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Abstract. Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-on (GRACE-FO) 

satellites provide terrestrial water storage anomaly (TWSA) estimates globally that can be used to monitor the floods in 

various regions at monthly intervals. However, the coarse temporal resolution of GRACE/GRACE-FO satellites data has 

been limiting its applications at finer temporal scales. In this study, TWSA estimates have been reconstructed and then 10 

temporally downscaled into daily values based on three different learning‐based models, namely multi-layer perceptron 

(MLP) model, long-short term memory (LSTM) model and multiple linear regression (MLR) model. Furthermore, a new 

index incorporating temporally downscaled TWSA estimates combined with daily average precipitation anomalies is 

proposed to monitor the severe flood events at sub-monthly time scales for the Yangtze River Basin (YRB), China. The 

results indicated that (1) the MLP model shows the best performance in reconstructing monthly TWSA with RMSE = 10.9 15 

mm/month and NSE = 0.89 during the validation period; (2) the MLP model can be useful in temporally downscaling 

monthly TWSA estimates into daily values; (3) the proposed normalized daily flood potential index (NDFPI) facilitates 

robust and reliable characterization of severe flood events at sub-monthly time scales; (4) the flood events can be monitored 

by the proposed NDFPI earlier than traditional streamflow observations with respect to the YRB and its individual basins. 

All these findings can provide new opportunities for applying GRACE/GRACE-FO satellites data to investigations of sub-20 

monthly signals and have important implications for flood hazard prevention and mitigation in the study region. 

1 Introduction 

Extreme floods, as one of the most destructive natural hazards, can result in significant damage to structures and agriculture 

(Dottori et al., 2018). According to the report published by the United Nations Office for Disaster Risk Reduction (UNDRR), 

the total economic loss induced by flood is up to $651 billion (USD) worldwide from 2000 to 2019 25 

(https://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019). Meanwhile, floods are 

projected to become more frequent and extreme under global warming as it can substantially amplify the water holding 

capacity of the air and increase the occurrence of extreme precipitation events (Slater et al., 2016). Therefore, monitoring 
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extreme flood events has long been a hot topic for hydrologists and decision makers around the world (Berghuijs et al., 2016; 

Smith et al., 2015; Tanoue et al., 2020; Tellman et al., 2021; Thieken et al., 2005). 30 

The Yangtze River Basin (YRB) has been regarded as one of the most sensitive and vulnerable regions that suffered from 

severe extreme floods due to its highly uneven rainfall pattern (Zhang et al., 2021). During the past decades, the increasingly 

intensified human activities and climate change have significantly changed the hydrological cycles in the YRB and thus 

accelerated the variation of flood characteristics in this region. It has been found that both the frequency and severity of 

extreme flood events generally showed an upward trend in the YRB in the recent decades owing to substantial changes in 35 

climate, infrastructure and land use (Huang et al., 2015; Liu et al., 2019; Yang et al., 2021; Zhang et al., 2008). For example, 

in summer 2020, the basin has experienced one of the most extreme flood events on record, which ultimately resulted in a 

great economic and social loss of $27.68 billion (USD) across the entire basin (Jia et al., 2021). 

Contrary to traditionally ground-based observations or hydrological models, the launches of Gravity Recovery and Climate 

Experiment (GRACE) twin satellites in 2002 and its successor GRACE Follow-on (GRACE-FO) satellites in 2018 can 40 

provide a new methodology for retrieving terrestrial water storage anomalies (TWSA) in real time globally by measuring 

temporal variations in Earth’s gravity field (Ahmed et al., 2021; Tapley et al., 2004). TWSA derived from GRACE/GRACE-

FO satellites comprises all the surface and subsurface water over land, which can be used to monitor the hydrologic 

variations in response to extreme weather events. In this case, GRACE/GRACE-FO observations have been widely applied 

to assess the potential flood risks for a specific region. For example, Reager et al. (2009) proposed a flood potential index 45 

estimated by using the monthly average precipitation anomalies and GRACE-derived TWSA to characterize the potential 

flood risks from regional to global scales. Xiong et al. (2021) developed a novel integrated flood potential index by linking 

the flood potential index derived from six GRACE products based on the copula function, which was further used to identify 

and characterize the floods with different intensities over the study region. A summary of relevant literature on detecting 

extreme flood events using GRACE/GRACE-FO data has been listed in Table 1.  50 

Previous studies have clearly indicated that the proposed indices using GRACE/GRACE-FO data can better reflect the 

evolution of flood events than traditional evaluation indices, such as standardized precipitation index (SPI) and standardized 

precipitation evapotranspiration index (SPEI), because the GRACE/GRACE-FO observations can measure the vertically 

integrated water storage over regions (Yan et al., 2021; Yin et al., 2021). However, all these studies mainly focus on 

detecting the extreme flood events at monthly intervals while monitoring the flood events and its hydrological impacts at 55 

finer temporal scales remains a major challenge due to the coarse temporal resolution (i.e. monthly) of GRACE/GRACE-FO 

data. To date, very few attentions have been paid to monitor flood events at sub-monthly time scales using GRACE data. 

Given the rapid occurrence and evolution of some extreme events within a short period, there is a great need to monitor the 

flood events at a finer temporal resolution (e.g. day) using the temporally downscaled GRACE data, which has important 

implications for better understanding the mechanisms of extreme flood events development in the YRB. Therefore, we aim 60 
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to downscale the TWSA estimates derived from GRACE/GRACE-FO satellites data into daily values and demonstrate its 

application to monitor the extreme flood events at sub-monthly time scales for the YRB. The temporally downscaled TWSA 

data could be valuable for understanding the effects of climate change on the hydrological cycle and providing important 

implications of flood hazard prevention and water resource management over this region. 

The rest of this paper is mainly organized as follows. In Section 2, descriptions of the study area are presented. In Section 3 65 

and Section 4, the datasets and methods used in this study are introduced respectively. In Section 5, monthly TWSA 

estimates obtained from original GRACE/GRACE-FO satellites data are temporally downscaled into individual values at 

daily time scales based on the methodology proposed in this study. Meanwhile, a new index incorporating temporally 

downscaled TWSA estimates and daily precipitation is proposed to detect extreme flood events occurred in summer 2020 

across the YRB and its individual basins. Then, the discussions about the temporally downscaled GRACE/GRACE-FO 70 

satellites data and its capacity to monitor extreme flood events are presented in Section 6. We also explain the reasons why 

the new proposed index can monitor extreme flood events across the YRB in this section. Finally, we present a summary of 

this study in Section 7. 

Table 1. 

2 Study area 75 

The Yangtze River (also termed as Changjiang River) is the longest river in China with a length of about 6,300 km. It 

originates from the Tanggula Mountains of Qinghai-Tibetan Plateau and eventually empties into the estuary of the East 

China Sea after spanning over eleven provinces in China. The YRB (90°E - 122°E, 25°N - 35°N) has a total drainage area of 

1.81 million km2, which accounts for approximately 20% of the total area of the mainland China. The terrain of the YRB 

generally decreases from west to east and shows a three-step ladder distribution with altitudes ranging from -142 m to 7143 80 

m above the sea level. The entire YRB consists of three main parts, that is, the Upper (upstream region above the Yichang 

station), the Middle (region between the Yichang station and the Hukou station) and the Lower (downstream region below 

the Hukou station) subbasins (shown in Fig. 1). 

The YRB is located in typically subtropical and temperature climate zones, which is dominated by three types of monsoons, 

namely the Siberian northwest monsoon winds in winter, the Indian southeasterly monsoon winds and the East Asian 85 

monsoon in summer (Kong et al., 2020). According to the observations from meteorological stations, the mean annual air 

temperature of this basin ranges from 14.4°C to 15.4°C and mean annual precipitation ranges from 1049 mm to 1424 mm 

during the study period. Under the joint effects of monsoon activities and seasonal motions of subtropical highs, more than 

85% of the annual precipitation occurs in the wet season from April to October, which further increases the risks of extreme 

floods in the middle and lower reaches of the Yangtze River (Huang et al., 2015; Yang et al., 2010). Additionally, by the end 90 
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of 21st century, projections show a significant upward trend of the annual precipitation over the YRB according to the latest 

study (Yue et al., 2021). 

