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Abstract. In a recently introduced parameterization for the soil water retention curve (SWRC) with a sigmoid wet 10 

branch and a logarithmic dry branch, the matric potential at the junction point of the sigmoid and the logarithmic 

branch (hj) was a fitting parameter, while that at oven–dryness (hd) was derived from the fitting parameters. The latter 

is undesirable, especially if reliable data in the dry range are limited. Therefore, an alternative is presented in which 

shape parameter α instead of hd is a derived parameter, and hd can be fitted or fixed. The resulting relationship between 

α and hj is such that it prevents correct fits for hj. Fortunately, an expression for hj is found that allows it to be replaced 15 

by α as a fitting parameter. The corresponding parameter space is well–behaved and has fewer internal bounds defined 

by restraining relationships between parameters. The few available values of hj in the literature are in line with those 

according to the new expression. The reformulated SWRC is fitted to data of 21 soils by shuffled complex evolution. 

The paper gives the main features of an accompanying open–source fitting code. The fits are good, except for some 

clayey soils. A theoretical value of hd performs well for a wide range of soils. For some soils, α is very large. If this is the 20 

case, the new SWRC simplifies to an earlier junction model of the SWRC based on a well–known power–law SWRC. 
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1 Introduction 

Recently, de Rooij et al. (2021) proposed a closed–form expression for the SWRC with a distinct air–entry 

value, like the SWRC proposed by Ippisch et al. (2006), a sigmoid shape in the intermediate range according to van 25 

Genuchten (1980), and a logarithmic dry branch terminating at a finite matric potential (hd (L)) at which the soil was 

oven–dry, with the water content essentially zero. The volumetric water contents and derivatives of the sigmoid and 

logarithmic branches were matched at the matric potential of their junction according to Rossi and Nimmo (1994). The 

rationale for developing the function was to preserve the desirable sigmoid shape of van Genuchten’s (1980) curve 

while removing the physically unrealistic asymptote at some non-zero residual water content (Du, 2020), eliminating 30 

the non-converging integral of the SWRC for commonly occurring parameter values (Fuentes et al., 1991), and avoiding 

the detrimental effect of the non-zero slope at saturation on hydraulic conductivity near saturation (Durner, 1994; 

Assouline and Or, 2013; Wang et al., 2022). 

Erroneous measurements in the dry range can lead to unrealistically low values of the matric potential at oven 

dryness, hd (L) (de Rooij et al., 2021). Unfortunately, hd was not fitted independently but expressed as a function of 35 

other parameters that were fitted.De Rooij et al. (2021) showed that erroneous measurements in the dry range could 

lead to unrealistically low values of the matric potential at oven dryness, hd (L). Unfortunately, in their formulation of 

the model, hd was not fitted independently but expressed as a function of other parameters that were fitted. Data in the 

dry range can be unreliable due to lack of equilibrium or other causes (Bittelli and Flury, 2009; Solone et al., 2012). If 

they are, it would be very helpful to fix hd at a reasonable value, e.g. –106.8 cm H2O (Schneider and Goss, 2012), and 40 

either give the unreliable data points a lower weight during the fitting process or remove them altogether. An SWRC 

with improved behavior in the dry range even if dry-range data are scant can improve the performance of Richards’ 

solvers (e.g., SWAP Soil Water Atmosphere Plant, 2022; Šimůnek et al., 2016), and can be useful for conceptualizations 

of the soil reservoirs in large–scale hydrological models (e.g., Lawrence et al., 2019) and for investigating dielectric 

properties of dry soil and associated soil backscatter (Ferré and Topp, 2002; Davis and Annan, 2002). 45 

This note presents an alternative of to de Rooij et al.’s (2021) model in which hd is a fitting parameter. In doing 

so, it uncovers the peculiar behavior of shape parameter α (L–1), which makes it essentially impossible for any fitting 

algorithm to avoid a local minimum with very inaccurate parameter values. The main objective is therefore to formulate 

a version of de Rooij’s (2021) SWRC that has hd as a fitting parameter but avoids the difficulties caused by the nature 

of shape parameter α.  50 

In the testing phase, it was found that a commonly used convergence criterion used in parameter optimization 

not necessarily gave the best parameter values if the objective function was challenging. The second objective is 

therefore to present a parameter fitting algorithm that employs multiple convergence criteria, and optionally explores 

the parameter space prior to the fitting operation to reduce the search area during fitting. The corresponding open–

source code for fitting the improved SWRC is provided.  55 
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2 Theory 

