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Abstract. Gravity Recovery and Climate Experiment (GRACE) and its successor GRACE Follow-on (GRACE-FO) satellite 

provide terrestrial water storage anomaly (TWSA) estimates globally that can be used to monitor the floodsflood in various 

regions at monthly intervals. However, the coarse temporal resolution of GRACE/GRACE-FO satellites data has been 

limiting its applications at finer temporal scales. In this study, TWSA estimates have been reconstructed and then temporally 10 

downscaled into daily values based on three different learning‐based models, namely multi-layer perceptron (MLP) model, 

long-short term memory (LSTM) model and multiple linear regression (MLR) model. Furthermore, a new index 

incorporating temporally downscaled TWSA estimates combined with daily average precipitation anomalies is proposed to 

monitor the severe flood events at sub-monthly time scales for the Yangtze River Basin (YRB), China. The results indicated 

that (1) the MLP model shows the best performance in reconstructing monthly TWSA with RMSE = 10.9 mm/month and 15 

NSE = 0.89 during the validation period; (2) the MLP model can be useful in temporally downscaling monthly TWSA 

estimates into daily values; (3) the proposed normalized daily flood potential index (NDFPI) facilitates robust and reliable 

characterization of severe flood events at sub-monthly time scales; (4) the flood events can be monitored by the proposed 

NDFPI earlier than traditional streamflow observations with respect to the YRB and its individual subbasins. All these 

findings can provide new opportunities for applying GRACE/GRACE-FO satellites data to investigations of sub-monthly 20 

signals and have important implications for flood hazard prevention and mitigation in the study region. 

1 Introduction 

Extreme floods, as one of the most destructive natural hazards, not only cause lots of casualties in China and around the 

world, but also have considerably wider and adverse economic consequencesExtreme floods, as one of the most destructive 

natural hazards, can result in significant damage to structures and agriculture (Dottori et al., 2018). According to the report 25 

published by the United Nations Office for Disaster Risk Reduction (UNDRR), the total economic loss induced by floods is 

up to $651 billion (USD) worldwide from 2000 to 2019 (https://www.undrr.org/publication/human-cost-disasters-overview-

last-20-years-2000-2019). Meanwhile, floods are projected to become more frequent and extreme under global warming as it 
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can substantially amplify the water holding capacity of the air and increase the occurrence of extreme precipitation events 

(Slater et al., 2016). Therefore, monitoring extreme flood events has long been a hot topic for hydrologists and decision 30 

makers around the world (Berghuijs et al., 2016; Smith et al., 2015; Tanoue et al., 2020; Tellman et al., 2021; Thieken et al., 

2005). 

Contrary to traditionally ground-based observations or hydrological models, the launches of Gravity Recovery and Climate 

Experiment (GRACE) twin satellites in 2002 and its successor GRACE Follow-on (GRACE-FO) satellites in 2018 can 

provide a new methodology for retrieving terrestrial water storage anomalies (TWSA) in real time globally by measuring 35 

temporal variations in Earth’s gravity field (Ahmed et al., 2021; Tapley et al., 2004). TWSA derived from GRACE/GRACE-

FO satellites comprises all the surface and subsurface water over land, which can be used to monitor the hydrologic 

variations in response to extreme weather events. In this case, GRACE/GRACE-FO observations have been widely applied 

to assess the potential flood risks for a specific region. For example, Reager et al. (2009) proposed a flood potential index 

estimated by using the monthly average precipitation anomalies and GRACE-derived TWSA to characterize the potential 40 

flood risks from regional to global scales. Xiong et al. (2021) developed a novel integrated flood potential index by linking 

the flood potential index derived from six GRACE products based on the a copula function, which was further used to 

identify and characterize the floods with different intensities over the study region. A summary of relevant literature on 

detecting extreme flood events using GRACE/GRACE-FO data has been listed in Table 1.  

Previous studies have clearly indicated that the proposed indices using GRACE/GRACE-FO data can better reflect the 45 

evolution of flood events than traditional evaluation indices, such as standardized precipitation index (SPI) and standardized 

precipitation evapotranspiration index (SPEI), because the GRACE/GRACE-FO observations can measure the vertically 

integrated water storage over regions (Yan et al., 2021; Yin et al., 2021). However, all these studies mainly focus on 

detecting the extreme flood events at monthly intervals while monitoring the flood events and its hydrological impacts at 

finer temporal scales remains a major challenge due to the coarse temporal resolution (i.e. monthly) of GRACE/GRACE-FO 50 

data. To date, very few attentions studies have been paid attention to monitor flood events at sub-monthly time scales using 

GRACE data. Given the rapid occurrence and evolution of some extreme events within a short period, there is a great need 

to monitor the flood events at a finer temporal resolution (e.g. day) using the temporally downscaled GRACE data, which 

has important implications for better understanding the mechanisms of extreme flood events in the Yangtze River Basin 

(YRB). Therefore, we aim to downscale the TWSA estimates derived from GRACE/GRACE-FO satellites data into daily 55 

values and demonstrate its application to monitor extreme flood eventsthe extreme flood events at sub-monthly time scales 

for the YRB. The temporally downscaled TWSA data could be valuable for understanding the effects of climate change on 

the hydrological cycle and providing important implications of flood hazard prevention and water resource management over 

this region. 
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The YRB is one of the most important basins in China, because it can provide freshwater, hydropower, food, and other 60 

ecosystem services for hundreds of millions of people.  Meanwhile, the YRB has been regarded as one of the most sensitive 

and vulnerable regions that suffered from severe extreme floods due to its highly uneven rainfall pattern (Zhang et al., 2021). 

During the past decades, the increasingly intensified human activities and climate change have substantially changed the 

hydrological cycles in the YRB and thus accelerated the variation of flood characteristics in this region (Fang et al., 2012; 

Wang et al., 2011). It has been found that both the frequency and severity of extreme flood events generally showed an 65 

upward trend in the YRB in the recent decadess owing to substantial changes in climate, infrastructure and land use (Huang 

et al., 2015; Liu et al., 2019; Yang et al., 2021; Zhang et al., 2008). For example, in Year 2020, the YRB has experienced 

one of the most extreme flood events on record. According to the data from the Ministry of Emergency Management of the 

People’s Republic of China, a total of 38.173 million people were affected and 27,000 houses collapsed due to the 2020 

flood, with 56 deaths or disappearances and a great economic loss of $27.68 billion (USD) (Jia et al., 2021). 70 

The rest of this paper is mainly organized as follows. In Section 2, descriptions of the study area are presented. In Section 3 

and Section 4, the datasets and methods used in this study are introduced respectively. In Section 5, monthly TWSA 

estimates obtained from original GRACE/GRACE-FO satellites data are temporally downscaled into individual values at 

daily time scales based on the methodology proposed in this study. Meanwhile, a new index incorporating temporally 

downscaled TWSA estimates and daily precipitation is proposed to detect extreme flood events occurred in Year 2020 across 75 

the YRB and its individual subbasins. Then, the discussions about the temporally downscaled GRACE/GRACE-FO satellites 

data and its capacity to monitor extreme flood events are presented in Section 6. We also explain the reasons why the new 

proposed index can monitor extreme flood events across the YRB in this section. Finally, we present a summary of this study 

in Section 7. 

Table 1. 80 

2 Study area 

The Yangtze River (also termed as Changjiang River) is the longest river in China with a length of about 6,300 km. It 

originates from the Tanggula Mountains of Qinghai-Tibetan Plateau and eventually empties into the estuary of the East 

China Sea after spanning over eleven provinces in China. The YRB (90°E - 122°E, 25°N - 35°N) has a total drainage area of 

1.81 million km2, which accounts for approximately 20% of the total area of the mainland China. The terrain of the YRB 85 

generally decreases from west to east with altitudes ranging from -142 m to 7143 m above the sea level (shown in Fig. 1)The 

terrain of the YRB generally decreases from west to east and shows a three-step ladder distribution with altitudes ranging 

from -142 m to 7143 m above the sea level. The entire YRB consists of three main parts, that is, the Upper (upstream region 
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above the Yichang station), the Middle (region between the Yichang station and the Hukou station) and the Lower 

(downstream region below the Hukou station) subbasins (shown in Fig. 1). 90 

The YRB is located in typically subtropical and temperature temperate climate zones, which is dominated by three types of 

monsoons, namely the Siberian northwest monsoon winds in winter, the Indian southeasterly monsoon winds and the East 

Asian monsoon in summer (Kong et al., 2020). According to the observations from meteorological stations, the mean annual 

air temperature of this basin ranges from 14.4°C to 15.4°C and mean annual precipitation ranges from 1049 mm to 1424 mm 

during 2003-2020. Under the joint effects of monsoon activities and seasonal motions of subtropical highs, more than 85% 95 

of the annual precipitation occurs in the wet season from April to October, which further increases the risks of extreme 

floods in the middle and lower reaches of the Yangtze River (Huang et al., 2015; Yang et al., 2010). Additionally, by the end 

of 21st century, projections show a significant upward trend of the annual precipitation over the YRB according to the latest 

study (Yue et al., 2021). 

