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Abstract. We propose and provide a proof-of-concept of a method to analyse, classify and compare dynamical systems of 

arbitrary dimension by the two key features uncertainty and complexity. It starts by subdividing the system’s time-trajectory 

into a number of time slices. For all values in a time slice, the Shannon information entropy is calculated, measuring within-

slice variability. System uncertainty is then expressed by the mean entropy of all time slices. We define system complexity as 10 

“uncertainty about uncertainty”, and express it by the entropy of the entropies of all time slices. Calculating and plotting 

uncertainty u and complexity c for many different numbers of time slices yields the c-u-curve. Systems can be analysed, 

compared and classified by the c-u-curve in terms of i) its overall shape, ii) mean and maximum uncertainty, iii) mean and 

maximum complexity, and iv) its characteristic time scale expressed by the width of the time slice for which maximum 

complexity occurs. We demonstrate the method at the example of both synthetic and real-world time series (constant, 15 

random noise, Lorenz attractor, precipitation and streamflow) and show that the shape and properties of the respective c-u-

curves clearly reflect the particular characteristics of each time series. For the hydrological time series we also show that the 

c-u-curve characteristics are in accordance with hydrological system understanding. We conclude that the c-u-curve method 

can be used to analyse, classify and compare dynamical systems. In particular, it can be used to classify hydrological systems 

into similar groups, a precondition for regionalization, and it can be used as a diagnostic measure which can be used as an 20 

objective function in hydrological model calibration. Distinctive features of the method are i) that it is based on unit-free 

probabilities, thus permitting application to any kind of data, ii) that it is bounded, iii) that it naturally expands from single- 

to multivariate systems, and iv) that it is applicable to both deterministic and probabilistic value representations, permitting 

e.g. application to ensemble model predictions.  

 25 
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1 Introduction 

In the earth sciences, many systems of interest are dynamical, i.e. their states are ordered by time and evolve as a function of 

time. The theory of dynamical systems (Forrester, 1968; Strogatz, 1994) therefore has proven useful across a wide range of 30 

earth science systems and problems such as weather prediction (Lorenz, 1969), ecology (Hastings et al., 1993; Bossel, 1986), 

hydrology (Koutsoyiannis, 2006), geomorphology (Phillips, 2006) and coupled human-ecological systems (Bossel, 2007). 

Key characteristics of dynamical systems include their mean states (e.g. climatic mean values in the atmospheric sciences), 

their variability (e.g. annual minimum and maximum streamflow in hydrology) and their complexity (e.g. population 

dynamics in ecological predator-prey cycles). Interestingly, despite its importance and widespread use there is to date no 35 

single agreed-upon definition and interpretation of complexity (Prokopenko et al., 2009; Gell-Mann, 1995), and many 

different concepts are employed across disciplines.  

Characterizing dynamical systems by few and meaningful statistics representing the above-mentioned key features is 

important for several reasons: System classification, intercomparison and similarity analysis is a precondition for the transfer 
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of knowledge from well-known to poorly-known systems or situations (see e.g. Wagener et al., 2007; Sawicz et al., 2011; 40 

and Seibert et al., 2017 for applications in hydrology). Further, dynamical system analysis helps detecting and quantifying 

nonstationarity, a key aspect in the context of global change (Ehret et al., 2014), and it is important for evaluating the realism 

of dynamical system models and for guiding their targeted improvement (Moriasi et al., 2007; Yapo et al., 1998). 

In this paper, we address the task of parsimonious yet comprehensive characterization of dynamical systems by proposing a 

method based on concepts of information theory. It comprises both variability and complexity, and adopts the view that the 45 

complexity of a time series is the overall variability of its variabilities in sub periods. We use examples from hydrology, as 

due to the multitude of subsystems and processes involved, most hydrological systems classify as complex systems (Dooge, 

1986). Hydrological systems have been analysed and classified in terms of their complexity by Jenerette et al. (2012), 

