a wide range of textures (see Madi et al. 

(2018) and de Rooij et al. (2021) for details). At the time the data base was created, the the pressure plate 

apparatus was widely used in the dry range. Therefore, the standard deviation (SD) of the matric potential 225 

of any data point with h  ≤ –1000 cm H2O was set to half the its value, thereby drastically reducing its weight 
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in the objective function. The SD of h for 0 > h  > –1000 cm H2O was set to 1.0 cm , that for h = 0 at 0.05 cm. 

The SD for the volumetric water content was set at 0.01 when h = 0, and to 0.02 otherwise. The sample 

height was set to zero for h  ≤ –1000 cm because the variation in the water content can be neglected at low 

matric potentials. For h = 0 cm, it was assumed that the water pressure in the sample was positive 230 

everywhere, or that the porosity was measured. In both cases, there is no effect of the matric potential on 

the local water content, hence the sample height was set to zero to reflect this. For the intermediate values 

of h, the sample height was set to the value specified in the UNSODA database. If a sample height was not 

reported, it was set to 3.0 cm. 

3.2 Parameter fitting 235 

The parameters were fitted using the SCE algorithm (Duan et al., 1992, 1993), implemented in 

Fortran in a code that accompanies this paper. The most important features of the code are summarized 

here. The code itself, further details of the code and the algorithm, as well as a user manual, can be 

downloaded (de Rooij, 2022). For each case, the code performs three optimization runs by minimizing the 

objective function: the root mean square error (RMSE) of the differences between fitted and observed 240 

volumetric water contents, weighted according to the error standard deviations of the observed matric 

potentials and corresponding water contents provided on input, as detailed by de Rooij (2022).  

Ten convergence criteria are evaluated. Criteria 1 and 2 take into account the results of the last few 

shuffles. The number of shuffles considered is twice the number of fitting parameters or an internally set 

number (5), whichever is larger. 245 

1. In the best fits from the last set of shuffles, the range of a parameter exceeds neither the absolute 

nor the relative user–specified tolerance. 

2. In the best fits from the last set of shuffles, the range of the objective function does not exceed its 

absolute user–specified tolerance.  

3. The parameter range in the final complexes does not exceed the maximum internally set 250 

permissible value. 

4. The volume of the hypercube enveloping the final complexes does not exceed the maximum 

internally set permissible value. 

5. The parameter range in the most successful complex (minus the point with the highest RMSE) does 

not exceed the internally set maximum permissible value. 255 
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6. The volume of the hypercube enveloping the most successful complex (minus the point with the 

highest RMSE) does not exceed the internally set maximum permissible value. 

7. A parameter does not exceed both the absolute and the relative user–specified tolerance in the final 

complexes. 

8. A parameter does not exceed both the absolute and the relative user–specified tolerance in the 260 

most successful complex (without the point with the highest RMSE). 

9. The change of the objective function between consecutive shuffles does not exceed the user–

specified tolerance. 

10. The Root Mean Square Error of the fit does not exceed a user–specified tolerance. 
 265 

 

A relative improvement criterion similar to criterion 9 is often used as the sole criterion (e.g., in the R–

package SoilHyp, Dettmann, 2021). Criteria 1, 3, 5, 7, and 8 are evaluated separately for each parameter. 

Convergence is achieved when no more than a user–prescribed number of these criteria failed for any of 

the parameters. The code keeps  evolving and shuffling complexes until convergence is achieved or the 270 

user–specified maximum allowed number of evaluations of the objective function is exceeded. If not all 

criteria are considered relevant, the user can either set their thresholds unrealistically strict and increase 

the number of criteria that are allowed to fail, or set them excessively loose and decrease the number of 

criteria that are allowed to fail accordingly. 

The algorithm generates large numbers of sets of fitted parameter values. A random sample of these 275 

is used to determine the correlation matrix of the parameters. The best fit, its RMSE and its correlation 

matrix are reported by the code for each of the three runs, and the run with the overall lowest RMSE is 

identified. The code returns a table of the fitted curve based on the best run, and reports the correction 

factor c used to compile this table. These tables are the basis for the plots shown below. If desired, the code 

also calculates the objective function on points of a regular grid covering the parameter space (map points) 280 

and writes a random sample of these to output. Even if this is not desired, a map is calculated based on a 

three–point grid along each principal axis of the parameter space. This resulting output is helpful if a user 

wishes to verify if the objective function is correctly calculated. 