The YRB is one of the most important regions in China because it accommodates approximately 33% of China’s total 100 

population (Huang et al., 2021), accounts for over 36% China’s total water resources, and contributes more than 46% of 

China’s total Gross Domestic Product (GDP) according to the statistics collected by Yangtze River Conservancy 

Commission of Ministry of Water Resources. The YRB not only sustains many hydro-electrical industries, such as the Three 

Gorges Corporation, but also provides freshwater resources for neighboring regions to alleviate the pressure of water scarcity 

through the South-to-North Water Diversion Project (Long et al., 2020; Zhang et al., 2021). Furthermore, the YRB can play 105 

a critical role in flood control, crop irrigation, power generation, and ecological conservation (Chao et al., 2021; Wang et al., 

2020a). More information about the location and topography of the YRB can refer tobe found in Fig. 1. 

Figure 1. 

3 Data 

3.1 Terrestrial water storage derived from GRACE/GRACE-FO satellites data 110 

GRACE and GRACE-FO data can provide global TWSA at monthly scales. In this study, the average of three types of 

GRACE and GRACE-FO solutions is estimated in order to characterize the variations of TWSA in the YRB and its 

individual subbasins during the period of 2003-2020, all of which are the latest versions of Release Number 06 (RL06). 

These products are provided by the Center for Space Research (CSR, at the University of Texas at Austin) (Save et al., 2016), 

the Goddard Space Flight Center (GSFC, at NASA) (Loomis et al., 2019) and the Jet Propulsion Laboratory (JPL, at NASA 115 

and California Institute of Technology, California) (Landerer et al., 2020) respectively. All these GRACE and GRACE-FO 

solutions represented by equivalent water thickness units (mm) are anomalies relative to the time-mean baseline during 

January 2004 - December 2009. It should also be noteworthy that GRACE data in a few months are not available because of 
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the problem of “battery management”. In addition, there existed a gap period for 11 consecutive months from July 2017 to 

May 2018 between the GRACE and GRACE-FO satellites. Here we have not filled the data gaps between the two GRACE 120 

satellites with linear interpolation since it may not fully describe the seasonal variation of TWSA during these missing 

months. All these GRACE and GRACE-FO satellites data are available at the website of https://podaac.jpl.nasa.gov. As 

documented in previous studies (Long et al., 2014; Xie et al., 2022), there are slight differences between these three GRACE 

and GRACE-FO solutions when estimating the variation of regional TWSA. The differences between these three GRACE 

and GRACE-FO solutions mainly arise from the processing algorithms or constrained solutions. 125 

3.2 Meteorological data 

In this study, daily time series of precipitation and temperature from 2003-2020 are provided by the China Meteorological 

Administration (CMA) (http://data.cma.cn/) with a total of 150 National Meteorological Observatory stations distributed in 

the YRB (shown in Fig. 1). Areal precipitation in the YRB and its individual subbasins at daily scales can be calculated 

according to the Thiessen polygon method. Monthly precipitation for regions is calculated by summing all daily values of 130 

precipitation. Meanwhile, areal temperature in the YRB and its basins at daily time scales are calculated by directly 

averaging the respective daily temperature from all meteorological stations over regions. Similarly, monthly temperature 

estimates are calculated by summing all daily values of temperature. 

3.3 In-situ streamflow data 

From the Yangtze River Conservancy Commission of Ministry of Water Resources, daily streamflow observations during 135 

the period of 2003-2020 can be obtained at the Shigu hydrological station, the Yichang hydrological station, the Hankou 

hydrological station and the Datong hydrological station (shown in Fig. 1). More specifically, the Shigu station represents 

the outlet of the Source regions of the Yangtze River Basin (SYRB), the Yichang station represents the outlet of the Upper 

regions of the Yangtze River Basin (UYRB), the Hankou station represents the outlet of the Upper and the Middle regions of 

the Yangtze River Basin (UMYRB), and the Datong station represents the outlet of the entire Yangtze River Basin (YRB). 140 

Meanwhile, extreme flood events in the YRB and its individual subbasins during the study period can be extracted from 

daily time series of streamflow observed from the above hydrological stations (Tarasova et al., 2018). More details about 

how the extreme flood events are extracted will be described in the Section 4.4. 

3.4 Soil moisture storage 

As documented in Xie et al. (2019a), soil moisture storage (SMS), as one of critical components of terrestrial water storage, 145 

usually shows a significantly positive correlation with variations of regional TWSA. Therefore, in this study we adopt the 

SMS (kg/m2) with a spatial resolution of 0.25° × 0.25° from the Global Land Data Assimilation System version 2.1 (GLDAS 
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2.1) Noah land surface model to estimate their correlations with regional TWSA derived from the GRACE and GRACE-FO 

satellite data. This product can provide the simulations of SMS at four different depths of soil layers from 0 to 200 cm, that 

is, 0 - 10 cm, 10 - 40 cm, 40 - 100 cm and 100 - 200 cm depths per three hours. To keep consistent with TWSA, the original 150 

value of SMS should be transferred into soil moisture storage anomaly values (SMSA) after subtracting the time-mean 

baseline during the period of 2004-2009. Furthermore, the temporal resolution of original SMS derived from GLDAS 2.1 

Noah land surface model can be decreased from 3-hours to 1-day and 1-month composite respectively, which is consistent 

with the methods applied in previous studies (Mulder et al., 2015; Mohanasundaram et al., 2021; Syed et al., 

2008).Therefore, in this study we adopt the SMS (kg/m2) with a spatial resolution of 0.25° × 0.25° from the Global Land 155 

Data Assimilation System version 2.1 (GLDAS 2.1) Noah land surface model to estimate their correlations with regional 

TWSA derived from the GRACE and GRACE-FO satellites data. This product can provide the simulations of SMS at four 

different depths of soil layers from 0 to 200 cm, that is, 0 - 10 cm, 10 - 40 cm, 40 - 100 cm and 100 - 200 cm depths per three 

hours. To keep consistent with TWSA, the original value of SMS should be transferred into soil moisture storage anomaly 

values (SMSA) after subtracting the time-mean baseline during the period of 2004-2009. Original SMS derived from 160 

GLDAS 2.1 Noah land surface model can be aggregated o daily and monthly estimates as follows: 

𝑆𝑀𝑆𝐴𝑑𝑎𝑖𝑙𝑦 = 𝑆𝑀𝑆 × 8 − 𝑆𝑀𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,          (1) 

𝑆𝑀𝑆𝐴𝑚𝑜𝑛𝑡ℎ𝑙𝑦 = 𝑆𝑀𝑆 × 8 × 𝑁 − 𝑆𝑀𝑆𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒,         (2) 

where SMSAdaily (mm) and SMSAmonthly (mm) represent daily SMSA and monthly SMSA respectively; SMS represents the 

original SMS estimates derived from GLDAS 2.1 Noah land surface model; SMSbaseline represents the baseline average 165 

during 2004-2009; N represents the number of days in a specific month. More specific information about the datasets used in 

this study can be found in Table 2. 

Table 2. 

4 Methods 

To better monitor the extreme flood events occurred in the YRB, monthly TWSA obtained from original GRACE/GRACE-170 

FO satellites data are temporally downscaled into individual values at daily time scales based on the methodology proposed 

in this study. A detailed flow diagram of our study is given in Fig. 2, which consists of four stepswhich is made of four steps. 

In Step 1, meteorological observations including precipitation, temperature provided by CMA and SMSA derived from the 

GLDAS 2.1 Noah land surface model are jointly used as model inputs to establish the relationship with detrended 

GRACE/GRACE-FO satellites data. In Step 2, the relationship between TWSA estimates and all hydro-climatic factors at 175 

monthly time scales for the YRB can be built by using three different machine learning‐based models, namely MLP model, 

LSTM model and MLR model respectively. Given that different periods of data used for training and validation might 
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influence the performances of each model in simulating TWSA, a total of three scenarios are therefore designed according to 

the way of dividing training periods and validation periods for each model. After comparing the performances of each model 

in simulating monthly TWSA estimates under all three scenarios, the calibrated parameter sets of the model with a specific 180 

scenario that shows the best performance in simulating monthly TWSA estimates are identified and retainedAfter comparing 

the performances of each model in simulating monthly TWSA estimates under all three scenarios, the scaling properties of 

the model (i.e. calibrated model parameter sets) that shows the best performance in simulating monthly TWSA estimates are 

identified and retained. In Step 3, daily time series of meteorological observations and the SMSA from the GLDAS 2.1 Noah 

land surface model are reselected as model inputs of the relationship established in Step 3 2 assuming that scaling properties 185 

at the monthly time scales are valid at the daily time scales. And hence daily TWSA estimates can be temporally downscaled 

from monthly TWSA estimates by using the calibrated model parameter sets that have been identified in Step 3. In Step 4, 

daily time series of TWSA are further applied to monitor the flood events at sub-monthly time scales for different basins in 

the YRB according to the new proposed index. 