Jovanovic et al. (2017), Ossola et al. (2015), Bras (2015), Engelhardt et al. (2009), Pande and Moayeri (2018), Sivakumar 

and Singh (2012) and Sivakumar et al. (2007), among others. In the same context, concepts from information theory have 50 

been applied by Pachepsky et al. (2006), Hauhs and Lange (2008), Zhou et al., (2012), Castillo et al., (2015), and recently by 

Dey and Mujumdar (2021). Information-based approaches rely on log-transformed probability distributions of the quantities 

of interest, and are thus independent of the units of the data. Compared to methods relying directly on the data values, this 

poses an advantage in terms of generality and comparability across disciplines. Being rooted in information theory, the 

method we propose in this paper makes use of this advantage. Compared to existing information-based methods, it offers the 55 

additional advantages of jointly considering two key characteristics of dynamical systems, uncertainty and complexity, and 

of being applicable to multivariate and ensemble data sets. 

The remainder of the text is organized as follows: In Sect. 2, we present all steps of the method. In Sect. 3, we apply the 

method to both synthetic time series and observed hydrological data. We use these examples to describe the properties,  

interpretations and potential uses of the c-u-curve method. We summarize the method, discuss its limitations and draw 60 

conclusions in the final Sect. 4. 

2 Method 

Please note that in what follows, for clarity we introduce the method at the example of univariate time series with 

deterministic values, and we also use the corresponding variable notation. In Ehret (2022) we also provide generalized 

application examples for multivariate and ensemble cases, and the related generalized code. Also, we calculate discrete 65 

entropy based on a uniform binning approach. We do so as it has some useful properties (ease of interpretation is one of 

them) compared to calculating continuous entropy. Nevertheless, the method can also be used with non-uniform binning or 

continuous representations of data-distributions. For a detailed discussion of discrete vs. continuous entropy, see Azmi et al. 

(2021) and references therein. 

2.1 Method description 70 

Applying the method to a given time series with overall 𝑛𝑡 time steps consists of a number of steps and related choices: At 

first, for each variate involved a suitable discretization (binning) scheme is chosen. The bins must cover the entire value 

range, and their total number 𝑛𝑣𝑏 can be chosen according to a user’s demands on data-resolution. Next, the time series is 

divided into a number of 𝑛𝑠 time slices. The slices must be mutually exclusive and together must cover the time series. The 

slices are preferably, but not necessarily, of uniform width. Next, separately for each slice, a discrete probability distribution 75 

(histogram) is calculated using the data in the slice and the chosen binning scheme. From the so-obtained histogram, the 

Shannon information entropy 𝐻 (Shannon, 1948) is calculated following Eq. (1), 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑣𝑏)

𝑛𝑣𝑏

𝑣𝑏=1

∙ 𝑙𝑜𝑔2(𝑝(𝑥𝑣𝑏)) (1) 
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where 𝑝(𝑥𝑣𝑏) refers to the probability of variate value 𝑥 falling into bin 𝑣𝑏, and 𝑛𝑣𝑏 is the total number of value bins. 

Entropy measures data variability or uncertainty in bit, with the intuitive interpretation as “the minimum number of binary 

(Yes/No) questions needed to be asked to correctly guess values drawn from a known distribution”. Cover and Thomas 80 

(2006) provide an excellent introduction to information theory, applications to hydrology and hydrometeorology are e.g. 

presented in Singh (2013) and Neuper and Ehret (2019). As entropy values may differ between slices, an overall uncertainty 

estimate for all slices is calculated as the expected value of all slice entropies. For equal-width slices, this is mean entropy 

according to Eq. (2), 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝐸(𝐻(𝑋)) = 𝐻(𝑋)̅̅ ̅̅ ̅̅ ̅ =
1

𝑛𝑠
 ∙ ∑ 𝐻𝑠(𝑋)

𝑛𝑠

𝑠=1

 (2) 

where 𝑠 refers to a particular slice of all 𝑛𝑠 time slices. The so-defined uncertainty measures average within-slice variability 85 

of the data, i.e. uncertainty of the time series as seen through the lens of the chosen time slicing scheme.  