Normally, the first complexes of each run are filled with randomly selected points in the valid 

regions of the parameter space. Optionally, only the complexes of run 3 are filled with randomly selected 285 

points, while the first complexes of run 1 are filled with the map points with the lowest RMSE. The first 
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complexes of run 2 then contain these map points perturbed by adding random noise to the parameter 

values. 

For each fitting parameter, a maximum and minimum value need to be provided. If these values are 

equal, the parameter is treated as a fixed value, and the dimensionality of the parameter space is reduced 290 

accordingly. The number of complexes is two (for 8 of fewer fitting parameters) or four (see Duan et al. 

(1994)).  If this leads to frequent convergence at local minima, the number of complexes can be set to twice 

the number of fitting parameters. The number of individuals in a complex and the number of evolution steps 

are twice the number of fitting parameters plus one. The number of individuals in the subcomplexes is the 

number of fitting parameter plus one. The number of offspring in each evolution step is one. These settings 295 

are all in accordance with Duan et al. (1994).  

When the user chooses to use the map of regularly–spaced points in the parameter space to set the 

initial guesses of the first two runs, the code adapts the parameter ranges based on their ranges among the 

map points selected to fill the initial complexes. 

The permitted parameter range for θs enveloped the range of observed saturated water contents, 300 

with a limited buffer on either side of the range. The range of hae was determined based on the wettest 

unsaturated data point and the driest saturated point, with a generous buffer. The range limit at the wet 

end was often set to zero. The value of hd was mostly fixed and occasionally varied over a relatively wide 

range depending on visual examination of the data points. The permitted range for α was 0.001 to 0.5, 

except for 1142, where alpha could go as high as 100.0. After some trial and error, the range of n was set 305 

relatively narrow (between 1.05 and 2) because even with wider ranges the fitted values fell within this 

range. Any time a fitted value was close to one of its limits, the fit was repeated with an expanded range. 

No more than four convergence criteria were allowed to fail for convergence to be achieved. If 

convergence was not achieved, up to 20000 evaluations of the objective function evaluations would be 

performed. The actual number could be slightly higher because it was checked each time a shuffle had been 310 

completed. A map was not created, and therefore, all three optimization runs started with random 

parameter combinations filling the complexes. The maximum allowed relative change of the RMSE between 

consecutive shuffles was 10–6. The maximum allowed value of the RMSE was 0.1. For the parameters, the 

absolute tolerances for θs, hae, hd, α,  and n were 0.001, 0.1, 1000.0, 0.1, and 0.01, respectively. The relative 

tolerances were 0.1 for α and 0.01 for the others. This choice reflects the limited sensitivity to α. 315 

The internally set relative tolerance for parameter variations for all complexes and for the most 

successful complex were both 0.01. The internally set required maximum size of the hypercube enveloping 
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the range of fitted parameter values (again for all complexes as well as the most successful one), scaled by 

the volume of the hypercube defined by the minimum and maximum allowed parameter values, equals 

0.01d, with d the number of fitting parameters that were not set at fixed values by the user. 320 

4 Results and Discussion 

In the tables that follow, the soil texture classification according to Twarakavi et al. (2010) is 

provided. The advantage of this classification over the conventional USDA soil texture classification is that 

it better recognizes differences in hydraulic behavior between its textural classes. This makes it more 

relevant for soil water flow studies for which the SWRCs are typically used. 325 

Table 1 shows the fitted parameter values of the best fits, the resulting RMSE and the corresponding 

value of hj. The value of α for soil 1142 stands out. As explained above, high values of α lead to a power–law 

type of SWRC between hae and hj. An additional fit with α capped at 1.0 confirmed that the shape of the 

SWRC is not very sensitive to large values of α. The increase in the RMSE caused by limiting the range of α 

was 10–4, and the changes in θs, hae, and n did not occur before the fourth significant digit. One can also 330 

switch from a sigmoidal model to a power–law model by invoking Eq. (9) if α is very large, keeping the fitted 

values of the other parameters. 

Fuentes et al. (1991) showed that for values of n smaller than 2, the asymptotic dry branch of the 

original parameterization of van Genuchten (1980) would lead to physically unacceptable behaviour. All 

soils in Table 1 have values of n in this range. This highlights the importance of avoiding a dry branch with 335 

an asymptote at a residual water content.  