Figure 2. 190 

Specifically, three types of models, namely, the artificial neural network (ANN), the recurrent neural network (RNN) and the 

multiple linear regression (MLR) are served used as the statistical downscaling methods. In order to keep a fair comparison, 

we will choose identical inputs and outputs in the process of training these three models. Furthermore, the GRACE satellite 

can provide TWSA estimates under the joint effects of human activities and climatic variability (Xie et al., 2019b). As 

pointed out by previous studies (Humphrey and Gudmundsson, 2019; Khorrami et al., 2021; Shah et al., 2021), long-term 195 

changes in TWSA many long-term trends in GRACE data are primarily caused by frequent human activities such as 

persistent groundwater overexploitation and massive construction of large reservoirs. For example, the YRB is a typical 

region strongly influenced by various human activities, such as the construction of Three Gorges Reservoir and intense 

human water consumption (Huang et al., 2015; Yao et al., 2021). In this study, the linear trends have been removed from the 

original time series of TWSA in the training and calibration periods because hydro-climatic factors may not fully simulate 200 

these long-term trends, all of which are mainly arising from human activities, such as the water withdrawals and reservoir 

operation over the study region (Rodell et al., 2018). More detailed descriptions about the methods used in this study are 

given as follows. 

4.1 Multi-layer perceptron neural network (MLP) 

The ANN is a black box model which has the ability to imitate the thought processes of the human brain and thus can be 205 

applied to deal with complex and nonlinear problems (Bomers et al., 2019; Boucher et al., 2020; Lecun et al., 2015; Wang et 

al., 2020b). Among different types of ANNs, the multi-layer perceptron neural network (MLP) with the Levenberg‐

Marquardt Back Propagation training algorithm is the most widely used method as it requires relatively less time in the 
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process of convergence (Rumelhart et al., 1986; Xie et al., 2019a). Therefore, a three-layer MLP model and the Logarithmic 

Sigmoid as a transfer function are jointly used for temporal downscaling in this study, which has been proved to be effective 210 

and reliable in statistical downscaling (Nourani et al., 2018; Sharifi et al., 2019). This MLP model consists of three parts, 

namely, an input layer, a hidden layer and an output layer, all of which finally form a network through many neurons. 

Meanwhile, the weights, which are connections between different neurons, can adjust as learning proceeds until the most 

optimum network is derived in this process (Fig. 3(a)). 

In this study, the variables included in the input layer are precipitation, temperature and SMS whereas the variable included 215 

in the output layer is detrended TWSA. Based on trial-by-error, the most optimal number of hidden neurons is set to five. 

After minimizing the discrepancy between the simulated TWSA with the observed results at the output layer, the most 

optimal network architecture can be finally obtained. 

4.2 Long short-term memory network (LSTM) 

The recurrent neural network (RNN) (Rumelhart et al., 1986) is a unique type of deep learning algorithm that was developed 220 

to process sequential data and predict future trends. One of the most dominated features of the RNN layer is a unique 

feedback connection which can allow past information to continuously affect the current output. The characteristics of all 

related time series data can be eventually learned through this structure. Long short-term memory network (LSTM) is one of 

the most representative RNNs as it has the fabulous memory ability and can effectively avoid the vanishing gradient problem 

existinged in other RNNs (Hochreiter, 1997; Guo et al., 2021). Considering the time series characteristics of meteorological 225 

data and TWSA data, the LSTM model can be very suitable as a statistical downscaling model for its excellent capacity to 

process sequence-to-sequence learning problems. 

One typical LSTM model usually consists of three layers, that is, an input layer, a hidden layer and an output layer (Fig. 

3(b)). Different from other traditional ANNs, the LSTM model replaces the hidden block in RNNs with a memory cell state 

coupled with three logic gates, that is, the forget gate, the input gate and the output gate. In the training process, the memory 230 

cell state mainly stores the accumulation of past information. The input gate determines how much information of a new 

input flows into the memory cell state at the current time. Then, the useless information in long-term memory would be 

forgotten by the forget gate, which determines how much of the former moment is retained to the current time. Finally, the 

output gate determines how much information of the memory cell state is used to compute output (Bai et al., 2021; Wu et al., 

2020; Vu et al., 2021). The main formulations of the LSTM model are therefore described as follows: 235 

input gate (it): 

𝑖𝑡 = σ(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖),            (3) 

forget gate (ft): 

𝑓𝑡 = σ(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓),            (4) 
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output gate (ot): 240 

𝑜𝑡 = σ(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜),            (5) 

potential cell gate (𝑐̃𝑡): 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐̃𝑥𝑡 + 𝑈𝑐̃ℎ𝑡−1 + 𝑏𝑐̃),            (6) 

cell gate (ct): 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡,             (7) 245 

hidden gate (ht): 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ⁡(𝑐𝑡),             (8) 

where it, ot, ct, 𝑐̃𝑡 and ht represent the input gate, output gate, cell gate, potential cell gate and hidden gate at the time t, 

respectively; xt represents the standardized input variable at the current time t; ht-1 represents the hidden state at the time t-1; 

ct-1 represents the previous cell state that provides the past information at the time t-1; tanh represents the hyperbolic tangent; 250 

σ denotes the logistic sigmoid function that is usually served as the gate activation function; ⊙ denotes the element-wise 

multiplication of vectors; W, U and b represent the input weights, the recurrent weights and the biases of each gate, 

respectively, all of which are usually estimated during the learning process in matching the training data according to the 

adaptive moment estimation (ADAM) optimizer. 

Figure 3. 255 

4.3 Multiple linear regression (MLR) 

The multiple linear regression (MLR) is a typical statistical approach that can be applied to establish the relationships 

between inputs and outputs (Sousa et al., 2007). This approach has a wide range of hydrological applications since it can 

well explain the linkage between various variables (Lyu et al., 2021; Ramesh et al., 2020; Sun et al., 2020). Here we assume 

that the GRACE/GRACE-FO derived TWSA is linearly regressed onto the meteorological variables (i.e. precipitation and 260 

temperature) and the SMS obtained from GLDAS 2.1 simultaneously, that is: 

𝑦 = ∑ 𝑎𝑖 × 𝑥𝑖
3
𝑖=1 + 𝑏,                 (91) 

where y represents TWSA at monthly (or daily) scales; 𝑥𝑖 (i = 3) represents three independent inputs including precipitation, 

temperature and SMS at monthly (or daily) scales; 𝑎𝑖 represents the corresponding regression coefficients of each input, 

which can be calculated by the least-squares regression method; b represents a constant offset. Similar to LSTM and MLP, 265 

the MLR model is also applied at regional scales to better show the temporal variation of downscaled TWSA during the 

extreme flood events occurred in the YRB. 
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4.4 Flood event selection 

A nonparametric algorithm suggested by Tarasova et al. (2018) is adopted to identify runoff events in this study, which has 

been widely applied in many different basins over the world because of its advantages in identifying flood events (Fischer et 270 

al., 2021; Giani et al., 2022; Lu et al., 2020; Winter et al., 2022)A nonparametric algorithm is adopted to identify runoff 

events in this study (Tarasova et al., 2018). A brief procedure of this algorithm is described as follows: (1) picking out local 

minima within nonoverlapping five-day windows with respect to the entire streamflow time series; (2) examining the 

extracted series of minima with the goal of finding turning points, all of which are usually defined as the points that are at 

least 1.11 times smaller than their neighboring minima; (3) reconstructing the base flow hydrograph according to the linear 275 

interpolation between the turning points, which are previously obtained in Step (2); (4) screening the streamflow time series 

to identify runoff events after the separation of base flow. Traditionally, a typical runoff event can be characterized by three 

main components, namely peak, beginning, and end points. A peak refers to the maximum of streamflow for a specific 

period. The beginning point refers to the closest point in time when total runoff is equal to base flow before the peak. 

Similarly, the end point denotes the closest point in time when total runoff is equal to base flow after the peakThe end point 280 

denotes the point in time when the total runoff as soon as has fallen to the base flow level from peak. 

4.5 Daily flood potential index 

The flood potential index provides a surrogate measure of the potential flood risks for a specific region, which can be 

obtained from monthly average precipitation anomalies and GRACE-derived TWSA (Reager et al., 2009). In this study, we 

further propose a new normalized daily flood potential index (NDFPI) with reference to Reager et al. (2009) and Abhishek et 285 

al. (2021). Compared to the original flood potential index, the NDFPI can not only provide useful information on the early 

signs of the region’s transition from normal state to a flood-prone situation but also effectively detect the flood events at sub-

monthly time scales, which is calculated via the following steps: 

𝑇𝑊𝑆𝐴𝑑𝑒𝑓(𝑡) = 𝑇𝑊𝑆𝐴𝑚𝑎𝑥 − 𝑇𝑊𝑆𝐴(𝑡 − 1),          (102) 

where TWSAdef (t) (mm) represents the terrestrial water storage deficit for a specific day (t) that is defined as the difference 290 

between the historic storage anomaly time series maximum during the entire period (TWSAmax) and the storage amount from 

the previous day (TWSA (t-1)). 

