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Abstract. While the calibration-free complementary relationship (CR) has performed excellently in predicting terrestrial 9 

evapotranspiration (ETa), how to determine the Priestley-Taylor coefficient (αe) is still questionable. In this work, we evaluated 10 

this highly utilizable method, which only requires atmospheric data, with in-situ flux observations and basin-scale water 11 

balance estimates (ETwb) in Australia, proposing how to constrain it with a traditional Budyko equation for ungauged locations. 12 

We found that the CR method with a constant αe transferred from fractional wet areas performed poorly in reproducing the 13 

mean annual ETwb in unregulated river basins, and it underperformed advanced physical, machine-learning, and land surface 14 

models in closing grid-scale water balance. This problem was remedied by linking the CR method with a traditional Budyko 15 

equation that allowed an upscaling of the optimal αe from gauged basins to ungauged locations. The combined CR-Budyko 16 

framework enabled us to reflect climate conditions in αe, leading to more plausible ETa estimates in ungauged areas. The 17 

spatially varying αe conditioned by local climates made the CR method outperformed the three ETa models in reproducing the 18 

grid-scale ETwb across the Australian continent. We here argued that the polynomial CR with a constant αe could result in 19 

biased ETa, and it can be constrained by local climate conditions for improvement. 20 

1 Introduction 21 

Evapotranspiration (ETa) plays a pivotal role in water and energy exchanges between the land and the atmosphere. 22 

On the global scale, more than 60% of terrestrial precipitation (P) returns to the atmosphere through plants’ vascular systems 23 

and soil pores, while consuming over 70% of surface net radiation (Trenberth et al., 2007; 2009). Since it is tightly coupled 24 

with carbon cycles, abnormally low ETa would indicate food insecurity and low ecosystem sustainability (Jasechko, 2018; 25 

Kyatengerwa et al., 2020; Pareek et al., 2020; Swann et al., 2016). In severe cases, ETa limited by deficient soil moisture can 26 

lead to extreme heatwaves that further propagate the water deficit in space and time (Miralles et al., 2014; Mueller and 27 

Seneviratne, 2012; Schumacher et al., 2022). 28 
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Despite great community efforts for sharing in-situ observations (e.g., Baldocchi, 2020; Novick et al., 2018), ETa 29 

gauging networks are unevenly established over land surfaces and often subjected to error sources (e.g., unclosed energy 30 

balance) and limited data lengths (Ma et al., 2021). Inevitably, modeling approaches are needed to predict ETa in ungauged or 31 

poorly gauged areas, or to characterize it on a long timescale in a large area. Hence, various approaches have been proposed 32 

including physical models (e.g., Martens et al., 2017; Zhang et al., 2016), machine-learning techniques (e.g., Jung et al., 2019; 33 

Tramontana et al., 2016), and conceptual land surface schemes (e.g., Guimberteau et al., 2018; Haverd et al., 2018). 34 

Those modeling approaches typically require P data and land surface information (e.g., remote-sensing vegetation 35 

indices) to quantify available soil moisture to the vaporization process. However, due in part to uncertainty associated with P 36 

data (Sun et al., 2018) and model structures (Samaniego et al., 2017; Zhang et al., 2019), resulting ETa estimates have shown 37 

substantial disparities. In the comprehensive intercomparison by Pan et al. (2020), for example, the 14 advanced land surface 38 

models generated the global mean ETa varying widely between 450 mm a-1 and 700 mm a-1. Such a large incongruity in 39 

modeled ETa was also found by the earlier Global Soil Wetness Project (Schlosser and Gao, 2010), suggesting that an 40 

alternative method is necessary to circumvent the uncertainty sources. 41 

A practical method to simulate ETa without P data and land-surface schemes is the complementary relationship (CR) 42 

of evaporation (Bouchet, 1963). It uses the evident fact that the air over a water-limited surface amplifies its vapor pressure 43 

deficit (VPD), while this effect disappears when the same surface is amply wet (Chen and Buchberger, 2018; Ramírez et al., 44 

2005; Zhou et al., 2019). Based on the atmospheric self-adjustment, numerous equations have been formulated to predict ETa 45 

only using routine meteorological data (e.g., Anayah and Kaluarachchi, 2014; Crago and Crowley, 2005; Crago and Qualls, 46 

2013; Hobbins et al., 2004; Huntington et al., 2011; Kahler and Brutsaert, 2006 among others). In particular, the definitive 47 

derivation by Brutsaert (2015) and the following modifications (Crago et al., 2016; Crago and Qualls, 2021; Szilagyi, 2021; 48 

Szilagyi et al., 2017) provided strong physical foundations to Bouchet’s (1963) early principle. They have excellently predicted 49 

ETa at various spatial and temporal scales (e.g., Brutsaert et al., 2017, 2020; Crago and Qualls, 2018; Ma et al., 2019, 2021; 50 

Ma and Szilagyi, 2019), and allowed users to assess vegetation droughts over national and continental areas (e.g., Kim et al., 51 

2019, 2021; Kyatengerwa et al., 2020). 52 

Nevertheless, the definitive CRs still require at least some ETa data to calibrate the parameters that determine the 53 

hypothetical wet-surface evaporation (ETw; Qualls and Crago, 2020); thus, they are not fully free of P data or parameterization. 54 