The YRB is one of the most important regions in China because it accommodates approximately 33% of China’s total 

population (Huang et al., 2021), accounts for over 36% China’s total water resources, and contributes more than 46% of 

China’s total Gross Domestic Product (GDP) according to the statistics collected by Yangtze River Conservancy 95 

Commission of Ministry of Water Resources. The YRB not only sustains many hydro-electrical industries, such as the Three 

Gorges Corporation, but also provides freshwater resources for neighboring regions to alleviate the pressure of water scarcity 

through the South-to-North Water Diversion Project (Long et al., 2020; Zhang et al., 2021). Furthermore, the YRB can play 

a critical role in flood control, crop irrigation, power generation, and ecological conservation (Chao et al., 2021; Wang et al., 

2020a). More information about the location and topography of the YRB can refer to Fig. 1. 100 

Figure 1. 

3 Data 

3.1 Terrestrial water storage derived from GRACE/GRACE-FO satellites data 

GRACE and GRACE-FO data can provide global TWSA at monthly scales. In this study, the average of three types of 

GRACE and GRACE-FO solutions is estimated in order to characterize the variations of TWSA in the YRB and its 105 

individual basins during the period of 2003-2020, all of which are the latest versions of Release Number 06 (RL06). These 

products are provided by the Center for Space Research (CSR, at the University of Texas at Austin) (Save et al., 2016), the 

Goddard Space Flight Center (GSFC, at NASA) (Loomis et al., 2019) and the Jet Propulsion Laboratory (JPL, at NASA and 

California Institute of Technology, California) (Landerer et al., 2020) respectively. All these GRACE and GRACE-FO 

solutions represented by equivalent water thickness units (mm) are anomalies relative to the time-mean baseline during 110 

January 2004 - December 2009. It should also be noteworthy that GRACE data in a few months are not available because of 

the problem of “battery management”. In addition, there existed a gap period for 11 consecutive months from July 2017 to 

May 2018 between the GRACE and GRACE-FO satellites. Here we have not filled the data gaps between the two GRACE 

satellites with linear interpolation since it may not fully describe the seasonal variation of TWSA during these missing 

months. All these GRACE and GRACE-FO satellites data are available at the website of https://podaac.jpl.nasa.gov. 115 

3.2 Meteorological data 

In this study, daily time series of precipitation and temperature from 2003-2020 are provided by the China Meteorological 

Administration (CMA) (http://data.cma.cn/) with a total of 150 National Meteorological Observatory stations distributed in 

the YRB (shown in Fig. 1). Areal precipitation in the YRB and its individual basins at daily scales can be calculated 
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according to the Thiessen polygon method. Monthly precipitation for regions is calculated by summing all daily values of 120 

precipitation. Meanwhile, areal temperature in the YRB and its basins at daily time scales are calculated by directly 

averaging the respective daily temperature from all meteorological stations over regions. Similarly, monthly temperature 

estimates are calculated by summing all daily values of temperature. 

3.3 In-situ streamflow data 

From the Yangtze River Conservancy Commission of Ministry of Water Resources, daily streamflow observations during 125 

the period of 2013-2020 can be obtained at the Shigu hydrological station, the Yichang hydrological station, the Hukou 

hydrological station and the Datong hydrological station (shown in Fig. 1). More specifically, the Shigu station represents 

the outlet of the Source regions of the Yangtze River Basin (SYRB), the Yichang station represents the outlet of the Upper 

regions of the Yangtze River Basin (UYRB), the Hankou station represents the outlet of the Upper and the Middle regions of 

the Yangtze River Basin (UMYRB), and the Datong station represents the outlet of the entire Yangtze River Basin (YRB). 130 

Meanwhile, extreme flood events in the YRB and its individual basins during the study period can be extracted from daily 

time series of streamflow observed from the above hydrological stations. 

3.4 Soil moisture storage 

As documented in Xie et al. (2019a), soil moisture storage (SMS), as one of critical components of terrestrial water storage, 

usually shows a significantly positive correlation with variations of regional TWSA. Therefore, in this study we adopt the 135 

SMS (kg/m2) with a spatial resolution of 0.25° × 0.25° from the Global Land Data Assimilation System version 2.1 

(GLDAS 2.1) Noah land surface model to estimate their correlations with regional TWSA derived from the GRACE and 

GRACE-FO satellites data. This product can provide the simulations of SMS at four different depths of soil layers from 0 to 

200 cm, that is, 0 - 10 cm, 10 - 40 cm, 40 - 100 cm and 100 - 200 cm depths per three hours. To keep consistent with TWSA, 

the original value of SMS should be transferred into soil moisture storage anomaly values (SMSA) after subtracting the time-140 

mean baseline during the period of 2004-2009. Original SMS derived from GLDAS 2.1 Noah land surface model can be 

aggregated o daily and monthly estimates as follows: 

𝑆𝑀𝑆𝐴𝑑𝑎𝑖𝑙𝑦 = 𝑆𝑀𝑆 × 8 − 𝑆𝑀𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,          (1) 

𝑆𝑀𝑆𝐴𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 𝑆𝑀𝑆 × 8 × 𝑁 − 𝑆𝑀𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,         (2) 

where SMSAdaily (mm) and SMSAmonthly (mm) represent daily SMSA and monthly SMSA respectively; SMS represents the 145 

original SMS estimates derived from GLDAS 2.1 Noah land surface model; SMSbaseline represents the baseline average 

during 2004-2009; N represents the number of days in a specific month. More specific information about the datasets used in 

this study can be found in Table 2. 
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Table 2. 

4 Methods 150 

To better monitor the extreme flood events occurred in the YRB, monthly TWSA obtained from original GRACE/GRACE-

FO satellites data are temporally downscaled into individual values at daily time scales based on the methodology proposed 

in this study. A detailed flow diagram of our study is given in Fig. 2, which is made of four steps. In Step 1, meteorological 

observations including precipitation, temperature provided by CMA and SMSA derived from the GLDAS 2.1 Noah land 

surface model are jointly used as model inputs to establish the relationship with detrended GRACE/GRACE-FO satellites 155 

data. In Step 2, the relationship between TWSA estimates and all hydro-climatic factors at monthly time scales for the YRB 

can be built by using three different learning‐based models, namely MLP model, LSTM model and MLR model respectively. 

After comparing the performances of each model in simulating monthly TWSA estimates under all three scenarios, the 

scaling properties of the model (i.e. calibrated model parameter sets) that shows the best performance in simulating monthly 

TWSA estimates are identified and retained. In Step 3, daily time series of meteorological observations and the SMSA from 160 

the GLDAS 2.1 Noah land surface model are reselected as model inputs of the relationship established in Step 3 assuming 

that scaling properties at the monthly time scales are valid at the daily time scales. And hence daily TWSA estimates can be 

temporally downscaled from monthly TWSA estimates by using the calibrated model parameter sets that have been 

identified and retained in Step 3. In Step 4, daily time series of TWSA are further applied to monitor the flood events at sub-

monthly time scales for different basins in the YRB according to the new proposed index. 165 

Figure 2. 