Then, the daily flood potential amount (DFPA) is further calculated as follows: 

𝐷𝐹𝑃𝐴(𝑡) = 𝑃(𝑡) − 𝑇𝑊𝑆𝐴𝑑𝑒𝑓(𝑡) = 𝑃(𝑡) − (𝑇𝑊𝑆𝐴𝑚𝑎𝑥 − 𝑇𝑊𝑆𝐴(𝑡 − 1)),       (113) 

where DFPA(t) (mm) represents the daily flood potential amount for a specific day (t); P(t) (mm) represents the daily 295 

precipitation; TWSA(t-1) (mm) represents the TWSA from the previous day (t-1). 
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Finally, we can calculate the normalized daily flood potential index (NDFPI) from the DFPA with the goal of removing the 

effects of hydrological heterogeneity varying from region to region and the typical difference between the storage change 

and precipitation that may not always result in floods (Reager et al., 2009), which can be described as follows: 

𝑁𝐷𝐹𝑃𝐼(𝑡) =
𝐷𝐹𝑃𝐴(𝑡)−𝐷𝐹𝑃𝐴𝑚𝑖𝑛

𝐷𝐹𝑃𝐴𝑚𝑎𝑥−𝐷𝐹𝑃𝐴𝑚𝑖𝑛
,            (124) 300 

where 𝐷𝐹𝑃𝐴𝑚𝑎𝑥  and 𝐷𝐹𝑃𝐴𝑚𝑖𝑛 represent the maximum DFPA and minimum DFPA during the study period respectively. 

The NDFPI indicates the corresponding probability of flood occurrence with a range from 0 to 1. More flood is likely to 

occur when the NDFPI is closer to 1 for a specific region.  

4.6 Model test design 

Monthly TWSA estimates during the extreme flood events occurred in the YRB can be reconstructed at regional scales based 305 

on the above three different learning‐based models, namely the MLP model, the LSTM model and the MLR model. 

Meanwhile, these three models are further validated in four different basins covering from the upstream to downstream of 

the Yangtze River in order to better evaluate their applications. More detailed information about all these four different 

basins can also can refer to Table S1.  Monthly TWSA estimates can be reconstructed based on the above three different 

learning‐based models, namely the MLP model, the LSTM model and the MLR model. According to previous findings in 310 

Liu et al. (2021), different periods of data used for training (i.e. identification of model parameter sets) and validation can 

eventually influence the corresponding performances of a specific model when simulating TWSA. Therefore, we generally 

design a total of three scenarios according to the way of dividing training periods and validation periods for a specific model. 

As shown in Fig. 2, periods of GRACE data used for training and validation in each experiment are listed, which include (1) 

Scenario 1: training period (2003/01-2014/07, a total of 129 months) and validation period (2014/08-2020/12, a total of 56 315 

months), (2) Scenario 2: training period (2005/06-2018/06, a total of 129 months) and validation period (2003/01-2005/05 

and 2018/07-2020/12, a total of 56 months), and (3) Scenario 3: training period (2007/10-2020/12, a total of 129 months) 

and validation period (2003/01-2007/09, a total of 56 months). Similar to LSTM and MLP, the MLR model is also applied at 

regional scales to better show the temporal variation of downscaled TWSA during the extreme flood events occurred in the 

YRB. 320 

 

Furthermore, three kinds of statistical measures including root mean square error (RMSE), correlation coefficient (r), and 

Nash‐Sutcliffe efficiency coefficient (NSE) are used in this study as they can jointly measure the matching quality in terms 

of both magnitude and phase between the simulated and the observed time series. These statistical measures are defined as: 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑠,𝑖−𝑥𝑜,𝑖)

2𝑁
𝑖=1

𝑁
𝑅𝑀𝑆𝐸 = √

∑ (𝑥𝑖−𝑥𝑜𝑖)
2𝑁

𝑖=1

𝑁
,         325 

     (135) 

𝑟 =
∑ (𝑥𝑠,𝑖−𝑥̅𝑠,𝑖)(𝑥𝑜,𝑖−𝑥̅𝑜,𝑖)
𝑁
𝑖=1

√∑ (𝑥𝑠,𝑖−𝑥̅𝑠,𝑖)
2𝑁

𝑖=1 ×∑ (𝑥𝑜,𝑖−𝑥̅𝑜,𝑖)
2𝑁

𝑖=1

𝑟 =
∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)(𝑥𝑜𝑖−𝑥𝑜𝑖̅̅ ̅̅ ̅)𝑁
𝑖=1

√∑ (𝑥𝑖−𝑥𝑖̅̅ ̅)
2𝑁

𝑖=1 ×∑ (𝑥𝑜𝑖−𝑥𝑜𝑖̅̅ ̅̅ ̅)2𝑁
𝑖=1

,       

      (146) 

𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑠,𝑖−𝑥𝑜,𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑜,𝑖
𝑁
𝑖=1 −𝑥̅𝑜,𝑖)

2𝑁𝑆𝐸 = 1 −
∑ (𝑥𝑖−𝑥𝑜𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑜𝑖
𝑁
𝑖=1 −𝑥𝑜𝑖̅̅ ̅̅ ̅)2

,         

    (157) 330 

where xi and xoi represent simulated and observed values, respectively; 𝑥𝑖̅ and 𝑥𝑜𝑖̅̅ ̅̅  represent the average of simulated and 

observed values; N is number of validation values.where xs,i and xo,i represent simulated and observed TWSA in month i, 

respectively; 𝑥̅𝑠,𝑖 and 𝑥̅𝑜,𝑖 represent the average of simulated and observed TWSA series; N is the total months of observed 

(or simulated) TWSA available. 

5 Results 335 

5.1 Temporal variation of precipitation, temperature, SMSA, TWSA and streamflow across the YRB during 2003-

2020 

Fig. 4 shows the monthly time series of SMSA, TWSA, streamflow and the main climatic variables including precipitation 

and temperature across the YRB during 2003-2020.The results show that monthly TWSA over the YRB has a wide range 

from -58.0 mm to 130.1 9 mm during the study period. Monthly TWSA estimated by three GRACE/GRACE-FO solutions 340 

changes synchronously with precipitation across the entire YRB, showing a significantly positive correlation between 

TWSA and precipitation (r = 0.54; p < 0.01) during the study period. For summer 2020 as an example, a noticeable increase 

in precipitation has been observed in the YRB during the summer season (Jun to August) in 2020. According to the statistics 

collected by Yangtze River Conservancy Commission of Ministry of Water Resources, the accumulative rainfall across the 

entire YRB exceeds 680 mm in summer 2020 from April to October, which is far more than the mean rainfall 345 

(approximately 540 mm) during the same period from 2003 to 2019. Accordingly, TWSA reaches its maximum in July 2020 

with an estimate of 130.9 mm during 2003-2020, reflecting the evolution of TWSA in response to heavy rainfall during this 

period. In addition to precipitation, TWSA is also highly consistent with temperature over the YRB during 2003-2020, 

showing a positive correlation coefficient of r = 0.57 (p < 0.01) with monthly temperature. 

The GLDAS Noah-derived SMSA and GRACE/GRACE-FO derived TWSA both show a seasonal variation through the 350 

entire study period in the YRB, but there exists a significant difference in the intensity of anomalies between them especially 
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in the summer season as depicted in Fig. 4. This phenomenon can be explained by the discrepancies resulted resulting from 

different the components of SMSA and TWSA. Although the SMSA is an important component of TWSA for many regions, 

the latter usually contains some other components, such as the anomalies of surface water and groundwater etc., besides the 

SMSA (Xie et al., 2021). There exists a significant correlation between TWSA and SMSA with a positive correlation 355 

coefficient of r = 0.84 (p < 0.01), both of which reach to maximum and minimum values almost simultaneously. In general, 

TWSA shows a significant correlation with precipitation, temperature and SMSA during the study period, all of which have 

been therefore selected as the inputs applied to simulate monthly TWSA over different regions. 

Figure 4. 

5.2 Reconstruction of TWSA by different models 360 

To achieve the temporal downscaling of monthly TWSA data and fill the missing months for TWSA, we should firstly build 

the relationships between GRACE/GRACE-FO derived TWSA and various hydro-climatic factors including precipitation, 

temperature and SMSA at monthly time scales. The results of TWSA are estimated by the mean value in different regions 

upstream of the corresponding hydrological stations shown in Fig. 1. In this study, three different models including MLP, 

LSTM and MLR are adopted to reconstruct TWSA for regions. Table 3 shows the summary of model performances in 365 

reconstructing monthly TWSA across the YRB during the study period. GRACE/GRACE-FO satellites data used for training 

(i.e. identification of model parameter sets) and validation shown in each scenario mainly depend on the periods of series of 

data as suggested by Liu et al. (2021). According to Table 3, we find that all models including the MLP, the LSTM and the 

MLR with Scenario 3 show the best performances in simulating monthly TWSA under all three designed scenarios. This 

result indicates that the models with Scenario 3 is relatively superior to the models with the other two scenarios when 370 

simulating TWSA because the data in Scenario 3 contains more extremely high (or low) values during the study period in the 

process of training models. Therefore, in the following sections, we decide to directly divide the training periods and 

validation periods of all these models according to Scenario 3 (shown in Table 3) when simulating monthly TWSA for other 

regions besides the YRB. 

Table 3. 375 

Fig. 5 show the comparison between monthly TWSA derived from GRCACE/GRACE-FO satellites data and that simulated 

by different models for all regions during 2003-2020. The corresponding evaluation values are also presented in this figure. 