For instance, Brutsaert et al. (2020) calibrated the single parameter of Brutsaert’s (2015) CR with flux observations and basin-55 

scale P and runoff (Q) data to estimate mean annual ETa across the globe. For evaluating four definitive CRs from Brutseart’s 56 

(2015) derivation, Crago et al. (2022) also calibrated their parameters against eddy-covariance flux observations. To date, 57 

Szilagyi et al. (2017) has proposed the only CR formulation that purely uses routine meteorological data; however, it depends 58 

on a questionable assumption that the parameter for ETw is constant over a large continental area, being counterfactual to 59 

experimental studies on the Priestley and Taylor (1972) coefficient (e.g., Assouline et al., 2016; Baldocchi et al., 2016; Parlange 60 

and Katul, 1992; Wang et al., 2014). Given the complex space-time links between climate, soil, and vegetation (Hagedorn et 61 
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al., 2019; Mekonnen et al., 2019; Rodriguez-Iturbe, 2000), the aerodynamic component of ETw is unlikely represented by a 62 

fixed fraction of the net radiation. 63 

Owing to the data required for parameter calibration, the state-of-the-art CR formulations might not be applicable in 64 

ungauged locations. In part, this problem can be mended by an additional constraint for determining the essential parameters, 65 

and the traditional Budyko framework can come into play. A Budyko function (e.g., Fu, 1981; Yang et al., 2008) explains the 66 

mean ratio of ETa to P (i.e., surface water balance) simply by climatological aridity and a few implicit parameters, 67 

simultaneously closing the surface energy budget (Mianabadi et al., 2020). Although Bouchet’s principle has often been linked 68 

with the water balance describe by Budyko functions (e.g., Carmona et al., 2016; Chen and Buchberger, 2018; Lhomme and 69 

Moussa, 2016; Zhang and Burtsaert, 2021), this theoretical link has been ignored when predicting ETa by the definitive CRs. 70 

Kim and Chun (2021) explicitly showed that the atmospheric self-adjustment is tightly coupled with the climatological aridity 71 

within a Budyko function. This implicates that the optimal parameter for a definitive CR should vary with climates rather than 72 

staying constant.  73 

In this work, we showed that a Budyko equation could become an important physical constraint when predicting ETa 74 

by a definitive CR over a continental area. Here, a practical approach was proposed to determine the parameter reasonably in 75 

ungauged locations via a case study for the Australian continent, where the performance of the CR method remained unknown 76 

in many parts. Based on the analytical relationship between the CR and the Budyko framework, we showed why the parameter 77 

of the CR is not independent of local climate conditions, and addressed how to reflect spatially varying climates in its essential 78 

parameter. 79 

2 Methodology and data 80 

2.1 The polynomial CR by Szilagyi et al. (2017)   81 

For the case study, we employed the calibration-free CR formulated by Szilagyi et al. (2017). It describes the 82 

atmospheric self-adjustment to surface moisture conditions using three evaporation rates, namely, ETa, ETw, and the potential 83 

evaporation (ETp). ETa is the actual moisture flux from a land surface to the atmosphere, and ETw is the hypothetical ETa rate 84 

that should occur with ample water availability. ETp is the atmospheric capacity to receive water vapor that responds actively 85 

to soil moisture conditions. By defining the two dimensionless variables as x ≡ ETw/ETp and y ≡ ETa/ETp, Szilagyi et al. (2017) 86 

derived a polynomial function from four definitive boundary conditions.  87 

Under ample water conditions, ETp does not deviate from ETw and ETa (i.e., ETp = ETw = ETa); hence, the 88 

corresponding zero-order boundary condition is (i) y = 1 for x = 1. In contrast, ETa must be nil over a desiccated surface (i.e., 89 

y = 0), and by energy balance, the surface net radiation should be fully transformed to the sensible heat flux. Then, the 90 

atmospheric VPD would be amplified at the maximum level with the same net radiation and wind speed. Defining the 91 

maximum ETp rate as Epmax, another zero-order boundary condition is given as (ii) y = 0 for x = xmin ≡ ETw/Epmax. When x = 1 92 

(i.e., ample water), changes in ETa would be controlled by changes in ETw, yielding a first-order boundary condition as: (iii) 93 
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dy/dx = 1 for x = 1. Over a desiccated surface, ETa stays at zero even when ETw changes; thus, another first-order boundary 94 

condition becomes (iv) dy/dx = 0 for x = 0. The simplest polynomial equation satisfying the four boundary conditions is: 95 

y = 2X2 − X3,            (1a) 96 

where, X rescales the variable x into [0, 1] as: 97 

X =
x−xmin

1−xmin
=

Epmax−ETp

Epmax−ETw

ETw

ETp
.          (1b) 98 

Eq. (1) allows users to estimate ETa with no land-surface information, because ETp, ETw, and Epmax are all obtainable 99 

from a set of net radiation, air temperature, dew-point temperature, and wind speed data. ETp and Epmax can be estimated by 100 

the Penman (1948) equation: 101 

ETp =
∆(Ta)