Specifically, three types of models, namely, the artificial neural network (ANN), the recurrent neural network (RNN) and the 

multiple linear regression (MLR) are served as the statistical downscaling methods. In order to keep a fair comparison, we 

will choose identical inputs and outputs in the process of training these three models. Furthermore, the GRACE satellites can 

provide TWSA estimates under the joint effects of human activities and climatic variability (Xie et al., 2019b). As pointed 170 

out by previous studies (Humphrey and Gudmundsson, 2019; Khorrami et al., 2021; Shah et al., 2021), many long-term 

trends in GRACE data are primarily caused by frequent human activities such as persistent groundwater overexploitation and 

massive construction of large reservoirs. For example, the YRB is a typical region strongly influenced by various human 

activities, such as the construction of Three Gorges Reservoir and intense human water consumption (Huang et al., 2015; 

Yao et al., 2021). In this study, the linear trends have been removed from the original time series of TWSA in the training 175 

and calibration periods because hydro-climatic factors may not fully simulate these long-term trends, all of which are mainly 

arising from human activities, such as the water withdrawals and reservoir operation over the study region (Rodell et al., 

2018). More detailed descriptions about the methods used in this study are given as follows. 
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4.1 Multi-layer perceptron neural network (MLP) 

The ANN is a black box model which has the ability to imitate the thought processes of the human brain and thus can be 180 

applied to deal with complex and nonlinear problems (Bomers et al., 2019; Boucher et al., 2020; Lecun et al., 2015; Wang et 

al., 2020b). Among different types of ANNs, the multi-layer perceptron neural network (MLP) with the Levenberg‐

Marquardt Back Propagation training algorithm is the most widely used method as it requires relatively less time in the 

process of convergence (Rumelhart et al., 1986; Xie et al., 2019a). Therefore, a three-layer MLP model and the Logarithmic 

Sigmoid as a transfer function are jointly used for temporal downscaling in this study, which has been proved to be effective 185 

and reliable in statistical downscaling (Nourani et al., 2018; Sharifi et al., 2019). This MLP model consists of three parts, 

namely, an input layer, a hidden layer and an output layer, all of which finally form a network through many neurons. 

Meanwhile, the weights, which are connections between different neurons, can adjust as learning proceeds until the most 

optimum network is derived in this process (Fig. 3(a)). 

In this study, the variables included in the input layer are precipitation, temperature and SMS whereas the variable included 190 

in the output layer is detrended TWSA. Based on trial-by-error, the most optimal number of hidden neurons is set to five. 

After minimizing the discrepancy between the simulated TWSA with the observed results at the output layer, the most 

optimal network architecture can be finally obtained. 

4.2 Long short-term memory network (LSTM) 

The recurrent neural network (RNN) (Rumelhart et al., 1986) is a unique type of deep learning algorithm that was developed 195 

to process sequential data and predict future trends. One of the most dominated features of the RNN layer is a unique 

feedback connection which can allow past information to continuously affect the current output. The characteristics of all 

related time series data can be eventually learned through this structure. Long short-term memory network (LSTM) is one of 

the most representative RNNs as it has the fabulous memory ability and can effectively avoid the vanishing gradient problem 

existed in other RNNs (Hochreiter, 1997; Guo et al., 2021). Considering the time series characteristics of meteorological 200 

data and TWSA data, the LSTM model can be very suitable as a statistical downscaling model for its excellent capacity to 

process sequence-to-sequence learning problems. 

One typical LSTM model usually consists of three layers, that is, an input layer, a hidden layer and an output layer (Fig. 

3(b)). Different from other traditional ANNs, the LSTM model replaces the hidden block in RNNs with a memory cell state 

coupled with three logic gates, that is, the forget gate, the input gate and the output gate. In the training process, the memory 205 

cell state mainly stores the accumulation of past information. The input gate determines how much information of a new 

input flows into the memory cell state at the current time. Then, the useless information in long-term memory would be 

forgotten by the forget gate, which determines how much of the former moment is retained to the current time. Finally, the 
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output gate determines how much information of the memory cell state is used to compute output (Bai et al., 2021; Wu et al., 

2020; Vu et al., 2021). The main formulations of the LSTM model are therefore described as follows: 210 

input gate (it): 

𝑖𝑡 = σ(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),            (3) 

forget gate (ft): 

𝑓𝑡 = σ(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),            (4) 

output gate (ot): 215 

𝑜𝑡 = σ(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),            (5) 

potential cell gate (�̃�𝑡): 

�̃�𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃),            (6) 

cell gate (ct): 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡,             (7) 220 

hidden gate (ht): 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡),             (8) 

where it, ot, ct, �̃�𝑡 and ht represent the input gate, output gate, cell gate, potential cell gate and hidden gate at the time t, 

respectively; xt represents the standardized input variable at the current time t; ht-1 represents the hidden state at the time t-1; 

ct-1 represents the previous cell state that provides the past information at the time t-1; tanh represents the hyperbolic tangent; 225 

σ denotes the logistic sigmoid function that is usually served as the gate activation function; ⊙ denotes the element-wise 

multiplication of vectors; W, U and b represent the input weights, the recurrent weights and the biases of each gate, 

respectively, all of which are usually estimated during the learning process in matching the training data according to the 

adaptive moment estimation (ADAM) optimizer. 

Figure 3. 230 

4.3 Multiple linear regression (MLR) 

The multiple linear regression (MLR) is a typical statistical approach that can be applied to establish the relationships 

between inputs and outputs (Sousa et al., 2007). This approach has a wide range of hydrological applications since it can 

well explain the linkage between various variables (Lyu et al., 2021; Ramesh et al., 2020; Sun et al., 2020). Here we assume 
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that the GRACE/GRACE-FO derived TWSA is linearly regressed onto the meteorological variables (i.e. precipitation and 235 

temperature) and the SMS obtained from GLDAS 2.1 simultaneously, that is: 

𝑦 = ∑ 𝑎𝑖 × 𝑥𝑖
3
𝑖=1 + 𝑏,             (9) 

where y represents TWSA at monthly (or daily) scales; 𝑥𝑖 (i = 3) represents three independent inputs including precipitation, 

temperature and SMS at monthly (or daily) scales; 𝑎𝑖 represents the corresponding regression coefficients of each input, 

which can be calculated by the least-squares regression method; b represents a constant offset. Similar to LSTM and MLP, 240 

the MLR model is also applied at regional scales to better show the temporal variation of downscaled TWSA during the 

extreme flood events occurred in the YRB. 

4.4 Flood event selection 

A nonparametric algorithm is adopted to identify runoff events in this study (Tarasova et al., 2018). A brief procedure of this 

algorithm is described as follows: (1) picking out local minima within nonoverlapping five-day windows with respect to the 245 

entire streamflow time series; (2) examining the extracted series of minima with the goal of finding turning points, all of 

which are usually defined as the points that are at least 1.11 times smaller than their neighboring minima; (3) reconstructing 

the base flow hydrograph according to the linear interpolation between the turning points, which are previously obtained in 

Step (2); (4) screening the streamflow time series to identify runoff events after the separation of base flow. Traditionally, a 

typical runoff event can be characterized by three main components, namely peak, beginning, and end points. A peak refers 250 

to the maximum of streamflow for a specific period. The beginning point refers to the closest point in time when total runoff 

is equal to base flow before the peak. The end point denotes the point in time when the total runoff as soon as has fallen to 

the base flow level from peak. 

4.5 Daily flood potential index 

The flood potential index provides a surrogate measure of the potential flood risks for a specific region, which can be 255 

obtained from monthly average precipitation anomalies and GRACE-derived TWSA (Reager et al., 2009). In this study, we 

further propose a new normalized daily flood potential index (NDFPI) with reference to Reager et al. (2009) and Abhishek et 

al. (2021). Compared to the original flood potential index, the NDFPI can not only provide useful information on the early 

signs of the region’s transition from normal state to a flood-prone situation but also effectively detect the flood events at sub-

monthly time scales, which is calculated via the following steps: 260 

𝑇𝑊𝑆𝐴𝑑𝑒𝑓(𝑡) = 𝑇𝑊𝑆𝐴𝑚𝑎𝑥 − 𝑇𝑊𝑆𝐴(𝑡 − 1),          (10) 
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where TWSAdef (t) (mm) represents the terrestrial water storage deficit for a specific day (t) that is defined as the difference 

between the historic storage anomaly time series maximum during the entire period (TWSAmax) and the storage amount from 

the previous day (TWSA (t-1)). 