Next, we consider variability of entropy across all slices, and as before we measure variability by entropy. In order to 

calculate this higher-order “entropy of entropies”, a suitable binning scheme for entropy values must be chosen, which can 

be based on the same criteria as outlined above. It is then used to calculate a histogram of the 𝑛𝑠 entropy values. We thus 

define complexity as the entropy of entropy values, which is calculated following Eq. (3), 90 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐻(𝐻(𝑋)) = − ∑ 𝑝(𝐻𝑒𝑏)

𝑛𝑒𝑏

𝑒𝑏=1

∙ 𝑙𝑜𝑔2(𝑝(𝐻𝑒𝑏))    (3) 

where 𝑛𝑒𝑏 denotes the total number of entropy bins, 𝑒𝑏 a particular entropy bin, and 𝑝(𝐻𝑒𝑏) the probability of a time slice 

entropy 𝐻𝑠  falling into bin 𝑒𝑏. Complexity measures how uncertain we are about the uncertainty in a particular time slice, 

when all we know is the distribution of uncertainties (entropies) across all time slices in the time series. 

The entire procedure is repeated for many different choices of 𝑛𝑠 (time slicing schemes). For each choice of 𝑛𝑠, for equal-

width slices the width of a time slice is 𝑠𝑤 =  𝑛𝑡 𝑛𝑠⁄ . In principle, 𝑛𝑠 can be chosen to take any value in the range [1,𝑛𝑡]. 95 

For 𝑛𝑠 = 1, the entire time series is contained in a single slice of width 𝑠𝑤 = 𝑛𝑡. For 𝑛𝑠 = 𝑛𝑡, each time slice contains only 

a single time step. However, it is recommended to choose 𝑛𝑠 - and with it 𝑠𝑤 - from a smaller range: If we require that for a 

robust estimation of a time slice histogram, each of its 𝑛𝑣𝑏 bins should on average be populated by a minimum number of 𝑚 

values, then the width 𝑠𝑤 of a time slice (i.e. the number of values within) must at least be 𝑛𝑣𝑏 ∙ 𝑚 (see Eq. 4). This means 

that for robust estimates of uncertainty, time slices should be wide. For robust estimates of complexity, however, it is the 100 

opposite: The histogram of uncertainty values is populated by a total of 𝑛𝑠 values (the entropies of all time slices). If we 

again require that each of the histogram bins should be populated by at least 𝑚 values, then at least 𝑛𝑒𝑏 ∙ 𝑚 time slice 

entropy values are needed. This means that time slices should be narrow to accommodate many of them in a time series of a 

given length 𝑛𝑡 (see Eq. 2). Overall, for a user’s choice of 𝑚, Eq. 4 yields the range of recommended time slice widths 𝑠𝑤 as 

a function of time series length 𝑛𝑡 and the number of bins for both uncertainty (𝑛𝑣𝑏) and complexity (𝑛𝑒𝑏). 105 

𝑛𝑡

𝑛𝑒𝑏 ∙ 𝑚
≥ 𝑠𝑤 ≥ 𝑛𝑣𝑏 ∙ 𝑚 (4) 

For example, for a time series with 𝑛𝑡 = 30000 time steps, and choices of 𝑚 = 3, and 𝑛𝑣𝑏 = 𝑛𝑒𝑏 = 10 (all histograms 

resolved by ten bins), the range of suitable time slice widths is [30,1000]. 

Throughout all time slicing schemes, the number of value and entropy bins must be kept constant to assure comparability. 

Together, the set of all time slicing schemes produces a set of complexity-uncertainty value pairs. Plotting them with 

uncertainty values on the x-axis and complexity values on the y-axis is what we call the complexity-uncertainty-curve, or 110 

short c-u-curve. It summarizes several interesting properties of the time series under consideration, which will be discussed 

in Sect. 3. 
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3 Application to synthetic and real-world time series 