∆(Ta)+γ

Rn

λv
+

γ

∆(Ta)+γ
fuVPD,          (2) 102 

Epmax =
∆(Tdry)

∆(Tdry)+γ

Rn

λv
+

γ

∆(Tdry)+γ
fues(Tdry),        (3)  103 

where, Δ(·) is the slope of the saturation vapor pressure curve (kPa °C-1), Ta is the mean air temperature (°C), γ is the 104 

psychrometric constant (kPa °C-1), Rn is the surface net radiation less the soil heat flux (MJ m-2 d-1), λv is the latent heat of 105 

vaporization (MJ kg-1), fu = 2.6 (1 + 0.54 u2) is the Rome wind function (mm d-1 kPa-1), where u2 is the 2-m wind speed (m s-106 

1), and VPD is calculated by es(Ta) minus es(Tdew), where es(·) is the saturation vapor pressure (kPa) and Tdew is the dew point 107 

temperature (°C). 108 

Tdry in Eq. (3) is the air temperature (°C) at which the lower atmosphere is devoid of humidity presumably by the 109 

adiabatic drying process: 110 

Tdry = Twb +
es(Twb)

γ
= Ta +

es(Tdew)

γ
,         (4) 111 

where, Twb is the wet-bulb temperature (°C) at which the saturation vapor pressure curve intersects with the adiabatic wetting 112 

line. Thus, it is obtained by: 113 

γ
Twb−Tavg

es(Twb)−ea
= −1.           (5) 114 

To estimate ETw in Eq. (1b), the Priestly-Taylor (1972) equation has been a typical choice (e.g., Brutsaert, 2015; 115 

Crago et al., 2016; Han and Tian, 2018; Szilagyi et al., 2017): 116 

ETw = αe
∆(Tw)

∆(Tw)+γ

Rn

λv
,           (6) 117 

where, αe is the Priestley-Taylor coefficient ranging usually within [1.10, 1.32] (Szilagyi et al., 2017), and Tw is the wet-118 

environment air temperature (°C). Tw can be approximated with the wet-surface temperature (Tws), because the vertical air 119 

temperature gradient is negligible under a wet environment. Given its independence on areal extent (Szilagyi and Schepers, 120 

2014), Tws can be approximated by the implicit Bowen ratio (β) of a small wet patch: 121 

β =
Rn−ETp

ETp
≈ γ

Tws−Ta

es(Tws)−es(Tdew)
.          (7) 122 
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Eq. (7) assumes that the available radiation for the wet patch is close to that of the drying surface (Szilagyi et al., 2017). Tws 123 

might be higher than Ta when the air is close to saturation. In such a case, Tws should be capped by Ta when calculating ETw. 124 

 The single parameter of the polynomial CR, i.e., ⍺e, is analytically obtainable by inserting the Priestley-Taylor 125 

equation into the Bowen ratio of a wet environment (Szilagyi et al., 2017) as: 126 

αe =
[∆(Ta)+γ][es(Tws)−es(Tdew)]

∆(Ta){[es(Tws)−es(Tdew)]+γ[Tws−Ta]}
,         (8) 127 

where, ⍺e must be fall within the theoretical limit of [1, 1+𝛾/𝛥(Ta)] (Priestley and Taylor, 1972). 128 

2.2 The analytical relationship between the polynomial CR and a Budyko function 129 

Since Eq. (8) is applicable only in a wet environment, Szilagyi et al. (2017) identified wet locations in a continental 130 

area based on the fact that the air close to saturation should have high relative humidity (RH) with Tws > Ta. Thus, they 131 

calculated ⍺e values at locations with RH > 90% and Tws > Ta + 2 °C, and the average value was used to predict ETa for a 132 

continental area. However, the spatially constant ⍺e is unlikely suitable in such a large area under diverse climates, because 133 

the equilibrium between the atmosphere and the underlying surface is intertwined with the partitioning of P to ETa and Q over 134 

the surface. 135 

Kim and Chun (2021) analytically related Eq. (1) with the traditional Turc-Mezentsev equation, and found that the 136 

self-adjustment of ETp (i.e., x) is tightly linked with climatological aridity and land properties. For the independence between 137 

P and ‘the possible maximum ETa’ of the Budyko framework, Kim and Chun (2021) reformulated the traditional equation with 138 

Φ0 ≡ ETw/P instead of the commonly used aridity index (Φ ≡ ETp/P) as: 139 

ETa

P
=

ETw

P
[

1

1+(
ETw

P
)

n]

1

n

=
xETp

P
[

1

1+(
xETp

P
)

n]

1

n

,        (9) 140 

where, the parameter n implicitly represents the factors affecting the P partitioning other than the climatic drivers. When 141 

dividing Eq. (9) by Φ, it is found that the Budyko equation (9) is intertwined with the CR Eq. (1a): 142 

y =
ETa

ETp
= 2X2 − X3 = [

xn

1+xnΦn]