Then, the daily flood potential amount (DFPA) is further calculated as follows: 265 

𝐷𝐹𝑃𝐴(𝑡) = 𝑃(𝑡) − 𝑇𝑊𝑆𝐴𝑑𝑒𝑓(𝑡) = 𝑃(𝑡) − (𝑇𝑊𝑆𝐴𝑚𝑎𝑥 − 𝑇𝑊𝑆𝐴(𝑡 − 1)),       (11) 

where DFPA(t) (mm) represents the daily flood potential amount for a specific day (t); P(t) (mm) represents the daily 

precipitation; TWSA(t-1) (mm) represents the TWSA from the previous day (t-1). 

Finally, we can calculate the normalized daily flood potential index (NDFPI) from the DFPA with the goal of removing the 

effects of hydrological heterogeneity varying from region to region and the typical difference between the storage change 270 

and precipitation that may not always result in floods (Reager et al., 2009), which can be described as follows: 

𝑁𝐷𝐹𝑃𝐼(𝑡) =
𝐷𝐹𝑃𝐴(𝑡)−𝐷𝐹𝑃𝐴𝑚𝑖𝑛

𝐷𝐹𝑃𝐴𝑚𝑎𝑥−𝐷𝐹𝑃𝐴𝑚𝑖𝑛
,            (12) 

where 𝐷𝐹𝑃𝐴𝑚𝑎𝑥  and 𝐷𝐹𝑃𝐴𝑚𝑖𝑛 represent the maximum DFPA and minimum DFPA during the study period respectively. 

The NDFPI indicates the corresponding probability of flood occurrence with a range from 0 to 1. More flood is likely to 

occur when the NDFPI is closer to 1 for a specific region.  275 

4.6 Model test design 

Monthly TWSA estimates can be reconstructed based on the above three different learning‐based models, namely the MLP 

model, the LSTM model and the MLR model. According to previous findings in Liu et al. (2021), different periods of data 

used for training (i.e. identification of model parameter sets) and validation can eventually influence the corresponding 

performances of a specific model when simulating TWSA. Therefore, we generally design a total of three scenarios 280 

according to the way of dividing training periods and validation periods for a specific model. As shown in Fig. 2, periods of 

GRACE data used for training and validation in each experiment are listed, which include (1) Scenario 1: training period 

(2003/01-2014/07, a total of 129 months) and validation period (2014/08-2020/12, a total of 56 months), (2) Scenario 2: 

training period (2005/06-2018/06, a total of 129 months) and validation period (2003/01-2005/05 and 2018/07-2020/12, a 

total of 56 months), and (3) Scenario 3: training period (2007/10-2020/12, a total of 129 months) and validation period 285 

(2003/01-2007/09, a total of 56 months). 

Furthermore, three kinds of statistical measures including root mean square error (RMSE), correlation coefficient (r), and 

Nash‐Sutcliffe efficiency coefficient (NSE) are used in this study as they can jointly measure the matching quality in terms 

of both magnitude and phase between the simulated and the observed time series. These statistical measures are defined as: 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑥𝑜𝑖)

2𝑁
𝑖=1

𝑁
,             (13) 290 

𝑟 =
∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)(𝑥𝑜𝑖−𝑥𝑜𝑖̅̅ ̅̅ ̅)𝑁
𝑖=1

√∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)
2𝑁

𝑖=1 ×∑ (𝑥𝑜𝑖−𝑥𝑜𝑖̅̅ ̅̅ ̅)2𝑁
𝑖=1

,            (14) 

𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖−𝑥𝑜𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑜𝑖
𝑁
𝑖=1 −𝑥𝑜𝑖̅̅ ̅̅ ̅)2

,             (15) 

where xi and xoi represent simulated and observed values, respectively; 𝑥�̅� and 𝑥𝑜𝑖̅̅ ̅̅  represent the average of simulated and 

observed values; N is number of validation values. 

5 Results 295 

5.1 Temporal variation of precipitation, temperature, SMSA, TWSA and streamflow across the YRB during 2003-

2020 

Fig. 4 shows the monthly time series of SMSA, TWSA, streamflow and the main climatic variables including precipitation 

and temperature across the YRB during 2003-2020.The results show that monthly TWSA over the YRB has a wide range 

from -58.0 mm to 130.1 mm during the study period. Monthly TWSA estimated by three GRACE/GRACE-FO solutions 300 

changes synchronously with precipitation across the entire YRB, showing a significantly positive correlation between 

TWSA and precipitation (r = 0.54; p < 0.01) during the study period. For summer 2020 as an example, a noticeable increase 

in precipitation has been observed in the YRB during the summer season (Jun to August) in 2020. According to the statistics 

collected by Yangtze River Conservancy Commission of Ministry of Water Resources, the accumulative rainfall across the 

entire YRB exceeds 680 mm in summer 2020, which is far more than the mean rainfall (approximately 540 mm) during the 305 

same period from 2003 to 2019. Accordingly, TWSA reaches its maximum in July 2020 with an estimate of 130.9 mm 

during 2003-2020, reflecting the evolution of TWSA in response to heavy rainfall during this period. In addition to 

precipitation, TWSA is also highly consistent with temperature over the YRB during 2003-2020, showing a positive 

correlation coefficient of r = 0.57 (p < 0.01) with monthly temperature. 

The GLDAS Noah-derived SMSA and GRACE/GRACE-FO derived TWSA both show a seasonal variation through the 310 

entire study period in the YRB, but there exists a significant difference in the intensity of anomalies between them especially 

in the summer season as depicted in Fig. 4. This phenomenon can be explained by the discrepancies resulted from different 

components of SMSA and TWSA. Although the SMSA is a decisive component of TWSA for many regions, the latter 

usually contains some other components, such as the anomalies of surface water and groundwater etc., besides the SMSA 

(Xie et al., 2021). There exists a significant correlation between TWSA and SMSA with a positive correlation coefficient of 315 

r = 0.84 (p < 0.01), both of which reach to maximum and minimum values almost simultaneously. In general, TWSA shows 
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a significant correlation with precipitation, temperature and SMSA during the study period, all of which have been therefore 

selected as the inputs applied to simulate monthly TWSA over different regions. 

Figure 4. 

5.2 Reconstruction of TWSA by different models 320 

To achieve the temporal downscaling of monthly TWSA data, we should firstly build the relationships between 

GRACE/GRACE-FO derived TWSA and various hydro-climatic factors including precipitation, temperature and SMSA at 

monthly time scales. The results of TWSA are estimated by the mean value in different regions upstream of the 

corresponding hydrological stations shown in Fig. 1. In this study, three different models including MLP, LSTM and MLR 

are adopted to reconstruct TWSA for regions. Table 3 shows the summary of model performances in reconstructing monthly 325 

TWSA across the YRB during the study period. GRACE/GRACE-FO satellites data used for training (i.e. identification of 

model parameter sets) and validation shown in each scenario mainly depend on the periods of series of data as suggested by 

Liu et al. (2021). According to Table 3, we find that all models including the MLP, the LSTM and the MLR with Scenario 3 

show the best performances in simulating monthly TWSA under all three designed scenarios. This result indicates that the 

models with Scenario 3 is relatively superior to the models with the other two scenarios when simulating TWSA because the 330 

data in Scenario 3 contains more extremely high (or low) values during the study period in the process of training models. 

Therefore, in the following sections, we decide to directly divide the training periods and validation periods of all these 

models according to Scenario 3 (shown in Table 3) when simulating monthly TWSA for other regions besides the YRB. 

Table 3. 