The range of values of hj in Table 1 is only slightly beyond the range reported by Rossi and Nimmo 

(1994) for a smaller number of soils. This lends credibility to Eq. (8). In the few cases where hd was fitted, 

the resulting values in Table 1 are close to the value proposed by Schneider and Goss (2012). Table 2 shows 

the the correction factor c of Eqs. (10) and (11), which ensures continuity of the SWRC. Seven of the 21 soils 340 

need a correction of hd that exceeds 1%. The resulting shift of the dry–branch pF is also shown. For most 

soils, the shift is negligible. Only for soils 1122 and 1123 (both fine–textured soils with small values for both 

α and n), the shift exceeds 0.1 pF unit, but never more than 0.2 unit. 

Only the optimizations for soils 1142 and 2104 converged, with convergence criteria 4, 6, 8, 9, and 

10 satisfied for all parameters for soil 1142, and criteria 4 through 10 for soil 2104. None of the correlation 345 

coefficients of the parameter pairs for either soil exceeded 0.31. The other optimizations ran until the 
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maximum number of objective function evaluations was exceeded. For soil 1120, criteria 9 and 10 were met 

for all parameters. For the remaining soils, criteria 1, 2, and 9 were satisfied in all cases. For 14 soils, 

criterion 10 was met as well. For soil 3250, criterion 8 was also satisfied. The lack of convergence forced 

the code to keep exploring the parameter space, leading to a large proportion of randomly selected points 350 

because the reflection and contraction points determined by the SCE algorithm did not improve the fit. If 

the majority of points is randomly selected, there is no correlation between the parameters, and the 

correlation matrix does not provide any information. 

 

Table 1. Fitted parameter values and the Root Mean Square Error (RMSE) of the best fits for 21 soils. The 

corresponding values of the derived parameter hj are given as well. If parameter hd was fixed during the 

fitting operation, its value is denoted in italic font. 

Soil (UNSODA 
identifier and 
classification 
according to 
Twarakavi et 
al., 2010) 

θs hae 
(cm 
H2O) 

log(–hd) 
(hd in cm 
H2O) 

α 
(cm–1) 

n RMSE log(–hj) 
(hj in cm 
H2O) 

2126 A1 0.3808 –3.999 6.8000 0.1332 1.8319 0.1434 6.2779 
1142 A2 0.2404 –25.90 6.5623 561.2 1.3882 0.0545 5.4435 
2104 A2 0.3980 –2.990 6.8000 0.1156 1.4400 0.0715 5.8129 
1120 A3 0.3076 –0.012 6.8000 0.02803 1.3016 0.0796 5.3601 
1143 A3 0.2761 –5.017 6.8000 0.08308 1.2214 0.0589 4.8384 
2110 A3 0.3634 –0.014 6.8000 0.03268 1.3431 0.0930 5.5343 
2132 A3 0.3058 –0.004 6.8000 0.06055 1.1413 0.0417 3.7264 
1121 A4 0.3441 –13.97 6.7811 0.04667 1.1560 0.0830 3.9970 
1133 A4 0.3280 –240.5 6.8000 0.001366 1.1985 0.0477 4.6126 
3260 B2 0.4740 –0.009 6.4711 0.02055 1.3234 0.0510 5.1281 
3261 B2 0.4934 –0.015 6.8000 0.02379 1.3549 0.0731 5.5763 
3263 B2 0.4628 –0.014 6.8000 0.01920 1.2925 0.0737 5.3151 
3250 B4 0.5400 –3.796 6.8000 0.01236 1.2636 0.0611 5.1525 
3251 B4 0.4980 –0.582 6.7479 0.01321 1.1576 0.0857 3.9918 
4450 B4 0.3705 –0.548 6.8000 0.03784 1.1577 0.1150 4.0459 
1135 C2 0.4147 –174.8 6.8000 0.001791 1.1763 0.0478 4.3361 
1182 C2 0.5307 –8.131 6.8000 0.01349 1.1551 0.2484 3.9991 
1122 C4 0.3571 –8.664 6.8000 0.001385 1.1550 0.0497 3.9976 
1123 C4 0.3575 –67.17 6.8000 0.001008 1.1554 0.0663 4.0054 
1180 C4 0.4885 –2.005 6.8000 0.1319 1.1549 0.2514 3.9962 
1181 C4 0.4407 –7.282 6.8000 0.006671 1.1552 0.1593 4.0012 

 355 
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In all cases, the fitted parameter values for the runs with hd fixed and hd free as well as the three 

individual runs for each optimization were essentially in agreement, and the parameter values did not look 

suspect. Therefore, it was considered unnecessary to run the optimizations with modified convergence 

requirements in order to obtain more meaningful correlation matrices. 