We find that the maximum NSEs between the GRACE/GRACE-FO-derived TWSA estimates and that simulated by models 

are 0.68, (Fig. 5(a)), 0.82 (Fig. 5(f)), 0.86 (Fig. 5(g)) and 0.89 (Fig. 5(j)) during the validation periods for the SYRB, the 

UYRB, the UMYRB and the YRB, respectively. The corresponding RMSEs are 13.2 mm/month, 13.7 mm/month, 12.4 380 

mm/month and 10.9 mm/month (validation periods, hereafter) for the SYRB, the UYRB, the UMYRB and the YRB, 

respectively. In general, the detrended TWSA estimates present consistent values between the observations and the modeled 
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results from 2003-2020 for most regions except for the SYRB, as shown in Fig. 5. Compared to the other regions, all models 

show a relatively poor performance in simulating monthly TWSA for the SYRB with NSEs less than 0.70 during the 

validation periods, which can be mainly attributed to the increased uncertainties in precipitation and temperature induced by 385 

the sparse distribution of meteorological stations over this region (shown in Fig. 1). 

We further compare separately the performances of all models in simulating monthly TWSA for a specific region. Taking 

the entire YRB as an example (Fig. 5(j-l)), GRACE/GRACE-FO derived TWSA estimates shows a RMSE of 10.9 

mm/month for the MLP-derived TWSA estimates, which is lower than that of 15.1 mm/month for the LSTM-derived TWSA 

estimates (~39% decreasedifference) and that of 13.3 mm/month for the MLR-derived TWSA estimates (~22% 390 

differenceecrease). Meanwhile, the NSE shows similar improvements when applying the MLP model to simulate TWSA for 

the YRB (Fig. 5(j-l)), which can also be found in the SYRB (Fig. 5(a-c)) and the UMYRB (Fig. 5(g-i)). In general, the MLP 

and MLR models achieve high metrics (0.81/12.8 mm/month and 0.75/14.2 mm/month of NSE/RMSE on average for all 

regions) during the validation periods, both of which are significantly higher than the metrics between the GRACE/GRACE-

FO derived TWSA estimates and that simulated by the LSTM model (0.75/14.7mm of NSE/RMSE on average for all 395 

regions). For the UYRB (Fig. 5(d-f)), the MLP model shows a slightly poor performance in simulating TWSA in terms of a 

higher RMSE (14.7 mm/month) than the LSTM model (14.5 mm/month; ~1.2% increase) and the MLR model (13.7 

mm/month; ~7.2% increase). In addition, it seems that the larger the study region, the higher the correspondence between the 

GRACE/GRACE-FO derived TWSA estimates and that simulated by models for the MLP model. This result can be 

explained that the large area for a specific region may smooth more uncertainties in GRACE signals and meteorological 400 

observations (Long et al., 2015). 

Overall, Fig. 5 clearly suggests the MLP model’s superior performances in simulating TWSA with an average value of NSE 

higher thanof 0.81 and an average value of RMSE lower thanof 12.8 mm/month during the validation periods for all regions, 

showing the outstanding capability of MLP model in learning the complicated relationships between TWSA and hydro-

climatic factors. As documented in Shu et al. (2007), the MLP model can show its unique superiority and great advantages 405 

compared with other statistical models particularly when explaining the underlying processes that have complex nonlinear 

interrelationships. The results shown in Fig. 5 also indicate that the MLP model can show a relatively better performance in 

simulating monthly TWSA than the LSTM model in this study. As described in Zhang et al. (2018), one of main drawbacks 

of the LSTM model is its complexity compared with the MLP model, which indicates that the LSTM model may not show 

better performances in simulating time series data than other traditional ANNs models in some cases especially when limited 410 

trained data are available. In addition, the moderate performance of LSTM model in reconstructing TWSA compared to the 

MLP model can be partly attributed to the possibly limited role of the memory function in the LSTM model (Wei et al., 2021; 

Yin et al., 2022), since relations between inputs and the output of this model (shown in Figure 4) are pretty direct without 
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much memory effects. Therefore, in the following discussion, only the MLP model is applied to further achieve the temporal 

downscaling of monthly TWSA data for regions. 415 

Figure 5. 

5.3 Temporal downscaling of GRACE/GRACE-FO satellites data 

Relationships between monthly TWSA and hydro-climatic inputs with respect to the entire YRB have been fully established 

as presented in Section 5.2. As documented in Herath et al. (2016) and Requena et al. (2021), the same scaling properties 

have been commonly assumed for baseline and future periods in temporal downscaling. Therefore, it is reasonable and 420 

acceptable to assume that scaling properties at the monthly time scales are valid at the daily time scales in this study (Kumar 

et al., 2012). That is, the relationship between temporally downscaled TWSA and daily hydro-climatic inputs is consistent 

with that previously established by the downscaling model (e.g. the MLP model) at monthly time scales for a specific region. 

By merging the daily hydro-climatic inputs into the previously established relationships between TWSA estimates and 

hydro-climatic factors based on the MLP model, we can downscale the TWSA estimates from monthly time series to daily 425 

time series for all regions.  

Fig. 6 shows daily time series of TWSA temporally downscaled by the MLP model for different regions during 2003-2020. 

It can be seen that daily TWSA shows sub-monthly signals in response to changes in hydro-climatic factors as expected. 

Both GRACE/GRACE-FO derived TWSA estimates and daily TWSA estimates temporally downscaled by the MLP model 

show obvious seasonal cycles and reach to their respective extreme values almost simultaneously. More specific, amplitudes 430 

of daily TWSA estimates are slightly higher (or lower) than monthly TWSA estimates in summer (or winter) seasons from 

2003 to 2020. This can be deemed as reasonable because monthly TWSA estimates are defined as the mean average of daily 

TWSA estimates for a specific month. It should also be noted that there still exist some discrepancies between temporally 

downscaled TWSA at sub-monthly time scales and monthly TWSA estimates derived from GRACE/GRACE-FO satellites 

data for the SYRB particularly in some extreme low values, which can be attributed to the relatively poor relationship 435 

between TWSA estimates and hydro-climatic factors for this region as described in Fig. 5(a). As documented in previous 

studies (Liu et al., 2020; Shi et al., 2020), it has long been challenging to accurately perform hydrological simulation across 

the SYRB because of the complex hydrological processes for this alpine basin. For example, parameter settings calibrated by 

GLDAS Noah land surface model might not be highly accurate for SMS simulation across the SYRB, because field 

measurements of SMS in this region are extremely limited. Harsh climatic conditions and limited weather stations can 440 

additionally influence the accuracy of meteorological observations such as precipitation and temperature across the SYRB 

especially for some extreme values. Given the above reasons, there is a relatively poor relationship between TWSA 

estimates and hydro-climatic factors across the SYRB based on the MLP (shown in Fig. 5(a)). Furthermore, the uncertainty 

in the observed precipitation and temperature and SMS derived from the GLDAS Noah land surface model can eventually 
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result in some discrepancies between temporally downscaled TWSA at sub-monthly time scales and monthly TWSA 445 

estimates derived from GRACE/GRACE-FO satellite data, as described in Fig. 6(a). 

Figure 6. 

5.4 Relation between daily TWSA and streamflow during flood events 

Fig. 7 and Fig. 8 show the daily TWSA temporally downscaled by the MLP model and observed streamflow within the YRB 

in 2010 and 2020 when extreme flood events occurred according to the information published by the Yangtze River 450 

Conservancy Commission of Ministry of Water Resources. As described in Fig. 7 and Fig. 8, the nonparametric simple 

smoothing method introduced in Section 4.4 can effectively identify the corresponding flood events occurred in each region 

based solely on the analysis of streamflow time series. It shows an apparent increase in streamflow from the beginning to 

peak of all flood events. Accordingly, the daily TWSA shows a distinct increase similar with streamflow during the same 

periods as expected. It is also interesting to note that the beginning of increase shown in daily TWSA is earlier than that of 455 

streamflow. This is partly because high antecedent soil moisture, which is an important component of TWSA, has been 

identified as an important driver of flood events for regions (Fatolazadeh et al., 2022; Jing et al., 2020; Reager et al., 2014; 

Wasko et al., 2019). Meanwhile, this result indicates that daily TWSA can be potentially useful in building early flood 

warning systems since it may identify the extreme flood events much more earlier than streamflow. 

Figure 7. 460 

Figure 8. 

5.5 Monitoring severe flood events based on the proposed NDFPI in Year 2020 

To better monitor severe flood events over the YRB, we propose a new index, i.e. NDFPI, by jointly using the temporally 

downscaled TWSA data and daily precipitation data as introduced in Section 4.5To better detect the extreme events during 

the wet season, we propose a new index, i.e. NDFPI, by jointly using the temporally downscaled TWSA data and daily 465 

precipitation data observed by meteorological stations as introduced in Section 4.5. According to the Yangtze River 

Conservancy Commission of Ministry of Water Resources, the YRB has suffered from catastrophic flooding in Year 2020 

and a total of 33 rivers in the YRB exceeded their historical maximum water levels during this period. Therefore, in this 

study, the severe flood events occurred in 2020 for the YRB will be served as an example to present the capability of NDFPI 

in detecting extreme flood events. The threshold values of daily streamflow and NDFPI for the 90th percentile floods during 470 

2003-2020 are presented in Fig. 9. According to the results shown in Fig. 9, the larger threshold values of NDFPI usually 

indicate severity of flood occurrences increases for a specific region. In addition, the shape of percentile duration curve of 

daily streamflow across the UYRB (Fig. 9(b)) is different with that shown in other regions. It is noted that the outlet of the 

UYRB, the Yichang hydrological station, is located approximately 45 km downstream of the Three Gorges Reservoir 
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(shown in Fig. 1), which is one of the largest hydroelectric reservoirs in the world. Given that the operations of the Three 475 

Gorges Reservoir can directly affect the streamflow at Yichang station (Yang et al., 2022), the result shown in Fig. 9(b) is 

reasonable. 