1

n
.         (10) 143 

Eq. (10) implies that the self-adjustment of ETp (i.e. x) is tightly related with the climatic condition (i.e., Φ) and the implicit 144 

land property (i.e., n). 145 

 While the x and n can be achievable from a set of ETa, ETp, Epmax, and P values by inverting Eq. (10), such an approach 146 

is not applicable in locations with no ETa data. To quantify x values only using ETp, Epmax, and P, Kim and Chun (2021) 147 

developed a regression equation between x and Φ, xmin, and n values from the 513 gauged river basins over the world. We used 148 

the same regression-based regionalization. Considering xmin = xETp/Epmax, the non-linear Eq. (10) can be approximated by a 149 

multiple regression as: 150 

 x̃ = b0 + b1 ln(Φ)  +b2 ln(ETp/Epmax) +b2 ln(n),       (11) 151 
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where, x̃ is the approximate ratio of ETw to ETp, and b0, b1, and b2 are the intercept and the regression coefficients, respectively. 152 

Since the implicit parameter n is unavailable in ungauged locations, Eq. (11) needs to be further simplified by neglecting the 153 

last term: 154 

x̃ ≈ c0 + c1 ln(Φ) +c2 ln(ETp/Epmax) ,        (12) 155 

where, c0, c1, and c2 are the intercept and the coefficients of the approximated regression. 156 

If x̃ is known by the regression Eq. (12), the parameter ⍺e can be estimated using the Priestley-Taylor equation as: 157 

α̃e = x̃
ETp

ETeq
            (13a) 158 

ETeq =
∆(Tw)

∆(Tw)+γ

Rn

λv
           (13b) 159 

where, α̃e is the Priestley-Taylor coefficient that approximately satisfies the CR and the Budyko equations together, and ETeq 160 

is the equilibrium ETa (mm d-1) at which VPD is nil under a wet environment. It should be noted that P, ETp, Epmax, and ETeq 161 

within Eqs. (9)-(13) must be on a timescale where the Turc-Mezentsev equation is valid (typically longer than a year), and α̃e 162 

is still bounded within [1, 1+𝛾/𝛥(Ta)]. 163 

2.3 Atmospheric forcing, eddy-covariance, and runoff data 164 

We examined the CR-Budyko combined framework in the Australian continent lying within [10°–45°S, 113°–155°E]. 165 

The required atmospheric forcing data (Rn, Ta, Tdew, and u2) were collected from the advanced ERA5-Land reanalysis archive 166 

(Muñoz-Sabater et al., 2021) of the European Centre for Medium-Range Weather Forecasts (https://cds.climate.copernicus.eu; 167 

last access on Dec-10/2021). The monthly averages of surface latent and sensible heat fluxes, 2-m air temperature, 2-m dew-168 

point temperature, and 10-m U and V wind speed components at 0.1°×0.1° were downloaded for 1981–2020. Rn was calculated 169 

by summing the two heat fluxes, and the 10-m wind speed components were converted to u2 using the logarithmic wind profile 170 

(Allen et al., 1998). 171 

We also collected the Australian edition of the Catchment Attributes and Meteorology for Large sample Studies 172 

(CAMELS; Fowler et al., 2021) series of datasets (available at https://doi.org/10.1594/PANGAEA.921850; last access on Sep-173 

27/2021). The CAMELS datasets comprise daily time series of 19 hydrometeorological variables at 222 unregulated river 174 

basins in Australia up to 2014, and we selected the 71 basins larger than 500 km2 to contain at least five CR ETa estimates 175 

within the boundaries. The water-balance ETa (ETwb) (i.e., ETwb ≈ 𝛴P-𝛴Q) of each basin was calculated for the two periods of 176 

1981–1997 and 1998–2014. The mean annual ETwb for the former period was used for the regressions with Eqs. (11) and (12), 177 

and the predicted ETa was evaluated against the latter.  178 

As a point-scale evaluation dataset, the annual flux observations were taken from the 15 eddy-covariance stations 179 

(Table 1) included in the FLUXNET2015 archive (https://fluxnet.org/; last access on Jul-1/2021). We chose the flux towers 180 

with 2 or more annual means, and adopted the energy-balance-corrected latent heat flux observations with the quality measures 181 

https://fluxnet.org/
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‘LE_F_MDS_QC’ higher than 0.70. Given the fine resolution of the ERA5-Land forcing data, we believed that the ETa 182 

estimates by CR could be directly compared with the point-scale observations. 183 

In addition, as a grid-scale evaluation reference, the SILO P data at 0.01°×0.01° were collected from the Queensland 184 

government (https://www.longpaddock.qld.gov.au/silo/gridded-data; last access on Jun-01/2021) together with the Global 185 

RUNoff (GRUN) ENSEMBLE (Ghiggi et al., 2021) (https://doi.org/10.6084/m9.figshare.12794075; last access on Oct-186 

1/2021). The global Q data were produced at 0.5°×0.5° using a machine-learning algorithm trained by in-situ streamflow 187 

observations, and potential biases were reduced by simulations with 21 sets of atmospheric forcing (Ghiggi et al., 2021). The 188 

SILO P was used to calculate Φ = P/ETp at each grid of the forcing data. After bilinearly unifying the resolutions of SILO P 189 

and GRUN Q data, we also calculated the mean annual ETwb for 1998–2014 at 0.5°×0.5° over the entire Australian continent.  190 

Against the grid-scale ETwb estimates, performance of the polynomial CR was also compared with three ETa products 191 

from a physical, a machine-learning, and a land-surface model. The physical model was the Global Land Evaporation 192 