De Rooij et al. (2021) introduced a unimodal model for the SWRC by combining those of Rossi and Nimmo 

(1994) and Ippisch et al. (2006), dubbed ‘RIA’. 
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Here h denotes the matric potential in equivalent water column (L), subscripts ‘d’ and ‘ae’ denote the value at which 

the water content reaches zero and the air–entry value, respectively, and subscript ‘j’ indicates the value of h at which 

the logarithmic and sigmoid branch are joined. The volumetric water content is denoted by θ, with the subscript ‘s’ 

denoting its value at saturation. Parameters α (L−1) and n determine the shape of the sigmoid branch (van Genuchten, 65 

1980), while parameter β does so for the logarithmic branch. By assuming that for h ≤ hj, all water is adsorbed and for 

h > hj, the adsorbed water content is equal to θ(hj), the total water content can be partitioned in a capillary water 

content θc and an adsorbed water content θa. 

Data points in the dry range are often unreliable due to lack of hydraulic equilibrium or other causes (Bittelli 

and Flury, 2009; Solone et al., 2012). De Rooij et al. (2021) showed this could lead to unrealistically large negative 70 

values of hd. If that is the case it would be preferable to fix hd at a realistic value, e.g. –106.8 cm H2O (Schneider and Goss, 

2012), but de Rooij et al. (2021) expressed hd as a function of other parameters, not as an independent fitting 

parameter.  

By requiring the derivatives of the sigmoidal and logarithmic branches to match at hj, parameter β can be 

expressed in terms of the other parameters (de Rooij et al., 2021).  75 
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        (2) 

 

Using this expression to eliminate β from the equality that arises when the values of both branches are matched at hj, 

the resulting expression can be solvedwe can then solve the resulting expression for α to establish hd as one of the 80 

fitting parameters. The expression can also be found by rearranging Eq. (9) of de Rooij et al., (2021). 
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          (3) 
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The five fitting parameters are: hae, hj, hd, θs, and n. Equation (3)is only valid if the bracketed term is positive. This is 85 

the case if the following criterion is met. 

 

�ℎj� < |ℎd|e
1

1−𝑛𝑛            (4) 

 

Many soils for which SWRCs of van Genuchten (1980) or de Rooij et al. (2021) are fitted have values for α  90 

between roughly 0.001 and 0.3, with sandy soils generally having higher values than fine-textured soils (e.g., de Rooij 

et al., 2021). When hd is fixed at –106.8 cm H2O, α is a function of n and hj only. Its contour map is depicted in Fig. 1. The 

map shows that combinations of realistic but large n and α (n > ∼ 1.4 and α  > ∼ 0.01) require values of hj that are 

unrealistically close to zero (–102 cm). Such large values of n indicate a chair-shaped SWRC and are frequently fitted 

for coarse soils in which the water content changes rapidly within a narrow range of the matric potential. De Rooij et 95 

al. (2021) reported four soils with data sets without suspect data points above pF 3 for soils with n > 1.2 (soils 1142, 

1143, 2110, and 2126, all sands or loamy sands). De Rooij et al.’s (2021) values of α and n for these soils give values of 

hj that are all larger (closer to zero) than –150 cm, which is unrealistic. For soil soil 2126 the value even exceeds hae, 

which is not physically acceptable. 
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 100 

 

Figure 1: The logarithm of shape factor α (cm-1) as a function of shape factor n and the matric potential at the junction 

point hj (cm H2O) according to Eq. (3), with hd fixed at -106.8 cm. The labels of the contour lines represent log(α). The 
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black area is the invalid part of the domain defined by Eq. (4). The transparent yellow curve is the limit of the valid 

domain according to Eq. (4). The black area is the invalid part of the domain. 105 

 

 