The reduced weights assigned to data points with pF > 3 are reflected in the plots of Figs. 5 through 360 

8, which show the fitted curves with hd fixed and hd fitted. In these plots, the fit with the lowest RMSE is 

plotted in red, and the corresponding curves for θc and θa are included. The other curve is shown in black. 

To illustrate how small the continuity correction c is, this curve is shown without this correction. The 

discontinuity at the junction point is only visible for soils 1133 (Fig. 6) and 1122 (Fig. 8). 

 365 

Table 2. The continuity correction factor c (Eq.(11)) and the corresponding shift on the pF 

scale of  the dry–branch correction for 21 soils. 

Soil (UNSODA identifier and classification 
according to Twarakavi et al., 2010) 

Correction factor 
c 

pF–shift dry 
branch 

2126 A1 1.525E–10 6.62E–11 
1142 A2 1.092E–11 4.74E–12 
2104 A2 2.164E–07 9.40E–08 
1120 A3 3.666E–05 1.59E–05 
1143 A3 1.162E–04 5.04E–05 
2110 A3 1.063E–05 4.62E–06 
2132 A3 0.009750 0.00421 
1121 A4 0.005323 0.00231 
1133 A4 0.04130 0.0176 
3260 B2 8.647E–05 3.76E–05 
3261 B2 1.243E–05 5.40E–06 
3263 B2 7.641E–05 3.32E–05 
3250 B4 3.015E–04 1.31E–04 
3251 B4 0.02300 0.00988 
4450 B4 0.005833 0.00253 
1135 C2 0.07969 0.0333 
1182 C2 0.02266 0.00973 
1122 C4 0.3664 0.136 
1123 C4 0.5566 0.192 
1180 C4 0.001627 7.06E–04 
1181 C4 0.05147 0.0218 
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The fraction of adsorbed water increases when moving from sands (Figs. 5 and 6) through loams 

(Fig. 6 and 7) to clays (Fig. 8). Because the separation between capillary and adsorbed water is abrupt and 

binary at hj, this should not be interpreted as representative for the more smooth transition in natural soils. 

Nevertheless, the direction of the trend is physically plausible. 370 

Most soils (2126 and 1142 in Fig. 5; 1120, 1121, 1143, 2110, and 2132 In Fig. 6; 1142 and 2126 in 

Fig. 7; 1122, 1180, and 1182 in Fig. 8) have observed saturated water contents that seem to be too large 

compared to the other data points. The causes (e.g., macropores or air inclusion) are not known. Data points 

at saturation were assumed to be very accurate and therefore had a high weight, which the plots reflect. It 

sometimes results in relatively low (more negative) air–entry values in coarse soils (Figs. 5 and 6 and Table 375 

1, most notably soil 1142). 
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Figure 5: Soil water retention data and fitted curves for soils of classes A1 and A2 of Twarakavi et al. (2010). 

Curves fitted with hd fixed at –106.8 cm H2O, and with hd fitted with a cap at that value are shown. The one 380 

with the lowest Root Mean Square Error is shown as a red solid line. The volume fractions of capillary–

bound water and water adsorbed in films is shown for this curve. The other curve is shown as black dash–

dot line. This curve has not been corrected for continuity at the junction point. The vertical axes denote the 

logarithm (base 10) of the absolute value of the matric potential in cm H2O. 

 385 

All B2 soils (silt loams) and two out of three B4 soils (both silty clay loams) have high values of hae, 

indicating that the maximum pore size is large (Table 1). Although one would suspect that such fine–

textured soils would have a low (more negative) air–entry value, the results are consistent with the data, as 

Fig. 7 shows.  

Some of the C2 and C4 soils (1180–1182) have high RMSE values (Table 1). Their plots in Fig. 8 390 

reveal that the  multimodal shape of the curves was not captured well by Eq. (1). The remaining soils in Fig. 

8 had very few points in the dry range, and fixing hd was very effective in guiding the dry branch of the 

SWRC. 

This paper focuses on mineral soils with unimodal SWRCs. If an extension to multimodality is 

desired, Eqs. (12–16) provide a starting point. Further testing on soils with specific characteristics, such as 395 

volcanic or organic soils, may be worthwhile. In the case of organic soils, the risk of irreversible changes 

will require some caution when measuring points on the SWRC. 
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Figure 6: As Fig. 5, for soils of classes A3 and A4 of Twarakavi et al. (2010).  400 
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Figure 7: As Fig. 5, for soils of classes B2 and B4 of Twarakavi et al. (2010). 
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Figure 8: As Fig. 5, for soils of classes C2 and C4 of Twarakavi et al. (2010). 
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