Amsterdam Model (GLEAM) v3.2 (Martens et al., 2017; https://www.gleam.eu; last access on Jun-03/2020) based on the 193 

Priestley-Taylor equation constrained by microwave-derived soil moisture, surface temperature, and vegetation optical depth. 194 

The machine-learning ETa product was the FluxCom (http://www.fluxcom.org/; last access Mar-18/2019) that upscaled in-situ 195 

observations at 224 eddy-covariance towers using 11 algorithms (Jung et al., 2019). We used the version forced by the 196 

CRUNCEPv8 that has the longest data length from 1950 to 2016. The land-surface-model product was the ERA5-Land 197 

monthly ETa (https://cds.climate.copernicus.eu; last access on Jul-7/2021) simulated by the advanced Hydrology Tiled 198 

ECMWF Scheme for Surface Exchanges over Land scheme (Balsamo et al., 2015). All the modeled ETa datasets were 199 

bilinearly regridded to 0.5°×0.5° for 1998–2014 to be compared with the grid-scale ETwb data. 200 

3 Results  201 

3.1 Performance of the calibration-free CR in Australia 202 

Figure 1a depicts the spatial distribution of the inverted aridity index (Φ-1 = P/ETp) that can traditionally categorize 203 

climate conditions. The mean ratios between SILO P and ETp for 1998-2014 indicated that 83% of the Australian land surfaces 204 

were under arid (0.05 < Φ-1 < 0.2) and semi-arid climates (0.2 < Φ-1 < 0.5). Semi-humid (0.5 < Φ-1 < 0.65) and humid climates 205 

(Φ-1 > 0.65) were only found in the northern and southeastern coastal areas and the southwestern edge where major cities and 206 

agricultural lands have developed. Despite the high aridity, hyper-arid climates (Φ-1 < 0.05) were not found in Australia. 207 

We first examined the calibration-free approach by Szilagyi et al. (2017) that only uses the meteorological forcing 208 

inputs. The blue-colored points in Figure 1a are the locations with RH > 90% and Tws > Ta + 2˚C, at which the ⍺e values from 209 

Eq. (8) were within 1.15 ± 0.047 (mean ± standard deviation). Though the two conditions were met in some mountainous areas 210 

in the southeastern part, we excluded them because unexpectedly high ⍺e values were obtained. The mean ⍺e = 1.15 fell within 211 

https://www.longpaddock.qld.gov.au/silo/gridded-data
https://doi.org/10.6084/m9.figshare.12794075
https://www.gleam.eu/
http://www.fluxcom.org/
https://cds.climate.copernicus.eu/
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the theoretical limits, and was equal to the value used in the prior studies in China (Ma et al., 2019) and the conterminous U.S. 212 

(Ma and Szilagyi, 2019). 213 

Using the CR with ⍺e = 1.15, we predicted ETa over the entire Australian continent (Figure 1b). The distribution of 214 

the resulting mean ETa for 1998–2014 was coherent with that of Φ-1. The mean CR ETa ranged in 262 ± 85.3 mm a-1 and 547 215 

± 173 mm a-1 under arid and semi-arid climates, respectively. On the other hand, CR ETa in semi-humid and humid locations 216 

were much higher in 886 ± 187 mm a-1 and 1,010 ± 213 mm a-1, respectively. The calibration-free CR predicted the continental 217 

mean ETa as high as 489 mm a-1 for 1981–2012, and it was about 11.3% higher than the estimate for the same period (439 mm 218 

a-1) by Zhang et al. (2016). The mean fraction of ETa to P for 1998–2014 (97%) was larger than the typical ETa value in 219 

Australia (~90%; Glenn et al., 2011), implicating that the constant ⍺e = 1.15 seemed to make the CR overrate ETa. 220 

The overestimation of the calibration-free CR was confirmed by the flux observations and the basin-scale ETwb 221 

(Figure 2). The percent bias (p-bias) of CR ETa to the point-scale annual ETa was +10.4%, while it became more than doubled 222 

when compared to the basin-scale ETwb. Though the Pearson correlation coefficients (Pearson r) were significantly high 223 

between the CR ETa and the two evaluation references, the low Nash-Sutcliffe efficiency (NSE) to ETwb implicates that the 224 

CR method could perform poorly in wet river basins. The regression slopes in Figure 2 also indicate that the calibration-free 225 

CR tends to increasingly overestimate as climate becomes wetter. The root mean square error (RMSE) of CR ETa to ETwb was 226 

higher than to the point observations. Although it appeared to perform acceptably at the 15 flux towers, the CR method 227 

produced considerable biases in the 71 CAMELS basins. The performance measures were not as excellent as the same CR 228 

method had shown in the U.S. (Ma et al., 2021; Ma and Szilagyi, 2019; Kim et al., 2019) and in China (Ma et al., 2019). 229 

One may argue that the mean ⍺e derived from fractional wet areas is unlikely representative of the large Australian 230 

continent, and this might introduce the biases to CR ETa estimates. Hence, we re-simulated CR ETa with Ma et al.’s (2021) 231 

estimate (⍺e = 1.10) from a global-scale analysis. Figure 3a shows that the predicted ETa became nearly unbiased at the 15 flux 232 

tower locations, and seemingly suggests that the decreased ⍺e could become a solution to improving the CR method. 233 