Figure 9. 

Fig. 10 shows the comparison between basin averaged NDFPI and daily streamflow observations for the 90th percentile 

floods in 2020. The results indicate that the ups and downs of the streamflow observed at different hydrological stations are 480 

highly consistent with the NDPFI results through the whole season. For example, the observations of streamflow from the 

Shigu hydrological station (Fig. 10(a)) reached its 90th percentile in July 12. In comparison, the NDFPI estimated by 

temporally downscaled TWSA and daily precipitation reached its 90th percentile in July 4 (Fig. 10 (a)), which is nine days 

earlier than that of daily streamflow. As expected, these high streamflow observations during the wet season are usually 

accompanied by high NDPFI values, which could be attributed to the effects of high precipitation on streamflow during this 485 

period. For the YRB (Fig. 10 (d)), daily streamflow detected at the Datong hydrological station reached its 90th percentile in 

June 29 and eventually peaked in July 13 with a maximum value of 7.2×109 m3/day, which is in line with the findings in Jia 

et al. (2021). Accordingly, the series of NDFPI reached its 90th percentile in June 18 with a value of 0.58. In general, Fig. 10 

clearly suggests that the proposed NDFPI calculated by temporally downscaled TWSA data and daily precipitation changes 

synchronously with the reality of flood disasters in 2020 for the YRB. Meanwhile, it also indicates that such flood events can 490 

be monitored by the proposed NDFPI earlier than traditional streamflow observations. 

Figure 10. 

Previous studies usually focus on monitoring the long-term flood events while the flood events at sub-monthly time scales 

using GRACE/GRACE-FO satellites data have been limitedly investigated due to the limitation of its temporal resolution 

(i.e. month) (Gouweleeuw et al., 2018; Long et al., 2014). In this study, however, Fig. 10 clearly shows the incremental 495 

process of TWSA during the wet season using the new proposed NDFPI estimated by temporally downscaled 

GRACE/GRACE-FO satellites data and daily precipitation for different regions. This means that the proposed NDFPI has 

the great potential to detect the evolution of extreme flood events within the short period. It is also interesting to note that the 

NDFPI reached the threshold of different classes of flood events earlier than that defined by streamflow observations during 

the wet season in 2020, which can be repeatedly found in the SYRB, the UYRB, the UMYRB and the YRB (Fig. 10) 500 

respectively. The comparison results indicate that the lag time between the threshold values of flood events monitored by the 

NDFPI and that monitored by daily streamflow during the wet season ranges from 8 to 15 days for the 90th percentile floods 

among all regions in 2020, all of which are far less than the temporal resolution of original GRACE/GRACE-FO satellites 

data (i.e. month). In addition to the 90th percentile floods, we also compare the basin averaged NDFPI and daily streamflow 

observations for the 95th and 99th percentile floods in 2020 (shown in Supplement Figure S1-S4). The results also show that 505 

the series of NDFPI reached the threshold values earlier than that of daily streamflow observations for the 95th and 99th 
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percentile floods. For example, there exists a 11-day lag time between the threshold value of NDFPI and that of the 

streamflow observed by Datong hydrological station for the 99th percentile floods in 2020 (Fig. S4(d)), which provides 

useful information for accurate and timely flood forecasts and can be very beneficial for protecting people and infrastructure 

over regions in a changing climate. 510 

6 Discussions 

6.1 Extreme flood events monitored by NDFPI 

The comparison results indicate that the proposed NDFPI reached the threshold values of different classes of flood events 

earlier than that defined by streamflow observations in 2020 with respect to the YRB and its individual subbasins (shown in 

Figure 8 and Figure S1-S4). This is consistent with the results found at the Missouri River basin by Reager et al. (2014). 515 

Reager et al. (2014) indicated that regional TWSA may lead river discharge slightly before the flood season, which can 

provide useful information on the signal of high streamflow in the coming flood seasonThis is consistent with the results 

found at the Missouri River basin by Reager et al. (2014) who indicated that regional TWSA may lead river discharge 

slightly before the flood season, creating a simple hysteresis effect between these two time series. It is this effect that 

provides useful information on the signal of high streamflow in the coming flood season and the predisposition for flooding 520 

over the study region. However, the study of Reager et al (2014) only demonstrated the application of GRACE data to 

characterize regional flood potential at monthly time scales. More accurate information about the complete hydrologic state 

of a specific region at sub-monthly time scales during the wet season has been limitedly investigated, which is very vital for 

flood warnings. Given this in mind, we proposed a new index, i.e. NDFPI, by jointly using the temporally downscaled 

TWSA data and daily precipitation data to better analyze the hydrologic state of the study region during the wet season at 525 

finer time scales. 

The comparison analysis of the NDFPI and daily streamflow with respect to the YRB may explain the possible reasons why 

the NDFPI can detect extreme flood events for a specific river basin. Intense rainfall of long duration can cause continuous 

increases in the surface water (e.g. water stored in lakes and wetlands), soil moisture storage and groundwater storage that 

are totally represented by TWSA in this study through the process of infiltration. Many studies also revealed that changes in 530 

surface water, soil moisture and groundwater under intense rainfall can exert obvious effects on the status of regional TWSA 

(Döll et al., 2012; Felfelani et al., 2017; Sinha et al., 2019; Velicogna et al., 2012). All these changes may ultimately result in 

the saturation of aquifer over regions. However, the saturated state of aquifers is not persistent because there is a great need 

for the basin to relieve its saturated state by discharging excessive water stored on and below the land surface into the river 

channels, which may eventually lead to the dramatic increase in streamflow and greatly increase the risk of widespread and 535 

damaging regional flooding. 
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6.2 Advantages of detecting extreme flood events based on temporally downscaled TWSA 

The traditional flood monitoring approaches mainly provide useful information about the evolution of flood events over the 

study region through the measurements of rainfall and streamflow. All these measurements largely depend on the in-situ 

hydrological stations and rainfall gauging stations distributed over the regions, which are difficult to achieve in some regions 540 

with harsh environment and climatic conditions. In comparison, satellite remote sensing has no such limitation of traditional 

point‐based observations, making it a promising approach to monitor extreme flood events particularly in some poorly 

gauged basins. Given the large spatial extent, complicated climatic condition, and inaccessible hydrological observations for 

some high-altitude regions (e.g. SYRB), GRACE TWSA has shown great advantages and superiority in flood monitoring 

and water resources management for the YRB than traditional flood monitoring approaches. 545 

Furthermore, all these traditional flood monitoring approaches mainly focus on the meteorological conditions or the status of 

surface water reflecting by various hydro-climatic factors and pay little attention to the importance of antecedent terrestrial 

water storage conditions before flood events, which can play a critical role in capturing the flood formation processes (Xiong 

et al., 2021). For example, Reager et al. (2009) applied the TWSA from GRACE data and monthly precipitation to assess the 

likelihood for flooding at the regional scale and emphasized the importance of terrestrial water storage signal in the accurate 550 

prediction of floods and general runoff. Long et al. (2014) employed the index of flood potential amount using GRACE data 

and monthly precipitation to investigate hydrological floods and droughts for a large karst plateau in Southwest China and 

found that higher TWSA estimates are more prone to result in large potential for flooding during rainy season because of the 

excessive water that cannot be stored further. Therefore, the new proposed index incorporating TWSA can more holistically 

quantify the potential of the development of severe floods for regions than common flood potential indices using hydro-555 

climatic observations. 

While previous studies have proposed several standardized indices for large-scale flood monitoring based on GRACE-

derived TWSA (Chen et al., 2010; Tangdamrongsub et al., 2016), flood monitoring and assessment at sub-monthly time 

scales remains a challenge using GRACE data due to its coarse temporal resolution (month). Flood monitoring at finer time 

scales is pivotal in understanding the regional water cycle under climate change, which ultimately helps to manage the basin-560 

scale water resources effectively and improve the efficiency of early flood warning systems. The application of daily series 

of TWSA temporally downscaled from GRACE/GRACE-FO satellites data can provide a useful method to comprehensively 

assess the integrated flood condition considering the changes of both surface and subsurface water storage at sub-monthly 

time scales. The highest difference in the temporally downscaled TWSA and the daily precipitation during the wet 

seasonThe highest deficit in the temporally downscaled TWSA and the daily precipitation during the wet season, as revealed 565 

by the NDFPI, can indicate the early signs of the region’s transition from normal state to a flood-prone situation. Overall, the 

new proposed NDFPI is proven to be a useful tool for flood monitoring with the finer time scale over large-scale basins, 
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which also makes it possible to monitor extreme flood events timely especially for some regions with limited in-situ 

streamflow observations. 