It therefore appears from Fig. 1 that plausible combinations of α and hj are not feasible, but closer inspection 

of Eq. (3) reveals that the relationship α(hj) is non-monotonous. A combination of large values of both α  and hj is 

possible in a band too narrow to be visible in Fig. 1, located immediately below the maximum allowed value of hj, 110 

marked by the transparent yellow curve in Fig. 1. In that band, where hj is very close to its maximum allowed value. In 

that narrow band, α goes to infinity when hj approximates its limiting value defined in Eq. (4) (Fig. 2). The partial 

derivative of Eq. (3) with respect to hj is as follows. 
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      (5) 115 
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Figure 2: A transect of Figure 1 for n = 1.4 that shows the sharp increase of shape factor α (cm-1) as the matric potential 

at the junction point hj (cm H2O) reaches its physical limit defined in Eq. (4).  120 

 

The value of α is at its minimum where its derivative is zero. From Eq. (5) follows this occurs when the following 

equality holds.  
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ln �ℎd
ℎj

� = 2𝑛𝑛−1
𝑛𝑛2−𝑛𝑛

            (6) 125 

 

Because Fig. 1 shows that realistic values of α require excessively low values of hj in much of the parameter space, it 

may be better to use Eq. (6) to set a lower limit on the permissible values of hj as follows. 

 

�ℎj� > |ℎd|e
2𝑛𝑛−1
𝑛𝑛−𝑛𝑛2            (7) 130 

  

Figure 3 shows the band of valid values of hj enveloped by the limits set by Eqs. (4) and (7). Exploring the 

parameter space between these limits of hj, with an excessively large large ∂α/∂hj in a large part of it, will be very 

difficult for any parameter fitting algorithm. But if the lower limit is not enforced, trial fits showed that the shuffled 

complex evolution algorithm (SCE, Duan et al., 1992, 1993) consistently ended up in the lower region of Fig. 1. 135 
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Figure 3: The limits imposed on the matric potential at the junction point hj (scaled by the matric potential at oven-

dryness hd) by the requirement that shape factor α be positive (upper limit) and by the minimum value of α for any 

specific value of n (lower limit). The shading indicates the area with plausible parameter combinations. The dots 140 

represent de Rooij et al.’s (2021) fits of Eq. (1) with α instead of hd as a fitting parameter for 21 soils. 
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De Rooij et al. (2021) already fitted Eq. (1) with α instead of hd as a fitting parameter and without any 

restrictions other than minimum and maximum values imposed on any of the fitting parameters. By calculating hd from 

the fitted values of α, n, and hj according to their Eq. (10), it was possible to see if their fits fell within the limits defined 145 

above. Figure 3 shows that the values of all 21 soils fell on the upper limit. This opens the possibility to eliminate hj as 

a fitting parameter and replace it by its upper limit. This leads to the following additional equation augmenting Eq. (1). 

 

ℎj = ℎde
1

1−𝑛𝑛            (8) 

 150 

Combining Eq. (8) with Eq. (3) leads to an infinite α, consistent with Fig. 2. But Fig. 2 also shows that a minute change 

in hj (much smaller than a realistic number of significant digits would be able to represent) allows α to vary beyond the 

range of values reported in the literature. In other words: If, for given values of hd and n, hj is determined from Eq. (8), 

α can vary over its entire range. It is therefore better to treat α as a fitting parameter and hj as a derived parameter, by 

replacing Eq. (3) by Eq. (8). This has the added advantage that the entire parameter space defined by the minimum and 155 

maximum values of the fitting parameters is valid, provided the physical and mathematical limits of each parameter 

are respected, and the fitted or fixed value of hd is smaller (more negative) than hae. 

In the limit as α approximates infinity, the expression for the sigmoid branch of the SWRC simplifiesIt is worth 

noticing that the expression for the sigmoid branch of the SWRC remains well-behaved in the limit as α approximates 

infinity. The expression in that case simplifies to the power law proposed by Brooks and Corey (1964). 160 
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𝜃𝜃s � 1+|𝛼𝛼ℎ|𝑛𝑛
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ℎae

�
1−𝑛𝑛

          (9) 

 

It can be easily shown that both the values and the derivatives of the dry and the wet branch match at hj if Eq. (9) is 

used for the latter. Equation (9) establishes that Rossi and Nimmo’s (1994) junction model (without the parabolic 165 

smoothing near saturation that Madi et al. (2018) showed to be detrimental to the hydraulic conductivity function) is 

a special case of the RIA parameterization. Incidentally, this implies that Brooks and Corey’s model (1964) is a special 

case of that of Ippisch et al. (2006). 