Nevertheless, the fixed ⍺e still made the CR overestimate ETa in the CAMELS basins under (semi-)humid climates, albeit 234 

slightly ameliorated (Figure 3b). 235 

3.2 The empirical relationship between �̃� to climate conditions 236 

Figures 2 and 3 imply that the calibration-free CR with a fixed ⍺e was unlikely good at closing local water balance in 237 

(semi-)humid river basins. To resolve this problem with the CR-Budyko framework, first we estimated the climatological x 238 

and the parameter n of the CAMLES basins using Eq. (10) with the mean annual ETwb, P, ETp, and Epmax for 1981-1997. Figure 239 

4a-c illustrates the scatter plots between the resultant x and corresponding Φ, ETp/Epmax, and n values. Pearson r values between 240 

the x and the other three variables were -0.88, -0.59, and 0.44, respectively (significant at 1% level), suggesting that the self-241 

adjustment of ETp is not only correlated with climate conditions, but with land surface properties at least in part. By regressing 242 
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between the x values and the log-transformed Φ, ETp/Epmax and n, we obtained an empirical relationship that enables to spatially 243 

predict the mean annual ratio of ETw to ETp as: 244 

x̃ = 0.949 − 0.204 ln(Φ) +0.231 ln(ETp/Epmax) + 0.0712 ln(n).    (14) 245 

The regression coefficients were all significant at 1% level, and the coefficient of determination (R2) was 0.98. The regression 246 

equation was further approximated by discarding n from the explanatory variables: 247 

x̃ = 1.023 − 0.220 ln(Φ) +0.210 ln(ETp/Epmax).      (15) 248 

The R2 value of Eq. (15) declined to 0.93. We found that the simple regression between x and Φ further reduced R2 to 0.90. 249 

While the heterogeneous land properties exert non-negligible influences, the regression analyses indicate that the climatic 250 

condition dominantly explains the spatial variation of the atmospheric self-adjustment. 251 

Eq. (15) performed excellently in reproducing the x values from CR with Φ and ETp/Epmax (Figure 4d). The NSE, 252 

RMSE, Pearson r, and p-bias between the predicted x̃ and the x from CR were 0.93, 0.03, 0.96, and 0.0%, respectively. 253 

3.3 Evaluation of the CR and the advanced models against the grid ETwb 254 

By multiplying x̃ to the mean annual ratio between ETp and ETeq, we determined α̃e  across the Australian land 255 

surfaces. The resulting α̃e values ranged within 1.13 ± 0.114, and the median value was almost equal to Ma et al.’s (2021) 256 

global estimate (1.10). They were relatively high in the northwestern and the northern part, while being below the mean in the 257 

southern and the eastern parts (Figure 5a). On 19% of the surfaces, α̃e values were unity, and thus they might become below 258 

the theoretical limit unless bounded.  259 

We again generated CR ETa using the spatially varying α̃e values (Figure 5b). The mean CR ETa for 1998-2014 260 

ranged in 249 ± 78.8 mm a-1 and 530 ± 172.0 mm a-1 under arid and semi-arid climates, while it decreased to 805.2 ± 209 mm 261 

a-1 and 932 ± 239 mm a-1 in semi-humid and humid regions, respectively. The flux observations were still acceptably 262 

regenerated with the less biases than in the case of ⍺e = 1.15 (Figure 6a). The α̃e based on the Budyko framework significantly 263 

reduced the biases introduced by the constant ⍺e in (semi-)humid basins. Albeit some biases remained, the water-balance ETwb 264 

for 1998-2014 in the CAMELS basins were better reproduced by using the spatially varying α̃e (Figure 6b).  265 

To confirm the improved performance of the combined CR-Budyko method across Australia, we resampled the new 266 

CR ETa estimates to 0.5°×0.5° and compared them with the grid ETwb data. The ETa products by GLEAM, FluxCom, and 267 

ERA5-Land were evaluated with the grid evaluation reference. As shown, the CR method with a constant ⍺e = 1.15 overrated 268 

the mean annual ETa along the eastern and the northern coastlines (Figure 7b), underperforming the physical, the machine-269 

learning, and the land surface models (Figure 8a). Although the smaller ⍺e = 1.10 made the CR method perform better, its 270 

predictability was still poorer than the three advanced models, and the residual variance was as large as in the case of ⍺e = 1.15 271 

(Figure 8b). 272 

In contrast, when employing the  α̃e conditioned by local climate conditions, the same CR formulation could alleviate 273 

the overestimation along the coastlines (Figure 7c). The Budyko-function-based α̃e led the CR ETa estimates to neatly agree 274 
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with the grid ETwb, and the residual variance was much smaller than in the case of ⍺e = 1.10 (Figure 8c). The CR method with 275 

α̃e  clearly outperformed the three advanced models in reproducing the grid ETwb estimates (Figure 8d-f). Although the 276 

referenced grid ETwb has some error sources associated with upscaling of P and Q, our comparative evaluation suggests that 277 

conditioning ⍺e with local climate conditions could substantially reduce the uncertainty of CR ETa estimates in ungauged areas. 278 