3.1 Time series description 

We discuss the properties of the c-u-curve at the example of six time series as shown in Fig. 1a-f. Time series a-c are 115 

synthetic time series: a straight line, random uniform noise, and the famous Lorenz attractor (Lorenz, 1963). We chose them 

for their simple, exemplary and well-known behaviour. The straight line (Fig 1a) contains no variability whatsoever and 

should therefore show both very little uncertainty and complexity. The random noise (Fig. 1b) contains very high, but 

constant variability and should therefore show high uncertainty and low complexity. The Lorenz attractor (Fig. 1c) is a prime 

example of complex behaviour arising from feedbacks in dynamical systems. We used the code as provided by Moiseev 120 

(2022) with standard parameters to produce a time series of the Lorenz attractor. From its three variates, for clarity only the 

first one is shown and discussed, the results for jointly considering all three variates are similar. All synthetic time series 

consist of 𝑛𝑡 = 30000 time steps, and both for value binning and entropy binning ten bins were used. With a choice of 𝑚 =

3, the range of recommended time slice widths is 𝑠𝑤 = [30,1000] according to Eq. 4. In addition to the recommended range 

of time slice widths, we also included the two extremes values 𝑠𝑤 = 1 and 𝑠𝑤 = 30000 for demonstration purposes. 125 

Time series d-f are hydro-meteorological observations taken from the CAMELS US data set (Newman et al., 2015). The first 

(Fig. 1d) is daily precipitation observations for the South Toe River, NC (short: STR) basin, the second (Fig. 1e) is the 

corresponding time series of daily streamflow observations. The basin size is 113.1 km², and precipitation mainly falls as 

rain (fraction of precipitation as snow is 8.5%). The third time series (Fig. 1f) also contains daily streamflow observations, 

but from the 111.5 km² Green River, MA (short: GR) basin, which is more snow-dominated (fraction of precipitation as 130 

snow is 22.2 %). We chose the time series for the following reasons: Comparing precipitation and streamflow series from the 

same basin (STR) allows analysing the effect of the rainfall-runoff transformation process on uncertainty and complexity. 

Here we expect that a basin - by spatio-temporal convolution of precipitation - mainly reduces precipitation variability, and 

with it uncertainty and complexity. Comparing streamflow from two basins with different levels of snow influence (STR and 

GR) allows analysing the effect of snow processes on uncertainty and complexity. Here we expect that the carryover effect 135 

of snow accumulation, and the influence of an independent additional driver of hydrological dynamics – radiation – should 

increase both uncertainty and complexity. All hydro-meteorological time series contain 12418 daily observations from 1 

October 1980 – 30 September 2014 (34 years). As for the synthetic time series, we also used ten bins to resolve both the 

range of values and the range of entropies. However, we used a different time slicing scheme to reflect standard ways of 

time-aggregation of real-world data. In particular, we used the set of 𝑠𝑤 = {1,7,14,21,30,60,91,182,365,730,12418} days, 140 

which corresponds to 1 day, 1-3 weeks, 1-6 months, 1-2 years, and the entire 34-year period. Please note that for a choice of 

𝑚 = 3, the range of recommended time slice widths is 𝑠𝑤 = [30,414] days according to Eq. 4. Results for time slices 

outside of this range should therefore be treated with caution. We included them nevertheless for a more complete 

assessment of the time series. 

We normalized all six time series to a [0,1] value range and then calculated uncertainty and complexity according to Eqs. (2) 145 

and (3). Normalizing the data is not a requirement, and it does not affect the shapes and values of the resulting c-u-curves. 

Rather it was a matter of convenience, as the same binning scheme could then be used for all time series. 
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Figure 1. Synthetic and hydro-meteorological time series used for demonstration of the c-u-curve. Time series for subplots (a-c) comprise 150 

30000 time steps; for clarity only 300 (subplots (a-b)) and 3000 (subplot (c)) time steps are shown. Time series for subplots (d-f) comprise 

12418 daily time steps (34 years); for clarity only four years (1 October 1993 – 30 September 1997) are shown. All values are normalized 

to [0,1] value range. Further details on the time series are provided in the text. 

3.2 Results and discussion 

The c-u-curves of all six time series are shown in Fig. 2, and their key characteristics are summarized in Table 1. For clarity, 155 

Fig. 3 additionally shows only the hydro-meteorological time series in a sub region of Fig. 2. We start by discussing general 

properties of the c-u-curve, and then discuss properties of c-u-curves for each time series. 