If Eq. (8) replaces Eq. (3), the fitted value of α no longer ensures continuity at the junction point. The ensuing 

continuity gap can be closed by applying a correction factor c to the value of hd used in the logarithmic branch as follows. 170 

 

𝜃𝜃 = 𝜃𝜃s𝛽𝛽ln �(1+𝑐𝑐)ℎd
ℎ

�           (10) 
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The correction factor c is defined by the following expression, which is found by replacing hd in Eq. (1) by (1+c)hd, 

requiring the logarithmic and sigmoid branches of Eq. (1) to be equal at hj, and replacing the ratio hd/hj in the resulting 175 

equality by exp[1/(n–1)] according to Eq. (8). 

 

𝑐𝑐 = exp �1
𝛽𝛽

� 1+�𝛼𝛼ℎj�
𝑛𝑛
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+ 1
1−𝑛𝑛
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In the expression for β, hd appears indirectly. ItsIt value should not be corrected there because β ensures continuity of 180 

the derivatives only if its expression is not modified. Trial calculations showed that c  is negligibleneglible, except when 

both α and n are small.  

Rossi and Nimmo (1994) fitted hj values for their parameterization of the SWRC between –2.6⋅106 and –2.0⋅104 

cm H2O for seven soils, with only the one clayey soil having a value more negative than –1.9⋅105 cm H2O. Tuller and Or 

(2005) tentatively set the matric potential at which the capillary-bound water content becomes negligible –105 cm H2O, 185 

based on data from a sand mixture and six soils that mostly overlap with those of Rossi and Nimmo (1994) (Or and 

Tuller, 1999). Beyond this there is little guidance on the value of hj in the literature. When Eq. (8) is used, such guidance 

is not necessary. The map of hj as defined by Eq. (8) in Fig. 4 shows that for n below 1.4, hj is very sensitive to the value 

of n. For n > 2, log(–hj) is roughly proportional to log(–hd) for a given value of n. When hd is close to –106.8 cm H2O 

(Schneider and Goss, 2012), values of hj in the range of those reported in the literature occur for n ≥ 1.25. 190 
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Figure 4: The logarithm of the absolute value of the matric potential at the junction point (hj, cm H2O) as a function of 

the matric potential at oven-dryness (hd, cm H2O) and shape factor n, according to Eq. (8). The labels of the contour 

lines denote log(-hj). In the black region, hj > –100 cm. 195 

 

For completeness, the multimodal version of Eq. (1) is provided as well. Like de Rooij et al. (2021), tThe 

multimodality is limited to the sigmoid branch, so that the multimodal SWRC has only one value for hj. Because Eq. (8) 

allows only a single value of n in that case, only α can be varied between the constituting sigmoid curve sections.  

 200 
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For brevity, the following function was introduced in Eq. (12). 

 

𝐹𝐹𝑖𝑖(𝑥𝑥) = 1 + |𝛼𝛼𝑖𝑖𝑥𝑥|𝑛𝑛           (13) 205 

 

Here, k denotes the modality, wi is the weighting factor (adding up to one) of the ith constituting curve, and αi (L–1) its 

shape factor. The expression for the multimodal βm is found be setting the derivatives of the logarithmic and the sigmoid 

branch equal at hj and invoking Eq. (8). 

 210 
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Function G is defined as follows. 
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The continuity correction factor cm can be found by requiring that the logarithmic and sigmoid branch join at hj. 
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𝑐𝑐m = exp � 1
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Above, the subscript ‘m’ is used to distinguish multimodal versions of β and c from their single-mode equivalents. 

3 Materials and Methods 

3.1 Selected soils 

The SWRC has five fitting parameters: θs, hae, hd, α,  and n. These were fitted to data of the 21 soils selected 225 

from the UNSODA database (Nemes et al., 2001) by de Rooij et al. (2021), with hd either fixed at –106.8 cm H2O, or its 

lower limit set at that value. These soils cover a wide range of textures (see Madi et al. (2018) and de Rooij et al. (2021) 

for details). At the time the data base was created, the the pressure plate apparatus was widely used in the dry range. 