6.3 Uncertainties and limitations 570 

The signals detected by GRACE/GRACE-FO satellites data reflect the changes in regional TWSA under the joint effects of 

climatic variability and human activates (Xie et al., 2019b). By using the method of linear detrending, long-term trends in 

series of TWSA estimates have been removed during the reconstruction of TWSA, because they are generally driven by 

various human activities such as irrigation and, reservoir operation and water withdrawals, all of which cannot be well 

reconstructed by hydro-climatic factors (Humphrey and Gudmundsson, 2019). Although the detrending method can reduce 575 

the impacts of human activities on reconstructing TWSA to some degree, it could still result in some discrepancies between 

the results of detrended TWSA and natural TWSA under climatic variability particularly in some regions where intense 

human activities existed. In future, more attentions should be paid to reconstruct the series of regional TWSA under climatic 

variability when more detailed statistics related to human use such as water consumption, reservoir operation and inter-basin 

water diversion projects are availableBy using the method of linear detrending, long-term trends in series of TWSA 580 

estimates have been removed during the reconstruction of TWSA, because they are generally driven by surface conditions 

and human activities. Human activities such as reservoirs operation, irrigation and water withdrawals cannot be well 

reconstructed by hydro-climatic factors. Although the detrending method can reduce the impacts of human activities on 

reconstructing TWSA to some degree, it could still result in some discrepancies between the results of detrended TWSA and 

natural TWSA under climatic variability. In future, more attentions should be paid to effectively reconstruct the series of 585 

regional TWSA under climatic variability when more detailed information on the statistics of water consumption data 

induced by human activities are available. Meanwhile, TWSA estimates in some months are not available for the GRACE 

and GRACE-FO satellite due to the problem of “battery management”. Although all these missing months can be effectively 

filled by different machine-learning based models, it may overestimate or underestimate the actual TWSA especially for 

some extreme values in the peak of the wet or dry season (Abhishek et al., 2022).   590 

Furthermore, this study presents an effective way to temporally downscale the TWSA estimates from monthly time series 

into daily values. This temporal downscaling method is assessed through four case studies across the entire YRB, which 

could well present the temporal evolution of TWSA at sub-monthly time scales during the wet season. As this study mainly 

focus on characterizing regional flood potential based on the new proposed NDFPI incorporating temporally downscaled 

TWSA estimates, we applied this temporal downscaling method on the basin scale. In theory, this method is also suitable for 595 

the temporal downscaling of GRACE/GRACE-FO satellites data at the grid cell scale. However, as pointed out by previous 

studies (Landerer et al., 2012; Save et al., 2016; Scanlon et al., 2016), gridded TWSA estimates derived from 

GRACE/GRACE-FO satellites data involve relatively large uncertainty induced by associated measurement errors and signal 
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leakage errors. As a result, the accuracy of TWSA estimates can ultimately exert a direct influence on the optimized 

parameter sets that are obtained for trained models in each grid cell, which is a contributing factor of the uncertainty. In 600 

addition, the forcing data of these models used for temporal downscaling, including air temperature, precipitation and 

GLDAS Noah derived SMSA, may also contain some errors and uncertainties due to the uneven spatial distribution of 

meteorological stations and natural measurement errors (Lv et al., 2017). These errors and uncertainties from the input data 

could be propagated into the machine learning‐based models (e.g. MLP model), resulting in a broad range of differences 

between the observations and the simulated results. The latest study has made some initial attempts to learn the spatio-605 

temporal patterns of difference between TWSA derived from GRACE data and those simulated by land surface models 

based on the convolutional neural network (CNN) models with the goal of providing more accurate TWSA estimates (Mo et 

al., 2022; Sun et al., 2019).The latest study has noticed the importance of spatially correlated features and made some initial 

attempts to make full use of the spatially correlated features associated with images for predictions based on the 

convolutional neural network (CNN) model with the goal of providing more accurate TWSA estimates (Mo et al., 2022). 610 

Therefore, a thorough consideration of the spatio-temporal patterns of difference between TWSA derived from 

GRACE/GRACE-FO satellite data and those simulated by other hydrological models will be further taken in our future work 

when downscaling the TWSA estimates in order to better understand the complex underlying mechanism for TWSA 

variations during the wet season. Additionally, more efforts should be made to further validate the reliability of temporally 

downscaled relations proposed in this study when more independent data sources (e.g. groundwater level measurements) are 615 

available in YRB.Therefore, a thorough consideration of the spatiotemporally correlated features among each grid cell will 

be taken in our future work when downscaling the TWSA estimates from monthly time series to daily time series at the grid 

cell scale and fully understand the complex underlying mechanism for TWSA variations during the wet season. 

Overall, the present study shows the great potential of temporally downscaled GRACE/GRACE-FO satellites data in a wide 

range of hydrological applications, such as monitoring the extreme flood events. The study provides an effective means for 620 

the temporal downscaling of original TWSA estimates from GRACE/GRACE-FO satellites data and will help facilitate the 

sustainable management of water resources and develop monitoring and early warning systems for severe flood events over 

large-scale basins. The methods and results shown in this study can provide important implications of flood hazard 

prevention and water resource management for other similar basins that are prone to suffer from severe extreme floods. 

Furthermore, this study can also provide broader implications for flood monitoring in ungauged or poorly gauged basins. For 625 

example, advances in satellite remote sensing have made remote sensing a promising approach to capture various 

hydrological variables (e.g. precipitation, temperature and soil moisture) (Table S2), since they can substantially reduce the 

limitations of traditional ground‐based observations. This is extremely useful and important in hydrological research and 

applications particularly in ungauged or poorly gauged basins. Therefore, we can calculate the flood potential index 

proposed in this study (i.e. NDFPI) by jointly using remote sensing-based precipitation, temperature and soil moisture 630 
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estimates combined with GRACE/GRACE-FO satellite data, which can further provide the potential of remote sensing data 

for flooding in ungauged or poorly gauged basins. 

7 Conclusions 

In the present study, we downscaled the GRACE/GRACE-FO derived TWSA estimates from monthly time series to daily 

time series in the YRB by establishing a relationship between TWSA estimates and hydro-climatic factors based on machine 635 

learning techniques. Furthermore, the temporally downscaled TWSA data combined with daily precipitation were adopted to 

monitor the extreme flood events over the entire YRB in 2020 based on a new daily flood potential index. The main 

conclusions can be drawn as follows: 

(1) When reconstructing monthly TWSA in the YRB, the MLP model shows the best performance with RMSE = 10.9 

mm/month, NSE = 0.89, the MLR model follows with RMSE =13.4 mm/month, NSE = 0.84, and the LSTM model shows 640 

the lowest performance with RMSE = 15.1 mm/month, NSE = 0.81 during the validation period; 

(2) Based on the MLP model, monthly time series of TWSA were temporally downscaled to daily data estimates by using 

meteorological observations and the outputs from a land surface model. The results showed highly consistency with original 

monthly TWSA estimates derived from GRACE/GRACE-FO satellites data with regard to seasonal cycles; 

(3) By jointly using daily average precipitation anomalies and temporally downscaled TWSA, the proposed NDFPI can 645 

effectively detect the flood events at sub-monthly time scales occurred in 2020 for the entire YRB; 

(4) The comparison analysis indicates that different types of flood events including the 90th, 95th and 99th percentile floods 

can be monitored by the proposed NDFPI earlier than traditional streamflow observations with respect to the YRB and its 

individual subbasins, which is very vital for flood forecasts and warning across this regionThe comparison analysis indicates 

that the flood events can be monitored by the proposed NDFPI earlier than traditional streamflow observations with respect 650 

to the YRB and its individual basins, which is very vital for flood forecasts and warning across this region. 
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Table 1: A summary of relevant literature on monitoring extreme flood events using GRACE/GRACE-FO data. 885 

GRACE = Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate 

Experiment Follow-On mission; GLDAS = Global Land Data Assimilation system; TRMM = Tropical Rainfall 

Measuring Mission; MODIS = Moderate-Resolution Imaging Spectroradiometer. 

Study Study region Source data Period  Temporal 

resolution 

Main contributions 

Chen et al. 

(2010) 

Amazon basin GRACE RL04 data; 

precipitation 

2002 to 

2009  

Month Measuring large‐scale extreme 

flood events  

Long et al. 

(2014) 

Yun-Gui 

Plateau 

GRACE RL05 data; 

hydrometeorological 

data 

2003 to 

2012 

Month Evaluating the frequency and 

severity of droughts and floods 

over the regions 

Reager et al. 

(2014) 

Mississippi 

River basin 

GRACE data; 

GLDAS data; stream 

gauge data 

2003 to 

2011 

Month Characterizing regional flood 

potential and assessing the 

predisposition of a river basin to 

flooding 

Tangdamrongsub 

et al. (2016) 

Tonlé Sap 

basin 

GRACE RL05 data; 

TRMM; MODIS; 

hydrological model 

2002 to 

2014 

Month Quantifying the flood events at 

both basin and sub-basin scales 

Chen et al. 