Fig. 5 show the comparison between monthly TWSA derived from GRCACE/GRACE-FO satellites data and that simulated 335 

by different models for all regions during 2003-2020. The corresponding evaluation values are also presented in this figure. 

We find that the maximum NSEs between the GRACE/GRACE-FO-derived TWSA estimates and that simulated by models 

are 0.68, (Fig. 5(a)), 0.82 (Fig. 5(f)), 0.86 (Fig. 5(g)) and 0.89 (Fig. 5(j)) during the validation periods for the SYRB, the 

UYRB, the UMYRB and the YRB, respectively. The corresponding RMSEs are 13.2 mm/month, 13.7 mm/month, 12.4 

mm/month and 10.9 mm/month (validation periods, hereafter) for the SYRB, the UYRB, the UMYRB and the YRB, 340 

respectively. In general, the detrended TWSA estimates present consistent values between the observations and the modeled 

results from 2003-2020 for most regions except for the SYRB, as shown in Fig. 5. Compared to the other regions, all models 

show a relatively poor performance in simulating monthly TWSA for the SYRB with NSEs less than 0.70 during the 

validation periods, which can be mainly attributed to the increased uncertainties in precipitation and temperature induced by 

the sparse distribution of meteorological stations over this region (shown in Fig. 1). 345 

We further compare separately the performances of all models in simulating monthly TWSA for a specific region. Taking 

the entire YRB as an example (Fig. 5(j-l)), GRACE/GRACE-FO derived TWSA estimates shows a RMSE of 10.9 
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mm/month for the MLP-derived TWSA estimates, which is lower than that of 15.1 mm/month for the LSTM-derived TWSA 

estimates (~39% decrease) and that of 13.3 mm/month for the MLR-derived TWSA estimates (~22% decrease). Meanwhile, 

the NSE shows similar improvements when applying the MLP model to simulate TWSA for the YRB (Fig. 5(j-l)), which 350 

also can be found in the SYRB (Fig. 5(a-c)) and the UMYRB (Fig. 5(g-i)). In general, the MLP and MLR models achieve 

high metrics (0.81/12.8 mm/month and 0.75/14.2 mm/month of NSE/RMSE on average for all regions) during the validation 

periods, both of which are significantly higher than the metrics between the GRACE/GRACE-FO derived TWSA estimates 

and that simulated by the LSTM model (0.75/14.7mm of NSE/RMSE on average for all regions). For the UYRB (Fig. 5(d-f)), 

the MLP model shows a slightly poor performance in simulating TWSA in terms of a higher RMSE (14.7 mm/month) than 355 

the LSTM model (14.5 mm/month; ~1.2% increase) and the MLR model (13.7 mm/month; ~7.2% increase). In addition, it 

seems that the larger the study region, the higher the correspondence between the GRACE/GRACE-FO derived TWSA 

estimates and that simulated by models for the MLP model. This result can be explained that the large area for a specific 

region may smooth more uncertainties in GRACE signals and meteorological observations (Long et al., 2015). 

Overall, Fig. 5 clearly suggests the MLP model’s superior performances in simulating TWSA with an average value of NSE 360 

higher than 0.81 and an average value of RMSE lower than 12.8 mm/month during the validation periods for all regions, 

showing the outstanding capability of MLP model in learning the complicated relationships between TWSA and hydro-

climatic factors. As documented in Shu et al. (2007), the MLP model can show its unique superiority and great advantages 

compared with other statistical models particularly when explaining the underlying processes that have complex nonlinear 

interrelationships. The results shown in Fig. 5 also indicate that the MLP model can show a relatively better performance in 365 

simulating monthly TWSA than the LSTM model in this study. As described in Zhang et al. (2018), one of main drawbacks 

of the LSTM model is its complexity compared with the MLP model, which indicates that the LSTM model may not show 

better performances in simulating time series data than other traditional ANNs models in some cases especially when limited 

trained data are available. Therefore, in the following discussion, only the MLP model is applied to further achieve the 

temporal downscaling of monthly TWSA data for regions. 370 

Figure 5. 

5.3 Temporal downscaling of GRACE/GRACE-FO satellites data 

Relationships between monthly TWSA and hydro-climatic inputs with respect to the entire YRB have been fully established 

as presented in Section 5.2. As documented in Herath et al. (2016) and Requena et al. (2021), the same scaling properties 

have been commonly assumed for baseline and future periods in temporal downscaling. Therefore, it is reasonable and 375 

acceptable to assume that scaling properties at the monthly time scales are valid at the daily time scales in this study (Kumar 

et al., 2012). That is, the relationship between temporally downscaled TWSA and daily hydro-climatic inputs is consistent 

with that previously established by the downscaling model (e.g. the MLP model) at monthly time scales for a specific region. 
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By merging the daily hydro-climatic inputs into the previously established relationships between TWSA estimates and 

hydro-climatic factors based on the MLP model, we can downscale the TWSA estimates from monthly time series to daily 380 

time series for all regions.  

Fig. 6 shows daily time series of TWSA temporally downscaled by the MLP model for different regions during 2003-2020. 

It can be seen that daily TWSA shows sub-monthly signals in response to changes in hydro-climatic factors as expected. 

Both GRACE/GRACE-FO derived TWSA estimates and daily TWSA estimates temporally downscaled by the MLP model 

show obvious seasonal cycles and reach to their respective extreme values almost simultaneously. More specific, amplitudes 385 

of daily TWSA estimates are slightly higher (or lower) than monthly TWSA estimates in summer (or winter) seasons from 

2003 to 2020. This can be deemed as reasonable because monthly TWSA estimates are defined as the mean average of daily 

TWSA estimates for a specific month. It should also be noted that there still exist some discrepancies between temporally 

downscaled TWSA at sub-monthly time scales and monthly TWSA estimates derived from GRACE/GRACE-FO satellites 

data for the SYRB particularly in some extreme low values, which can be attributed to the relatively poor relationship 390 

between TWSA estimates and hydro-climatic factors for this region as described in Fig. 5(a). 

Figure 6. 

5.4 Relation between daily TWSA and streamflow during flood events 

Fig. 7 and Fig. 8 show the daily TWSA temporally downscaled by the MLP model and observed streamflow within the YRB 

in 2010 and 2020 when extreme flood events occurred according to the information published by the Yangtze River 395 

Conservancy Commission of Ministry of Water Resources. As described in Fig. 7 and Fig. 8, the nonparametric simple 

smoothing method introduced in Section 4.4 can effectively identify the corresponding flood events occurred in each region 

based solely on the analysis of streamflow time series. It shows an apparent increase in streamflow from the beginning to 

peak of all flood events. Accordingly, the daily TWSA shows a distinct increase similar with streamflow during the same 

periods as expected. It is also interesting to note that the beginning of increase shown in daily TWSA is earlier than that of 400 

streamflow. This is partly because high antecedent soil moisture, which is the dominant component of TWSA, has been 

identified as an important driver of flood events for regions (Reager et al., 2014; Wasko et al., 2019). Meanwhile, this result 

indicates that daily TWSA can be potentially useful in building early flood warning systems since it may identify the 

extreme flood events much more earlier than streamflow. 

Figure 7. 405 

Figure 8. 
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5.5 Monitoring severe flood events based on the proposed NDFPI in summer 2020 

To better detect the extreme events during the wet season, we propose a new index, i.e. NDFPI, by jointly using the 

temporally downscaled TWSA data and daily precipitation data observed by meteorological stations as introduced in Section 

4.5. According to the Yangtze River Conservancy Commission of Ministry of Water Resources, the YRB has suffered from 410 

catastrophic flooding in summer 2020 and a total of 33 rivers in the YRB exceeded their historical maximum water levels 

during this period. Therefore, in this study, the severe flood events occurred in summer 2020 for the YRB will be served as 

an example to present the capability of NDFPI in detecting extreme flood events. The threshold values of daily streamflow 

and NDFPI for the 90th percentile floods during 2003-2020 are presented in Fig. 9. According to the results shown in Fig. 9, 

the larger threshold values of NDFPI usually indicate severity of flood occurrences increases for a specific region. In 415 

addition, the shape of percentile duration curve of daily streamflow across the UYRB (Fig. 9(b)) is different with that shown 

in other regions. It is noted that the outlet of the UYRB, the Yichang hydrological station, is located approximately 45 km 

downstream of the Three Gorges Reservoir (shown in Fig. 1), which is one of the largest hydroelectric reservoirs in the 

world. Given that the operations of the Three Gorges Reservoir can directly affect the streamflow at Yichang station (Yang 

et al., 2022), the result shown in Fig. 9(b) is reasonable. 420 

Figure 9. 