Therefore, the standard deviation (SD) of the matric potential of any data point with h  ≤ –1000 cm H2O was set to half 

the its value, thereby drastically reducing its weight in the objective function. The SD of h for 0 > h  > –1000 cm H2O 230 

was set to 1.0 cm , that for h = 0 at 0.05 cm. The SD for the volumetric water content was set at 0.01 when h = 0, and 

to 0.02 otherwise. The sample height was set to zero for h  ≤ –1000 cm and for h = 0 cm. For the intermediate values 

of h, the sample height was set to the value specified in the UNSODA database. If a sample height was not reported, it 

was set to 3.0 cm. 

3.2 Parameter fitting 235 

The parameters were fitted using the SCE algorithm (Duan et al., 1992, 1993), implemented in Fortran in a 

code that accompanies this paper. The most important features of the code are summarized here. The code itself, 

further details of the code and the algorithm, as well as a user manual, can be downloaded (de Rooij, 2022). For each 

case, the code performs three optimization runs by minimizing the objective function: the root mean square error 

(RMSE) of the differences between fitted and observed volumetric water contents,values, weighted according to the 240 

error standard deviations of the observed matric potentials and corresponding water contents provided on input, as 

detailed by de Rooij (2022).  

Ten convergence criteria are evaluated. Criteria 1 and 2 take into account the results of the last few shuffles. 

The number of shuffles considered is twice the number of fitting parameters or an internally set number (5), whichever 

is larger. 245 

1. In the best fits from the last set of shuffles, the range of a parameter exceeds neither the absolute nor the 

relative user-specified tolerance. 
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2. In the best fits from the last set of shuffles, the range of the objective function does not exceed its absolute user-

specified tolerance.  

3. The parameter range in the final complexes does not exceed the maximum internally set permissible value. 250 

4. The volume of the hypercube enveloping the final complexes does not exceed the maximum internally set 

permissible value. 

5. The parameter range in the most successful complex (minus the point with the highest RMSE) does not exceed 

the internally set maximum permissible value. 

6. The volume of the hypercube enveloping the most successful complex (minus the point with the highest RMSE) 255 

does not exceed the internally set maximum permissible value. 

7. A parameter does not exceed both the absolute and the relative user-specified tolerance in the final complexes. 

8. A parameter does not exceed both the absolute and the relative user-specified tolerance in the most successful 

complex (without the point with the highest RMSE). 

9. The change of the objective function between consecutive shuffles does not exceed the user-specified 260 

tolerance. 

10. The Root Mean Square Error of the fit does not exceed a user-specified tolerance. 
 

 

A relative improvement criterion similar to criterion 9 is often used as the sole criterion (e.g., in the R-package SoilHyp, 265 

Dettmann, 2021). Criteria 1, 3, 5, 7, and 8 are evaluated separately for each parameter. Convergence is achieved when 

no more than a user-prescribed number of these criteria failed for any of the parameters. The code keeps  evolving and 

shuffling complexes until convergence is achieved or the user-specified maximum allowed number of evaluations of 

the objective function is exceeded. If not all criteria are considered relevant, the user can either set their thresholds 

unrealistically strict and increase the number of criteria that are allowed to fail, or set them excessively loose and 270 

decrease the number of criteria that are allowed to fail accordingly. 

The algorithm generates large numbers of sets of fitted parameter values. A random sample of these is used to 

determine the correlation matrix of the parameters. The best fit, its RMSE and its correlation matrix are reported by 

the code for each of the three runs, and the run with the overall lowest RMSE is identified. The code returns a table of 

the fitted curve based on the best run, and reports the correction factor c used to compile this table. These tables are 275 

the basis for the plots shown below. If desired, the code also calculates the objective function on points of a regular grid 

covering the parameter space (map points) and writes a random sample of these to output. Even if this is not desired, 

a map is calculated based on a three–point grid along each principal axis of the parameter space. This resulting output 

is helpful if a user wishes to verify if the objective function is correctly calculated. 
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Normally, the first complexes of each run are filled with randomly selected points in the valid regions of the 280 

parameter space. Optionally, only the complexes of run 3 are filled with randomly selected points, while the first 

complexes of run 1 are filled with the map points with the lowest RMSE. The first complexes of run 2 then contain these 

map points perturbed by adding random noise to the parameter values. 