4 Discussion 279 

4.1 Constraining the CR with the Budyko framework for ungauged areas 280 

The CR explains the dynamic equilibrium between the atmospheric ETp and the underlying moisture conditions, while 281 

the Budyko framework describes the steady-state water balance with climatic controls (i.e., P and ETw). The analytical link 282 

between the CR and the Budyko equations, hence, implies that the atmospheric self-adjustment needs to be conditioned by the 283 

long-term climate conditions. Constraining the Turc-Mezentsev equation by the polynomial CR, Kim and Chun (2021) found 284 

that Q changes would be more sensitive to climatic changes than when they were not linked. In the opposite direction, the CR 285 

can be constrained by the Budyko equation to determine its essential parameter.  286 

In Crago and Qualls (2018), the optimal ⍺e for the linear CR of Crago et al. (2016) varied largely between 1.00 and 287 

1.43. This point-scale experiment has already suggested that a constant ⍺e is unlikely suitable for definitive CRs to predict ETa 288 

in Australia. The ratio between the aerodynamic and the radiation components of ETw is evidently affected by the heat 289 

entrainment from the top of the boundary layer (Baldocchi et al., 2016), the dissimilarity between heat and water vapor sources 290 

(Assouline et al., 2016), the large-scale synoptic changes (Guo et al., 2015), and the horizontal advection of dry air mass (Jury 291 

and Tanner, 1975). More recently, Han et al. (2021) proved the non-linear dependence of ETw on ETeq, and Yang and Roderick 292 

(2019) showed ⍺e changing with Rn over ocean surfaces. Hence, the constant ⍺e assumption underpinning the calibration-free 293 

CR is counterintuitive to the theoretical and empirical evidence. Although Ma et al. (2021) found some global applicability of 294 

the calibration-free CR, its performance remains unknown in most of the Australian surfaces and in many ungauged basins 295 

over the world. 296 

Since ETa plays a pivotal role in the terrestrial water and energy balances, the partitioning of Rn into the latent and 297 

the sensible heat fluxes cannot be independent of the partitioning of P into ETa and Q. On a mean annual scale, P and ETw are 298 

the major determinants of the P partitioning, and thus the parameter ⍺e might not be independent of P. Given the large 299 

variability of P, assuming a fixed ⍺e across a continental area may introduce considerable biases to CR ETa estimates. Thus, 300 

discarding available P data may not be a good choice when predicting ETa by the CR method in ungauged areas. It is 301 

noteworthy that Φ dominantly explained the spatial variation of the mean annual x of the 71 CAMELS basins, and the α̃e 302 

values conditioned by local climates were of a large spatial variation. This suggests that the CR with a constant ⍺e may produce 303 

unreliable ETa estimates in ungauged locations. 304 
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Nonetheless, the low performance with a constant ⍺e does not indicate that the CR method underperforms the 305 

sophisticated ETa models. The simple polynomial CR seemed to outperform the advanced the advanced physical, machine-306 

learning, and land surface models, when its parameter was conditioned by local climates. The proposed CR-Budyko framework 307 

enabled to regionalize the optimal ⍺e for the CR method from gauged basins to ungauged locations in an empirical manner. It 308 

should be highlighted that the CR with spatially varying α̃e  produced the much smaller residual variance than the three 309 

advanced models. 310 

4.2 Remaining issues and caveats 311 

In seven Australian eddy-covariance flux towers, Crago et al. (2022) found that the optimal ⍺e for the polynomial CR 312 

was 1.35 for predicting daily ETa in the dimensionless form (i.e., y = ETa/ETp). However, it was increased to 1.42, 1.45, 1.47, 313 

and 1.50 to simulate the dimensional latent heat fluxes at daily, weekly, monthly, and annual timescales, respectively. This 314 

implies that the timescale would largely affect the optimal ⍺e for the definitive CRs. Though the stationary Budyko equation 315 

can become a constraint at a mean-annual scale, how to capture the scale-dependence of ⍺e is a remaining question. 316 

Further questions can arise as to how to quantify ETp and Epmax. For example, the ⍺e values from ETp with the Rome 317 

wind function rely upon an unrealistic assumption that the aerodynamic resistance on a vegetated surface is equivalent to that 318 

of an open-water surface. It is still unknown if this assumption is practically valid, because the Penman equation with the 319 

Rome wind function may result in unrealistically high ETp even on a large wet area (McMahon et al., 2013). Given the 320 

importance of the aerodynamic resistance in modulating surface temperature (Chen et al., 2020), ignoring its variability may 321 

become a significant error source for the CR method at both annual and sub-annual timescales. 322 

In addition, there are some caveats in our case study. We employed the meteorological data different from those used 323 

in Ma et al. (2021). The ERA5-Land dataset is a downscaled version of the ERA5 data (Hersbach et al., 2020) by which Ma 324 

et al. (2021) predicted ETa globally. Ma et al. (2021) incorporated remotely sensed albedo and emissivity together with a 325 

correction factor when calculating Rn, whereas we used the sum of the ERA5-Land latent and sensible heat fluxes. Those input 326 

differences may lead to differences in CR ETa estimates.  327 

The gridded GRUN Q, too, has some uncertainty sources, though it is the ensemble of many runoff simulations from 328 