(2018) 

Liao River 

basin 

GRACE RL05 data; 

meteorological data; 

hydrological model 

2002 to 

2016 

Month Monitoring the drought and flood 

patterns based on the total storage 

deficit index 

Yang et al. 

(2021) 

Yangtze River 

Basin 

GRACE/GRACE-FO 

RL06 data; 

meteorological data; 

teleconnection 

indices  

2002 to 

2018 

Month Investigating the flood risk factors 

and analyzing the impact of 

climate change factors on flood 

events 

Shah et al. 

(2021) 

Indian 

subcontinent 

GRACE RL06 data; 

meteorological data 

2002 to 

2016 

Month Examining the role of changes in 

terrestrial water and groundwater 

storage on flood potential 

This study Yangtze River GRACE/GRACE-FO 2003 to Day Monitoring the evolution of 
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Basin RL06 data; runoff; 

meteorological data 

2020 extreme flood events based on 

temporally downscaled GRACE 

data 

 

Table 2: An overview of all datasets used in this study. 890 

Data Source Temporal resolution Spatial resolution Time span 

Terrestrial water storage 

anomaly (TWSA) 

GRACE/GRACE-FO CSR Month 0.5° 2002 -- 

Now2020 

GRACE/GRACE-FO JPL Month 0.5° 2002 - 

2020Now 

GRACE/GRACE-FO GSFC Month 0.5° 2002 - 

2020Now 

Soil moisture storage (SMS) GLDAS 2.1 - Noah 3 hours 1° 2002 - 

2020Now 

Precipitation (PT) CMA Day / 2003 - 2020 

Temperature (TP) CMA Day / 2003 - 2020 

Streamflow In situ Day / 2003 - 2020 

Note. GRACE = Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate 

Experiment Follow-On mission; CSR = Center for Space Research; JPL = Jet Propulsion Laboratory; GSFC = Goddard 

Space Flight Center; GLDAS = Global Land Data Assimilation system; CMA = China Meteorological Administration.
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Table 3: Performances of different models in simulating monthly TWSA across the YRB during 2003-2020. 

Scenarios MLP (RMSE/NSE) LSTM (RMSE/NSE) MLR (RMSE/NSE) 

Scenario 1 2003/01 - 2014/06 (Training) (70%) 10.71/0.89 12.14/0.86 11.63/0.87 

2014/08 - 2020/12 (Validation) (30%) 26.12/0.50 26.62/0.15 24.32/0.57 

Scenario 2 2005/06 - 2018/06 (Training) (70%) 13.54/0.84 14.61/0.79 14.33/0.82 

2003/01 - 2005/05 and 2018/07 - 

2020/12 (Validation) (30%) 

23.32/0.59 25.42/0.17 20.14/0.70 

Scenario 3 2007/10 - 2020/12 (Training) (70%) 15.76/0.80 17.84/0.68 17.24/0.76 

2003/01 - 2007/09 (Validation) (30%) 10.92/0.89 15.12/0.81 13.41/0.84 

Note. TWSA = Terrestrial water storage anomalies; YRB = Yangtze River Basin; MLP = Multi-layer perceptron neural 895 

network; LSTM = Long short-term memory network; MLR = Multiple linear regression. 70%, 30% and 100% represent the 

corresponding proportions to all samples in the training, the validation and the entire periods respectively. RMSE/NSE 

represent the Root mean square error (mm/month) and Nash‐Sutcliffe efficiency coefficient between the simulated TWSA 

with the observed TWSA respectively. Noted that GRACE/GRACE-FO derived TWSA in some months are not available 

due to the problem of battery management. 900 
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Figure 1: Location of the Yangtze River Basin (YRB) in China and its topography. Distribution of meteorological stations and 

hydrological stations are also shown in this figure. TGR = Three Gorges Reservoir; DEM = Digital Elevation Model. 
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Figure 2: A detailed flow diagram illustrating the temporal downscaling of GRACE/GRACE-FO derived TWSA. GRACE = 

Gravity Recovery and Climate Experiment mission; GRACE-FO = Gravity Recovery and Climate Experiment Follow-On mission; 

SMSA = Soil moisture storage anomaly; TWSA = Terrestrial water storage anomaly; CSR = Center for Space Research; JPL = 

Jet Propulsion Laboratory; GSFC = Goddard Space Flight Center; SYRB = Source regions of the Yangtze River Basin; UYRB = 

Upper regions of the Yangtze River Basin; UMYRB = Upper and the Middle regions of the Yangtze River Basin; YRB = Yangtze 910 
River Basin; MLP = Multi-layer perceptron neural network; LSTM= Long short-term memory; MLR = Multiple linear 

regression; NDFPI = Normalized daily flood potential index.  
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Figure 3: Architecture of (a) a typical three-layer multi-layer perceptron (MLP) neural network and (b) a typical a long-short time 

memory (LSTM) network. Ψi denotes the sigmoid transfer function, Wi,j represent connection weights between the input layer and 915 
the hidden layer, Ij,k represent connection weights between the hidden layer and the output layer. xt, ct, and ht represent the 

standardized input variable, hidden gate and cell gate at the current time t. 
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Figure 4: Monthly time series of precipitation (P, mm), temperature (T, ℃), terrestrial water storage anomaly (TWSA, mm), soil 

moisture storage anomaly (SMSA, mm) and streamflow (×109 m3) across the YRB during 2003-2020. Streamflow data is obtained 920 
at the Datong hydrological station (shown in Figure 1). YRB = Yangtze River Basin. 
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Figure 5: Comparison between monthly TWSA derived from GRCACE/GRACE-FO satellites data (observation) and that 

simulated by different models (validation) for (a-c) the SYRB, (d-f) the UYRB, (g-i) the UMYRB and (j-l) the YRB respectively 

during 2003-2020 with showing statistics of the comparison including root mean square errors (RMSE) (mm/month) and Nash‐925 
Sutcliffe efficiency (NSE). Note that TWSA shown in this figure are detrended because hydro-climatic factors may not fully 

simulate all the long-term trends. The models showing the best performance in simulating TWSA during the validation periods 

have been bold for each region. SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; 

UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 
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Figure 6: Daily time series of TWSA temporally downscaled by the MLP model (TWSA-daily, represented by grey lines) 

for (a) the SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003-2020. Note that monthly 

TWSA estimates derived from GRACE/GRACE-FO satellites data (TWSA-monthly, represented by red dots) shown in this 

figure are detrended because hydro-climatic factors may not fully simulate their long-term trends. TWSA = Terrestrial water 

storage anomaly; MLP = Multi-layer perceptron neural network; SYRB = Source regions of Yangtze River Basin; UYRB = 935 

Upper regions of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River 

Basin.
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Figure 6: Daily (TWSA-MLP-day) and monthly (TWSA-MLP-month) time series of TWSA simulated by the MLP model for (a) 

the SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003-2020. Note that monthly TWSA estimates 940 
derived from GRACE/GRACE-FO satellite data (TWSA-GRACE-month) shown in this figure are detrended because hydro-

climatic factors may not fully simulate their long-term trends. TWSA = Terrestrial water storage anomaly; MLP = Multi-layer 

perceptron neural network; SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; 

UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 
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Figure 7: Daily TWSA temporally downscaled by the MLP model versus streamflow during flood events across (a) the SYRB, (b) 

the UYRB, (c) the UMYRB and (d) the YRB respectively in 2010. The bold blue dash lines and bold red dash lines represent daily 

TWSA and streamflow during the period between the beginning and end of each runoff event. TWSA = Terrestrial water storage 

anomaly; MLP = Multi-layer perceptron neural network; SYRB = Source regions of Yangtze River Basin; UYRB = Upper regions 

of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze River Basin; YRB = Yangtze River Basin. 950 
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Figure 8: Same as Figure 7 but in 2020. 
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Figure 9: Percentile duration curves of daily streamflow observations and NDFPI for the 90th percentile floods across (a) the 

SYRB, (b) the UYRB, (c) the UMYRB and (d) the YRB respectively during 2003-2020. The red dots and blue dots represent 955 
threshold values of daily streamflow and NDFPI for the 90th percentile floods across different regions. SYRB = Source regions of 

Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze River 

Basin; YRB = Yangtze River Basin; NDFPI = Normalized daily flood potential index.  

. 
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Figure 10: Comparison between basin averaged NDFPI and daily streamflow observations for the 90th percentile floods in 2020 

across (a) the SYRM (observed at Shigu station), (b) the UYRB (observed at Yichang station), (c) the UMYRB (observed at 

Hankou station) and (d) the YRB (observed at Datong station). Pink rectangles denote the duration period between the thresholds 

of daily streamflow for the 90th percentile floods and peak streamflow observed at the controlling hydrological stations over 

different regions. The thresholds of daily streamflow and NDFPI for the 90th percentile floods are represented by the red dash 965 
lines and blue dash lines respectively. Note that the scales of streamflow shown in each figure are not always same. SYRB = Source 

regions of Yangtze River Basin; UYRB = Upper regions of Yangtze River Basin; UMYRB = Upper and middle regions of Yangtze 

River Basin; YRB = Yangtze River Basin; NDFPI = Normalized daily flood potential index. . 


