Deleted: Regionalizing ...inking a .. [1]

Linking the complementary evaporation relationship with the Budyko et Improving the calibration-rce - omplementary

evaporation evaporation ...elationship principle

~

. Deleted: by...ith

framework for ungauged areas in Australia /[Pe'eted=

linking with the ...he Budyko framework ...ramework

in

Deleted: it ...as performed well ...xcellently in predicting

terrestrial evapotranspiration (ET.) in many gauged locations over the
world... how to determine the Priestley-Taylor coefficient (ae) is still
questionable. the calibration-free complementary relationship (7, [5]

{ Moved down [8]: depends on a questionable assumption that the
Priestley-Taylor coefficient (o) is spatially constant over an
extensive area.

Dacha Kim!, Minha Choi?, Jong Ahn Chun?

'Department of Civil Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, South Korea
2Department of Water Resources, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, South Korea
*Prediction Research Department, APEC Climate Center, Busan, 48058, South Korea

Deleted: the predictive performance of ...his convenient ...ighly
utilizable method, which only requires atmospheric inputs...ata,
against ...ith in-situ flux observations and basin-scale water balance
estimates (ETwb) in Australia, proposing how to constrain it with a
traditional Budyko equation for ungauged locations. We found that .
depends on a questionable assumption that the Priestley-Taylor
coefficient (o) is spatially constant over an extensive area.We found

Correspondence to: Jong Ahn Chun (jachun@apcc21.org)
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Evapotranspiration (ETa) plays a pivotal role in water and energy exchanges between the land,and the atmosphere.+.
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3.3 Evaluation of the CR and the advanced models against the grid ETn
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between the CR and the Budyko equations. hence. implies that the atmospheric self-adjustment needs to be conditioned by the

long-term climate conditions. Constraining the Turc-Mezentsev equation by the polynomial CR, Kim and Chun (2021) found

that Q changes would be more sensitive to climatic changes than when they were not linked. In the opposite direction, the CR

can be constrained by the Budyko equation to determine its essential parameter

In Crago and Qualls (2018), the optimal a. for the linear CR of Crago et al. (2016) varied largely between 1.00 and

1.43. This point-scale experiment has already suggested that a constant a. is unlikely suitable for definitive CRs to predict ETa

in Australia. The ratio between the aerodynamic and the radiation components of ETw is evidently affected by the heat

entrainment from the top of the boundary layer (Baldocchi et al.. 2016). the dissimilarity between heat and water vapor sources

(Assouline et al., 2016), the large-scale synoptic changes (Guo et al., 2015), and the horizontal advection of dry air mass (Jury

and Tanner, 1975). More recently, Han et al. (2021) proved the non-linear dependence of ETw on ETeq, and Yang and Roderick

(2019) showed ae changing with Rs over ocean surfaces. Hence, the constant ae assumption underpinning the calibration-free

CR is counterintuitive to the theoretical and empirical evidence. Although Ma et al. (2021) found some global applicability of

the calibration-free CR, its performance remains unknown in most of the Australian surfaces and in many ungauged basins

over the world.
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noteworthy that ® dominantly explained the spatial variation of the mean annual x of the 71 CAMELS basins, and the e,

values conditioned by local climates were of a large spatial variation. This suggests that the CR with a constant o may produce

unreliable ET, estimates in ungauged locations.

Nonetheless, the low performance with a constant a. does not indicate that the CR method underperforms the

sophisticated ET. models. The simple polynomial CR seemed to outperform the advanced the advanced physical, machine-

learning, and land surface models, when its parameter was conditioned by local climates. The proposed CR-Budyko framework
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enabled to regionalize the optimal a. for the CR method from gauged basins to ungauged locations in an empirical manner. It
should be highlighted that the CR with spatially varying &, produced the much smaller residual variance than the three

advanced models.

4.2 Remaining issues and caveats

In seven Australian eddy-covariance flux towers, Crago et al. (2022) found that the optimal ae for the polynomial CR

was 1.35 for predicting daily ETa in the dimensionless form (i.e., y = ET+/ET,). However, it was increased to 1.42, 1.45, 1.47,

(Deleted: could

CFormatted: Not Superscript/ Subscript )

Deleted: 4.1 Determination of & and the Budyko framework?|
In seven Australian eddy-covariance flux towers, Crago et al. (2022)
found that the optimal a. for the CR of Szilagyi et al. (2017) was 1.35
when predicting daily ET. in the dimensionless form (i.e., y =
ETJ/ET),). However, it should be increased to 1.42, 1.45, 1.47, and
1.50 to simulate dimensional latent heat fluxes at daily, weekly,
monthly, and annual timescales, respectively. In Crago and Qualls
(2018), the optimal a. for the kindred linear CR of Crago et(”,

=
©
2
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The gridded GRUN Q, t00,has some uncertainty sources, though it is the ensemble of many runoff simulations from *

21 different atmospheric forcing inputs. In the machine-leaning process by Ghiggi et al. (2021), some Q observations affected

by human activities (e.g., dam regulation and return flows from groundwater abstraction) might not be excluded, potentially

disrupting the empirical relationship between atmospheric forcing and natural flows, In addition, the uncertainty of SILO P

might be non-negligible in areas with limited weather stations and in mountainous areas (Fu et al., 2022). Though we reduced
the potential errors in the gridded P and Q datasets by temporal averaging, the grid-scale ETwb estimates should be treated as

plausible values rather than exact observations.

5 Conclusions

Wia a case study in Australia, we showed that the polynomial CR by Szilagyi et al. (2017) is unlikely to perform well.« . ‘;v

when local climate conditions are neglected. The assumption of a constant Priestley-Taylor coefficient cannot reflect the long-

term water balance; thereby. produced biased CR ET; estimates. We resolved this problem by conditioning the CR with the
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