Fig. 10 shows the comparison between basin averaged NDFPI and daily streamflow observations for the 90th percentile 

floods in summer 2020. The results indicate that the ups and downs of the streamflow observed at different hydrological 

stations are highly consistent with the NDPFI results through the whole season. For example, the observations of streamflow 

from the Shigu hydrological station (Fig. 10(a)) reached its 90th percentile in July 12. In comparison, the NDFPI estimated 425 

by temporally downscaled TWSA and daily precipitation reached its 90th percentile in July 4 (Fig. 10 (a)), which is 9 days 

earlier than that of daily streamflow. As expected, these high streamflow observations during the wet season are usually 

accompanied by high NDPFI values, which could be attributed to the effects of high precipitation on streamflow during this 

period. For the YRB (Fig. 10 (d)), daily streamflow detected at the Datong hydrological station reached its 90th percentile in 

June 29 and eventually peaked in July 13 with a maximum value of 7.2×109 m3/day, which is in line with the findings in Jia 430 

et al. (2021). Accordingly, the series of NDFPI reached its 90th percentile in June 18 with a value of 0.58. In general, Fig. 10 

clearly suggests that the proposed NDFPI calculated by temporally downscaled TWSA data and daily precipitation changes 

synchronously with the reality of flood disasters in summer 2020 for the YRB. Meanwhile, it also indicates that such flood 

events can be monitored by the proposed NDFPI earlier than traditional streamflow observations. 

Figure 10. 435 

Previous studies usually focus on monitoring the long-term flood events while the flood events at sub-monthly time scales 

using GRACE/GRACE-FO satellites data have been limitedly investigated due to the limitation of its temporal resolution 

(i.e. month) (Gouweleeuw et al., 2018; Long et al., 2014). In this study, however, Fig. 10 clearly shows the incremental 
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process of TWSA during the wet season using the new proposed NDFPI estimated by temporally downscaled 

GRACE/GRACE-FO satellites data and daily precipitation for different regions. This means that the proposed NDFPI has 440 

the great potential to detect the evolution of extreme flood events within the short period. It is also interesting to note that the 

NDFPI reached the threshold of different classes of flood events earlier than that defined by streamflow observations during 

the wet season in 2020, which can be repeatedly found in the SYRB, the UYRB, the UMYRB and the YRB (Fig. 10) 

respectively. The comparison results indicate that the lag time between the threshold values of flood events monitored by the 

NDFPI and that monitored by daily streamflow during the wet season ranges from 8 to 15 days for the 90th percentile floods 445 

among all regions in summer 2020, all of which are far less than the temporal resolution of original GRACE/GRACE-FO 

satellites data (i.e. month). In addition to the 90th percentile floods, we also compare the basin averaged NDFPI and daily 

streamflow observations for the 95th and 99th percentile floods in summer 2020 (shown in Supplement Figure S1-S4). The 

results also show that the series of NDFPI reached the threshold values earlier than that of daily streamflow observations for 

the 95th and 99th percentile floods. For example, there exists a 11-day lag time between the threshold value of NDFPI and 450 

that of the streamflow observed by Datong hydrological station for the 99th percentile floods in summer 2020 (Fig. S4(d)), 

which provides useful information for accurate and timely flood forecasts and can be very beneficial for protecting people 

and infrastructure over regions in a changing climate. 

6 Discussions 

6.1 Extreme flood events monitored by NDFPI 455 

The comparison results indicate that the proposed NDFPI reached the threshold values of different classes of flood events 

earlier than that defined by streamflow observations in summer 2020 with respect to the YRB and its individual basins 

(shown in Figure 8 and Figure S1-S4). This is consistent with the results found at the Missouri River basin by Reager et al. 

(2014) who indicated that regional TWSA may lead river discharge slightly before the flood season, creating a simple 

hysteresis effect between these two time series. It is this effect that provides useful information on the signal of high 460 

streamflow in the coming flood season and the predisposition for flooding over the study region. However, the study of 

Reager et al (2014) only demonstrated the application of GRACE data to characterize regional flood potential at monthly 

time scales. More accurate information about the complete hydrologic state of a specific region at sub-monthly time scales 

during the wet season has been limitedly investigated, which is very vital for flood warnings. Given this in mind, we 

proposed a new index, i.e. NDFPI, by jointly using the temporally downscaled TWSA data and daily precipitation data to 465 

better analyze the hydrologic state of the study region during the wet season at finer time scales. 

The comparison analysis of the NDFPI and daily streamflow with respect to the YRB may explain the possible reasons why 

the NDFPI can detect extreme flood events for a specific river basin. Intense rainfall of long duration can cause continuous 
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increases in the surface water (e.g. water stored in lakes and wetlands), soil moisture storage and groundwater storage that 

are totally represented by TWSA in this study through the process of infiltration. Many studies also revealed that changes in 470 

surface water, soil moisture and groundwater under intense rainfall can exert obvious effects on the status of regional TWSA 

(Döll et al., 2012; Felfelani et al., 2017; Sinha et al., 2019; Velicogna et al., 2012). All these changes may ultimately result in 

the saturation of aquifer over regions. However, the saturated state of aquifers is not persistent because there is a great need 

for the basin to relieve its saturated state by discharging excessive water stored on and below the land surface into the river 

channels, which may eventually lead to the dramatic increase in streamflow and greatly increase the risk of widespread and 475 

damaging regional flooding. 

6.2 Advantages of detecting extreme flood events based on temporally downscaled TWSA 

The traditional flood monitoring approaches mainly provide useful information about the evolution of flood events over the 

study region through the measurements of rainfall and streamflow. All these measurements largely depend on the in-situ 

hydrological stations and rainfall gauging stations distributed over the regions, which are difficult to achieve in some regions 480 

with harsh environment and climatic conditions. In comparison, satellite remote sensing has no such limitation of traditional 

point‐based observations, making it a promising approach to monitor extreme flood events particularly in some poorly 

gauged basins. Given the large spatial extent, complicated climatic condition, and inaccessible hydrological observations for 

some high-altitude regions (e.g. SYRB), GRACE TWSA has shown great advantages and superiority in flood monitoring 

and water resources management for the YRB than traditional flood monitoring approaches. 485 

Furthermore, all these traditional flood monitoring approaches mainly focus on the meteorological conditions or the status of 

surface water reflecting by various hydro-climatic factors and pay little attention to the importance of antecedent terrestrial 

water storage conditions before flood events, which can play a critical role in capturing the flood formation processes (Xiong 

et al., 2021). For example, Reager et al. (2009) applied the TWSA from GRACE data and monthly precipitation to assess the 

likelihood for flooding at the regional scale and emphasized the importance of terrestrial water storage signal in the accurate 490 

prediction of floods and general runoff. Long et al. (2014) employed the index of flood potential amount using GRACE data 

and monthly precipitation to investigate hydrological floods and droughts for a large karst plateau in Southwest China and 

found that higher TWSA estimates are more prone to result in large potential for flooding during rainy season because of the 

excessive water that cannot be stored further. Therefore, the new proposed index incorporating TWSA can more holistically 

quantify the potential of the development of severe floods for regions than common flood potential indices using hydro-495 

climatic observations. 