21 different atmospheric forcing inputs. In the machine-leaning process by Ghiggi et al. (2021), some Q observations affected 329 

by human activities (e.g., dam regulation and return flows from groundwater abstraction) might not be excluded, potentially 330 

disrupting the empirical relationship between atmospheric forcing and natural flows. In addition, the uncertainty of SILO P 331 

might be non-negligible in areas with limited weather stations and in mountainous areas (Fu et al., 2022). Though we reduced 332 

the potential biases of the gridded P and Q datasets by temporal averaging, the grid-scale ETwb estimates should be treated as 333 

plausible values rather than exact observations. 334 
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5 Summary 335 

Via a case study in Australia, we showed that the polynomial CR by Szilagyi et al. (2017) is unlikely to perform well, 336 

when local climate conditions are neglected. The assumption of a constant Priestley-Taylor coefficient cannot reflect the long-337 

term water balance; thereby, CR ETa estimates can be biased. We resolved this problem by conditioning the CR with the 338 

traditional Budyko equation, and it allowed a reasonable determination of the essential parameter in ungauged locations. The 339 

following conclusions are worth emphasizing: 340 

(1) The constant Priestley-Taylor coefficient transferred from fractional wet locations could make the CR method 341 

perform poorly in closing local water balance. The implausible assumption could make the CR method 342 

underperform the advanced physical, machine-learning, and land surface models. 343 

(2) The Budyko framework can play a role in determining the degree of ETp adjustment at the mean annual scale. It 344 

allows upscaling of the Priestley-Taylor coefficients from gauged to ungauged locations. 345 

(3) The Priestley-Taylor coefficients conditioned by local climates made the CR better close the basin-scale water 346 

balance. The spatially varying Priestley-Taylor coefficients seemed to make the CR method outperform the 347 

advanced ETa models. 348 
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Table 1. List of the chosen FLUXNET2015 sites 555 

Site ID Lon. (°E) Lat. (°S) Data period Site ID Lon. (°E) Lat. (°S) Data period 

AU-ASM 133.25 22.28 2010-2014 AU-Rig 145.58 36.65 2011-2014 

AU-Cpr 140.59 34.00 2010-2014 AU-Stp 133.35 17.15 2008-2014 

AU-DaP 131.32 14.06 2007-2013 AU-TTE 133.64 22.29 2012-2014 

AU-DaS 131.39 14.16 2008-2014 AU-Tum 148.15 35.66 2001-2014 

AU-Dry 132.37 15.26 2008-2014 AU-Wac 145.19 37.43 2005-2008 

AU-Emr 148.47 23.86 2011-2013 AU-Whr 145.03 36.67 2011-2014 

AU-Gin 115.71 31.38 2011-2014 AU-Wom 144.09 37.42 2010-2014 

AU-How 131.15 12.49 2001-2014     

  556 
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 557 

 558 

Figure 1: Spatial distributions of (a) the reciprocals of aridity index and (b) the mean annual ETa for 1998–2014 predicted by the 559 
CR with ⍺e = 1.15. The red circles and the gray polygons are the locations of 15 flux towers and the boundaries of 71 CAMELS 560 
basins. The blue-colored points in (a) indicate the wet cells with RH > 90% and Tws > Ta + 2 °C. CR ETa was calculated at the grid 561 
cells where the land fraction was larger than 50%.  562 
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 563 

 564 

Figure 2: The 1:1 comparison between the CR ETa estimates with ⍺e = 1.15 and (a) the annual FLUXNET2015 observations and (b) 565 

the mean annual ETwb of the 71 CAMELS basins for 1998–2014. 566 

  567 



22 

 

 568 

Figure 3: Same as Figure 2 except ⍺e = 1.10. 569 

570 
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 571 
 572 

Figure 4: The scatter plots between the x estimated by CR with ETwb for 1981-1997 and the corresponding (a) Φ, (b) ETp/Epmax, and 573 
(c) n values, and (d) the 1:1 plot between the x from CR and the �̃� predicted by Eq. (15). The red x symbols are the outliers excluded 574 
from the regression analysis. 575 
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 577 

Figure 5: Distributions of (a) the α̃evalues from Eq. (15), and (b) the mean annual ETa for 1998-2014 by the CR method with the α̃e 578 
values. 579 
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 581 
Figure 6: Same as Figure 2 except that the α̃e values from Eq. (15) were used for CR ETa. 582 
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 584 
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 586 

Figure 7: Distributions of (a) the mean annual water-balance ETwb for 1998–2014, and the predictions by (b) CR with ⍺e = 1.15, (c) 587 
CR with spatially varying α̃𝒆, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land. 588 

  589 



27 

 

 590 

Figure 8: Scatter plots between the mean annual ETwb for 1998–2014 at 0.5˚×0.5˚ and the predictions by (a) CR with ⍺e = 1.15, (b) 591 
CR with ⍺e = 1.10, (c) CR with spatially varying α̃𝒆, (d) GLEAM, (e) FluxCom, and (f) ERA5-Land. 592 
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