For each fitting parameter, a maximum and minimum value need to be provided. If these values are equal, the 

parameter is treated as a fixed value, and the dimensionality of the parameter space is reduced accordingly. The 285 

number of complexes is two (for 8 of fewer fitting parameters) or four (see Duan et al. (1994)).  If this leads to frequent 

convergence at local minima, the number of complexes can be set to twice the number of fitting parameters. The 

number of individuals in a complex and the number of evolution steps are twice the number of fitting parameters plus 

one. The number of individuals in the subcomplexes is the number of fitting parameter plus one. The number of 

offspring in each evolution step is one. These settings are all in accordance with Duan et al. (1994).  290 

When the user chooses to use the map of regularly-spaced points in the parameter space to set the initial 

guesses of the first two runs, the code adaptsreduces the parameter ranges based on their ranges among the map points 

selected to fill the initial complexes.  

The permitted parameter range for θs enveloped the range of observed saturated water contents, with a limited 

buffer on either side of the range. The range of hae was determined based on the wettest unsaturated data point and 295 

the driest saturated point, with a generous buffer. The range limit at the wet end was often set to zero. The value of hd 

was mostly fixed and occasionally varied over a relatively wide range depending on visual examination of the data 

points. The permitted range for α was 0.001 to 0.5, except for 1142, where alpha could go as high as 100.0. After some 

trial and error, the range of n was set relatively narrow (between 1.05 and 2) because even with wider ranges the fitted 

values fell within this range. Any time a fitted value was close to one of its limits, the fit was repeated with an expanded 300 

range. 

No more than four convergence criteria were allowed to fail for convergence to be achieved. If convergence 

was not achieved, up to 20000 evaluations of the objective function evaluations would be performed. The actual 

number could be slightly higher because it was checked each time a shuffle had been completed. A map was not created, 

and therefore, all three optimization runs started with random parameter combinations filling the complexes. The 305 

maximum allowed relative change of the RMSE between consecutive shuffles was 10-6. The maximum allowed value of 

the RMSE was 0.1. For the parameters, the absolute tolerances for θs, hae, hd, α,  and n were 0.001, 0.1, 1000.0, 0.1, and 

0.01, respectively. The relative tolerances were 0.1 for α and 0.01 for the others. This choice reflects the limited 

sensitivity to α. 

The internally set relative tolerance for parameter variations for all complexes and for the most successful 310 

complex were both 0.01. The internally set required maximum size of the hypercube enveloping the range of fitted 

parameter values (again for all complexes as well as the most successful one), scaled by the volume of the hypercube 
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defined by the minimum and maximum allowed parameter values, equals 0.01d, with d the number of fitting 

parameters that were not set at fixed values by the user. 

4 Results and Discussion 315 

Table 1 shows the fitted parameter values of the best fits, the resulting RMSE and the corresponding value of 

hj. The value of α for soil 1142 stands out. As explained above, high values of α lead to a power-law type of SWRC 

between hae and hj. An additional fit with α capped at 1.0 confirmed that the shape of the SWRC is not very sensitive to 

large values of α. The increase in the RMSE caused by limiting the range of α was 10-4, and the changes in θs, hae, and n 

did not occur before the fourth significant digit. One can also switch from a sigmoidal model to a power-law model by 320 

invoking Eq. (9) if α is very large, keeping the fitted values of the other parameters. 

Fuentes et al. (1991) showed that for values of n smaller than 2, the asymptotic dry branch of the original 

parameterization of van Genuchten (1980) would lead to physically unacceptable behaviour. All soils in Table 1 have 

values of n in this range. This highlights the importance of avoiding a dry branch with an asymptote at a residual water 

content.  325 

The range of values of hj in Table 1 is only slightly beyond the range reported by Rossi and Nimmo (1994) for 

a smaller number of soils. This lends credibility to Eq. (8). In the few cases where hd was fitted, the resulting values in 

Table 1 are close to the value proposed by Schneider and Goss (2012). Table 2 shows the the correction factor c of Eqs. 

(10) and (11), which ensures continuity of the SWRC. Seven of the 21 soils need a correction of hd that exceeds 1%. The 

resulting shift of the dry-branch pF is also shown. For most soils, the shift is negligible. Only for soils 1122 and 1123 330 

(both fine-textured soils with small values for both α and n), the shift exceeds 0.1 pF unit, but never more than 0.2 unit. 