While previous studies have proposed several standardized indices for large-scale flood monitoring based on GRACE-

derived TWSA (Chen et al., 2010; Tangdamrongsub et al., 2016), flood monitoring and assessment at sub-monthly time 

scales remains a challenge using GRACE data due to its coarse temporal resolution (month). Flood monitoring at finer time 
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scales is pivotal in understanding the regional water cycle under climate change, which ultimately helps to manage the basin-500 

scale water resources effectively and improve the efficiency of early flood warning systems. The application of daily series 

of TWSA temporally downscaled from GRACE/GRACE-FO satellites data can provide a useful method to comprehensively 

assess the integrated flood condition considering the changes of both surface and subsurface water storage at sub-monthly 

time scales. The highest deficit in the temporally downscaled TWSA and the daily precipitation during the wet season, as 

revealed by the NDFPI, can indicate the early signs of the region’s transition from normal state to a flood-prone situation. 505 

Overall, the new proposed NDFPI is proven to be a useful tool for flood monitoring with the finer time scale over large-scale 

basins, which also makes it possible to monitor extreme flood events timely especially for some regions with limited in-situ 

streamflow observations. 

6.3 Uncertainties and limitations 

The signals detected by GRACE/GRACE-FO satellites data reflect the changes in regional TWSA under the joint effects of 510 

climatic variability and human activates (Xie et al., 2019b). By using the method of linear detrending, long-term trends in 

series of TWSA estimates have been removed during the reconstruction of TWSA, because they are generally driven by 

surface conditions and human activities. Human activities such as reservoirs operation, irrigation and water withdrawals 

cannot be well reconstructed by hydro-climatic factors. Although the detrending method can reduce the impacts of human 

activities on reconstructing TWSA to some degree, it could still result in some discrepancies between the results of 515 

detrended TWSA and natural TWSA under climatic variability. In future, more attentions should be paid to effectively 

reconstruct the series of regional TWSA under climatic variability when more detailed information on the statistics of water 

consumption data induced by human activities are available. 

Furthermore, this study presents an effective way to temporally downscale the TWSA estimates from monthly time series 

into daily values. This temporal downscaling method is assessed through four case studies across the entire YRB, which 520 

could well present the temporal evolution of TWSA at sub-monthly time scales during the wet season. As this study mainly 

focus on characterizing regional flood potential based on the new proposed NDFPI incorporating temporally downscaled 

TWSA estimates, we applied this temporal downscaling method on the basin scale. In theory, this method is also suitable for 

the temporal downscaling of GRACE/GRACE-FO satellites data at the grid cell scale. However, as pointed out by previous 

studies (Landerer et al., 2012; Save et al., 2016; Scanlon et al., 2016), gridded TWSA estimates derived from 525 

GRACE/GRACE-FO satellites data involve relatively large uncertainty induced by associated measurement errors and signal 

leakage errors. As a result, the accuracy of TWSA estimates can ultimately exert a direct influence on the optimized 

parameter sets that are obtained for trained models in each grid cell, which is a contributing factor of the uncertainty. In 

addition, the forcing data of these models used for temporal downscaling, including air temperature, precipitation and 

GLDAS Noah derived SMSA, may also contain some errors and uncertainties due to the uneven spatial distribution of 530 
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meteorological stations and natural measurement errors (Lv et al., 2017). These errors and uncertainties from the input data 

could be propagated into the machine learning‐based models (e.g. MLP model), resulting in a broad range of differences 

between the observations and the simulated results. The latest study has noticed the importance of spatially correlated 

features and made some initial attempts to make full use of the spatially correlated features associated with images for 

predictions based on the convolutional neural network (CNN) model with the goal of providing more accurate TWSA 535 

estimates (Mo et al., 2022). Therefore, a thorough consideration of the spatiotemporally correlated features among each grid 

cell will be taken in our future work when downscaling the TWSA estimates from monthly time series to daily time series at 

the grid cell scale and fully understand the complex underlying mechanism for TWSA variations during the wet season. 

7 Conclusions 

In the present study, we downscaled the GRACE/GRACE-FO derived TWSA estimates from monthly time series to daily 540 

time series in the YRB by establishing a relationship between TWSA estimates and hydro-climatic factors based on machine 

learning techniques. Furthermore, the temporally downscaled TWSA data combined with daily precipitation were adopted to 

monitor the extreme flood events over the entire YRB in 2020. The main conclusions can be drawn as follows: 

(1) When reconstructing monthly TWSA in the YRB, the MLP model shows the best performance with RMSE = 10.9 

mm/month, NSE = 0.89, the MLR model follows with RMSE =13.4 mm/month, NSE = 0.84, and the LSTM model shows 545 

the lowest performance with RMSE = 15.1 mm/month, NSE = 0.81 during the validation period; 

(2) Based on the MLP model, monthly time series of TWSA were temporally downscaled to daily data by using 

meteorological observations and outputs from a land surface model. The results showed highly consistency with original 

monthly TWSA estimates derived from GRACE/GRACE-FO satellites data with regard to seasonal cycles; 

(3) By jointly using daily average precipitation anomalies and temporally downscaled TWSA, the proposed NDFPI can 550 

effectively detect the flood events at sub-monthly time scales occurred in summer 2020 for the entire YRB; 

(4) The comparison analysis indicates that the flood events can be monitored by the proposed NDFPI earlier than traditional 

streamflow observations with respect to the YRB and its individual basins, which is very vital for flood forecasts and 

warning across this region. 

Overall, the present study shows the great potential of temporally downscaled GRACE/GRACE-FO satellites data in a wide 555 

range of hydrological applications, such as monitoring the extreme flood events. The study provides an effective means for 

the temporal downscaling of original TWSA estimates from GRACE/GRACE-FO satellites data and will help facilitate the 

sustainable management of water resources and develop monitoring and early warning systems for severe flood events over 

large-scale basins. 
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Table 1: A summary of relevant literature on monitoring extreme flood events using GRACE/GRACE-FO data. 750 

GRACE = Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate 

Experiment Follow-On mission; GLDAS = Global Land Data Assimilation system; TRMM = Tropical Rainfall 

Measuring Mission; MODIS = Moderate-Resolution Imaging Spectroradiometer. 

Study Study region Source data Period  Temporal 

resolution 

Main contributions 

Chen et al. 

(2010) 

Amazon basin GRACE RL04 data; 

precipitation 

2002 to 

2009  

Month Measuring large‐scale extreme flood 

events  

Long et al. 

(2014) 

Yun-Gui 

Plateau 

GRACE RL05 data; 

hydrometeorological 

data 

2003 to 

2012 

Month Evaluating the frequency and 

severity of droughts and floods over 

the regions 

Reager et al. 

(2014) 

Mississippi 

River basin 

GRACE data; GLDAS 

data; stream gauge 

data 

2003 to 

2011 

Month Characterizing regional flood 

potential and assessing the 

predisposition of a river basin to 

flooding 

Tangdamrongsub 

et al. (2016) 

Tonlé Sap basin GRACE RL05 data; 

TRMM; MODIS; 

hydrological model 

2002 to 

2014 

Month Quantifying the flood events at both 

basin and sub-basin scales 

Chen et al. 

(2018) 

Liao River 

basin 

GRACE RL05 data; 

meteorological data; 

hydrological model 

2002 to 

2016 

Month Monitoring the drought and flood 

patterns based on the total storage 

deficit index 

Yang et al. 

(2021) 

Yangtze River 

Basin 

GRACE/GRACE-FO 

RL06 data; 

meteorological data; 

teleconnection indices  

2002 to 

2018 

Month Investigating the flood risk factors 

and analyzing the impact of climate 

change factors on flood events 

Shah et al. 