Only the optimizations for soils 1142 and 2104 converged, with convergence criteria 4, 6, 8, 9, and 10 satisfied 

for all parameters for soil 1142, and criteria 4 through 10 for soil 2104. None of the correlation coefficients of the 

parameter pairs for either soil exceeded 0.31. The other optimizations ran until the maximum number of objective 

function evaluations was exceeded. For soil 1120, criteria 9 and 10 were met for all parameters. For the remaining 335 

soils, criteria 1, 2, and 9 were satisfied in all cases. For 14 soils, criterion 10 was met as well. For soil 3250, criterion 8 

was also satisfied. The lack of convergence forced the code to keep exploring the parameter space, leading to a large 

proportion of randomly selected points because the reflection and contraction points determined by the SCE algorithm 

did not improve the fit. If the majority of points is randomly selected, there is no correlation between the parameters, 

and the correlation matrix does not provide any information. 340 
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Table 1. Fitted parameter values and the Root Mean Square Error (RMSE) of the best fits for 21 soils. The 

corresponding values of the derived parameter hj are given as well. If parameter hd was fixed during the 

fitting operation, its value is denoted in italic font. 

Soil (UNSODA 
identifier and 
classification 
according to 
Twarakavi et 
al., 2010) 

θs hae 
(cm 
H2O) 

log(–hd) 
(hd in cm 
H2O) 

α 
(cm-1) 

n RMSE log(–hj) 
(hj in cm 
H2O) 

2126 A1 0.3808 –3.999 6.8000 0.1332 1.8319 0.1434 6.2779 
1142 A2 0.2404 –25.90 6.5623 561.2 1.3882 0.0545 5.4435 
2104 A2 0.3980 –2.990 6.8000 0.1156 1.4400 0.0715 5.8129 
1120 A3 0.3076 –0.012 6.8000 0.02803 1.3016 0.0796 5.3601 
1143 A3 0.2761 –5.017 6.8000 0.08308 1.2214 0.0589 4.8384 
2110 A3 0.3634 –0.014 6.8000 0.03268 1.3431 0.0930 5.5343 
2132 A3 0.3058 –0.004 6.8000 0.06055 1.1413 0.0417 3.7264 
1121 A4 0.3441 –13.97 6.7811 0.04667 1.1560 0.0830 3.9970 
1133 A4 0.3280 –240.5 6.8000 0.001366 1.1985 0.0477 4.6126 
3260 B2 0.4740 –0.009 6.4711 0.02055 1.3234 0.0510 5.1281 
3261 B2 0.4934 –0.015 6.8000 0.02379 1.3549 0.0731 5.5763 
3263 B2 0.4628 –0.014 6.8000 0.01920 1.2925 0.0737 5.3151 
3250 B4 0.5400 –3.796 6.8000 0.01236 1.2636 0.0611 5.1525 
3251 B4 0.4980 –0.582 6.7479 0.01321 1.1576 0.0857 3.9918 
4450 B4 0.3705 –0.548 6.8000 0.03784 1.1577 0.1150 4.0459 
1135 C2 0.4147 –174.8 6.8000 0.001791 1.1763 0.0478 4.3361 
1182 C2 0.5307 –8.131 6.8000 0.01349 1.1551 0.2484 3.9991 
1122 C4 0.3571 –8.664 6.8000 0.001385 1.1550 0.0497 3.9976 
1123 C4 0.3575 –67.17 6.8000 0.001008 1.1554 0.0663 4.0054 
1180 C4 0.4885 –2.005 6.8000 0.1319 1.1549 0.2514 3.9962 
1181 C4 0.4407 –7.282 6.8000 0.006671 1.1552 0.1593 4.0012 

 

In all cases, the fitted parameter values for the runs with hd fixed and hd free as well as the three individual 

runs for each optimization were essentially in agreement, and the parameter values did not look suspect. Therefore, it 

was considered unnecessary to run the optimizations with modified convergence requirements in order to obtain more 345 

meaningful correlation matrices. 