(2021) 

Indian 

subcontinent 

GRACE RL06 data; 

meteorological data 

2002 to 

2016 

Month Examining the role of changes in 

terrestrial water and groundwater 

storage on flood potential 

This study Yangtze River 

Basin 

GRACE/GRACE-FO 

RL06 data; runoff; 

meteorological data 

2003 to 

2020 

Day Monitoring the evolution of extreme 

flood events based on temporally 

downscaled GRACE data 
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Table 2: An overview of all datasets used in this study. 755 

Data Source Temporal resolution Spatial resolution Time span 

Terrestrial water storage 

anomaly (TWSA) 

GRACE/GRACE-FO CSR Month 0.5° 2002 - Now 

GRACE/GRACE-FO JPL Month 0.5° 2002 - Now 

GRACE/GRACE-FO GSFC Month 0.5° 2002 - Now 

Soil moisture storage (SMS) GLDAS 2.1 - Noah 3 hours 1° 2002 - Now 

Precipitation (T) CMA Day / 2003 - 2020 

Temperature (P) CMA Day / 2003 - 2020 

Streamflow In situ Day / 2003 - 2020 

Note. GRACE = Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate 

Experiment Follow-On mission; CSR = Center for Space Research; JPL = Jet Propulsion Laboratory; GSFC = Goddard 

Space Flight Center; GLDAS = Global Land Data Assimilation system; CMA = China Meteorological Administration.
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Table 3: Performances of different models in simulating monthly TWSA across the YRB during 2003-2020. 

Scenarios MLP (RMSE/NSE) LSTM (RMSE/NSE) MLR (RMSE/NSE) 

Scenario 1 2003/01 - 2014/06 (Training) (70%) 10.71/0.89 12.14/0.86 11.63/0.87 

2014/08 - 2020/12 (Validation) (30%) 26.12/0.50 26.62/0.15 24.32/0.57 

2003/01 - 2020/12 (Overall) (100%) 16.91/0.76 17.74/0.68 16.51/0.77 

Scenario 2 2005/06 - 2018/06 (Training) (70%) 13.54/0.84 14.61/0.79 14.33/0.82 

2003/01 - 2005/05 and 2018/07 - 

2020/12 (Validation) (30%) 

23.32/0.59 25.42/0.17 20.14/0.70 

2003/01 - 2020/12 (Overall) (100%) 17.15/0.75 18.57/0.65 16.21/0.78 

Scenario 3 2007/10 - 2020/12 (Training) (70%) 15.76/0.80 17.84/0.68 17.24/0.76 

2003/01 - 2007/09 (Validation) (30%) 10.92/0.89 15.12/0.81 13.41/0.84 

2003/01 - 2020/12 (Overall) (100%) 14.41/0.83 17.61/0.73 16.11/0.78 

Note. TWSA = Terrestrial water storage anomalies; YRB = Yangtze River Basin; MLP = Multi-layer perceptron neural 760 

network; LSTM = Long short-term memory network; MLR = Multiple linear regression. 70%, 30% and 100% represent the 

corresponding proportions to all samples in the training, the validation and the entire periods respectively. RMSE/NSE 

represent the Root mean square error (mm/month) and Nash‐Sutcliffe efficiency coefficient between the simulated TWSA 

with the observed TWSA respectively. Noted that GRACE/GRACE-FO derived TWSA in some months are not available 

due to the problem of battery management. 765 
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Figure 1: Location of the Yangtze River Basin (YRB) in China and its topography. Distribution of meteorological stations and 

hydrological stations are also shown in this figure. TGR = Three Gorges Reservoir; DEM = Digital Elevation Model. 
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Figure 2: A detailed flow diagram illustrating the temporal downscaling of GRACE/GRACE-FO derived TWSA. GRACE = 770 
Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate Experiment Follow-On mission; 

SMSA = Soil moisture storage anomaly; TWSA = Terrestrial water storage anomaly; CSR = Center for Space Research; JPL = 

Jet Propulsion Laboratory; GSFC = Goddard Space Flight Center; SYRB = Source regions of the Yangtze River Basin; UYRB = 

Upper regions of the Yangtze River Basin; UMYRB = Upper and the Middle regions of the Yangtze River Basin; YRB = Yangtze 

River Basin; MLP = Multi-layer perceptron neural network; LSTM= Long short-term memory; MLR = Multiple linear 775 
regression; NDFPI = Normalized daily flood potential index.  
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Figure 3: Architecture of (a) a typical three-layer multi-layer perceptron (MLP) neural network and (b) a typical a long-short time 

memory (LSTM) network. Ψi denotes the sigmoid transfer function, Wi,j represent connection weights between the input layer and 

the hidden layer, Ij,k represent connection weights between the hidden layer and the output layer. xt, ct, and ht represent the 780 
standardized input variable, hidden gate and cell gate at the current time t. 
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Figure 4: Monthly time series of precipitation (P, mm), temperature (T, ℃), terrestrial water storage anomaly (TWSA, mm), soil 

moisture storage anomaly (SMSA, mm) and streamflow (×109 m3) across the YRB during 2003-2020. Streamflow data is obtained 

at the Datong hydrological station (shown in Figure 1). YRB = Yangtze River Basin. 785 
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Figure 5: Comparison between monthly TWSA derived from GRCACE/GRACE-FO satellites data (observation) and that 

simulated by different models (validation) for (a-c) the SYRB, (d-f) the UYRB, (g-i) the UMYRB and (j-l) the YRB respectively 

during 2003-2020 with showing statistics of the comparison including root mean square errors (RMSE) (mm/month) and Nash‐

Sutcliffe efficiency (NSE). Note that TWSA shown in this figure are detrended because hydro-climatic factors may not fully 790 
simulate all the long-term trends. The models showing the best performance in simulating TWSA during the validation periods 

have been bold for each region. SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; 

UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 
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Figure 6: Daily time series of TWSA temporally downscaled by the MLP model (TWSA-daily, represented by grey lines) for (a) 795 
the SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003-2020. Note that monthly TWSA estimates 

derived from GRACE/GRACE-FO satellites data (TWSA-monthly, represented by red dots) shown in this figure are detrended 

because hydro-climatic factors may not fully simulate their long-term trends. TWSA = Terrestrial water storage anomaly; MLP = 

Multi-layer perceptron neural network; SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River 

Basin; UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 800 
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Figure 7: Daily TWSA temporally downscaled by the MLP model versus streamflow during flood events across (a) the SYRB, (b) 

the UYRB, (c) the UMYRB and (d) the YRB respectively in 2010. The bold blue dash lines and bold red dash lines represent daily 

TWSA and streamflow during the period between the beginning and end of each runoff event. TWSA = Terrestrial water storage 

anomaly; MLP = Multi-layer perceptron neural network; SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions 805 
of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 
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Figure 8: Same as Figure 7 but in 2020. 
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Figure 9: Percentile duration curves of daily streamflow observations and NDFPI for the 90th percentile floods across (a) the 810 
SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003-2020. The red dots and blue dots represent 

threshold values of daily streamflow and NDFPI for the 90th percentile floods across different regions. SYRB = Source regions of 

Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze River 

Basin; YRB = Yangtze River Basin. 
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Figure 10: Comparison between basin averaged NDFPI and daily streamflow observations for the 90th percentile floods in 

summer 2020 across (a) the SYRM (observed at Shigu station), (b) the UYRB (observed at Yichang station), (c) the UMYRB 

(observed at Hankou station) and (d) the YRB (observed at Datong station). Pink rectangles denote the duration period between 

the thresholds of daily streamflow for the 90th percentile floods and peak streamflow observed at the controlling hydrological 

stations over different regions. The thresholds of daily streamflow and NDFPI for the 90th percentile floods are represented by the 820 
red dash lines and blue dash lines respectively. Note that the scales of streamflow shown in each figure are not always same. SYRB 

= Source regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; UMYRB = Upper and middle regions of 

Yangtze River Basin; YRB = Yangtze River Basin. 
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