The reduced weights assigned to data points with pF > 3 are reflected in the plots of Figs. 5 through 8, which 

show the fitted curves with hd fixed and hd fitted. In these plots, the fit with the lowest RMSE is plotted in red, and the 

corresponding curves for θc and θa are included. The other curve is shown in black. To illustrate how small the 

continuity correction c is, this curve is shown without this correction. The discontinuity at the junction point is only 350 

visible for soils 1133 (Fig. 6) and 1122 (Fig. 8). 
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Table 2. The continuity correction factor c (Eq.(11)) and the corresponding shift on the pF 

scale of  the dry-branch correction for 21 soils. 

Soil (UNSODA identifier and classification 
according to Twarakavi et al., 2010) 

Correction factor 
c 

pF–shift dry 
branch 

2126 A1 1.525E–10 6.62E–11 
1142 A2 1.092E–11 4.74E–12 
2104 A2 2.164E–07 9.40E–08 
1120 A3 3.666E–05 1.59E–05 
1143 A3 1.162E–04 5.04E–05 
2110 A3 1.063E–05 4.62E–06 
2132 A3 0.009750 0.00421 
1121 A4 0.005323 0.00231 
1133 A4 0.04130 0.0176 
3260 B2 8.647E–05 3.76E–05 
3261 B2 1.243E–05 5.40E–06 
3263 B2 7.641E–05 3.32E–05 
3250 B4 3.015E–04 1.31E–04 
3251 B4 0.02300 0.00988 
4450 B4 0.005833 0.00253 
1135 C2 0.07969 0.0333 
1182 C2 0.02266 0.00973 
1122 C4 0.3664 0.136 
1123 C4 0.5566 0.192 
1180 C4 0.001627 7.06E–04 
1181 C4 0.05147 0.0218 

 

The fraction of adsorbed water increases when moving from sands (Figs. 5 and 6) through loams (Fig. 6 and 

7) to clays (Fig. 8). Because the separation between capillary and adsorbed water is abrupt and binary at hj,hj, this 355 

should not be interpreted as representative for the more smooth transition in natural soils. Nevertheless, the direction 

of the trend is physically plausible. 

Most soils (2126 and 1142 in Fig. 5; 1120, 1121, 1143, 2110, and 2132 In Fig. 6; 1142 and 2126 in Fig. 7; 1122, 

1180, and 1182 in Fig. 8) have observed saturated water contents that seem to be too large compared to the other data 

points. The causes (e.g., macropores or air inclusion) are not known. Data points at saturation were assumed to be very 360 

accurate and therefore had a high weight, which the plots reflect. It sometimes results in relatively low (more negative) 

air-entry values in coarse soils (Figs. 5 and 6 and Table 1, most notably soil 1142). 
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Figure 5: Soil water retention data and fitted curves for soils of classes A1 and A2 of Twarakavi et al. (2010). Curves 365 

fitted with hd fixed at -106.8 cm H2O, and with hd fitted with a cap at that value are shown. The one with the lowest Root 

Mean Square Error is shown as a red solid line.in red. The volume fractions of capillary-bound water and water 

adsorbed in films is shown for this curve. The other curve is shown as black dash-dot line. This curve has not been 

corrected for continuity at the junction point. The vertical axes denote the logarithm (base 10) of the absolute value of 

the matric potential in cm H2O. 370 

 

All B2 soils (silt loams) and two out of three B4 soils (both silty clay loams) have high values of hae, indicating 

that the maximum pore size is large (Table 1). Although one would suspect that such fine-textured soils would have a 

low (more negative) air-entry value, the results are consistent with the data, as Fig. 7 shows.  

Some of the C2 and C4 soils (1180-1182) have high RMSE values (Table 1). Their plots in Fig. 8 reveal that the 375 

shape of the curves was not captured well by Eq. (1). Their plots in Fig. 8 reveal that the  multimodal shape of the curves 
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was not captured well by Eq. (1). The remaining soils in Fig. 8 had very few points in the dry range, and fixing hd was 

very effective in guiding the dry branch of the SWRC. 
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 380 

Figure 6: As Fig. 5, for soils of classes A3 and A4 of Twarakavi et al. (2010).  



25 
 



26 
 

 

Figure 7: As Fig. 5, for soils of classes B2 and B4 of Twarakavi et al. (2010). 
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Figure 8: As Fig. 5, for soils of classes C2 and C4 of Twarakavi et al. (2010). 
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