General properties. In Fig. 2 and Fig. 3, both axes are in bit, i.e. independent of the units of the data, thus facilitating 

intercomparison of different systems, and application to multivariate systems where variates are in different units. Further, 

for both uncertainty and complexity lower and upper bounds exist. Zero is the lower bound for both, indicating zero within-160 

slice and across-slices variability. Upper bounds arise from the fact that for a given number of bins 𝑛, the maximum possible 

entropy is that of a uniform distribution, such that 𝐻𝑚𝑎𝑥 = 𝐻𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 𝑙𝑜𝑔2(𝑛). For the ten bins chosen here, the upper 

limits are 𝑙𝑜𝑔2(10) = 3.3 bit, shown as vertical and horizontal lines in Fig. 2,  and horizontal line in Fig. 3. The values of 

the bounds, and all uncertainty and complexity values of the curve depend on the chosen binning. For direct comparison of 

c-u-curves, the binning should therefore agree. If this is for some reason not feasible, comparability can be established by 165 

normalizing values to a [0,1] range. This is possible due to the above-mentioned existence of upper and lower bounds and 

achieved by dividing values with their respective upper bound (not shown here). In addition to the existence of general upper 

and lower bounds, the values of uncertainty and complexity for extreme values of the time-slicing scheme are another 

general feature of the c-u-curve: For 𝑛𝑠 = 1, i.e. when the entire time series is contained in a single slice of width 𝑠𝑤 = 𝑛𝑡, 

within-slice entropy is at its maximum and equals the entropy of the time series, and complexity is zero because only a single 170 

entropy value populates the entropy distribution. In Fig. 2 and Fig. 3, this limit is indicated by the right end of each c-u-

curve. For 𝑛𝑠 = 𝑛𝑡, each time slice is of width one and contains only a single time step. In such a case, within-slice entropy 
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is always zero, resulting in zero uncertainty and complexity, i.e. the c-u-curve will always start at the origin (see Fig.2 and 

Fig. 3).  

 175 

 

Figure 2. C-u-curves for synthetic (dotted) and hydro-meteorological (no marker) time series as shown in Fig. 1. Time series length is 

30000 for the synthetic data and 12418 for the hydro-meteorological data. The number of value bins and entropy bins is ten, maximum 

uncertainty limit and maximum complexity limit is at 𝑙𝑜𝑔2(10) = 3.32 bit. For the synthetic series, dot labels indicate the time slice width 

𝑠𝑤 used to calculate uncertainty and complexity, and the pentagram positions indicate mean uncertainty and mean complexity across all 180 

chosen time slicing schemes. The hydro-meteorological series are included to indicate their position within the full range of uncertainty 

and complexity; their details are shown in Fig. 3.  

 

Apart from these general features, the overall shape of each c-u-curve contains key characteristics of the underlying time 

series. We start by discussing the c-u-plot of the straight line in Fig. 2: It shows – as expected - the simplest behaviour: For 185 

all time-slicing schemes, both within-slice and across-slices variability is zero, i.e. the series displays zero uncertainty and 

complexity throughout (all dots are stacked at the origin). As a consequence, mean uncertainty and complexity across all 

time-slicing schemes (indicated by the brown pentagram in the plot and listed in Table 1) is also zero. 

The random noise series in Fig. 2 on the contrary displays very high uncertainty and low complexity for most of the time 

slicing schemes (most dots are stacked in the lower right corner of the plot), and only for many but narrow time slices of 50, 190 

40 and 30 values per slice does complexity assume non-zero values. This can be attributed to random effects in small 

samples, where purely by chance both highly and hardly variable samples can occur, thus creating a wide range of time slice 

entropies, resulting in apparent non-zero complexity. For wider slices, the larger sample size leads to more similarly 

distributed samples, resulting in a narrow range of time slice entropies and hence low complexity. Overall, mean uncertainty 

is very high and mean complexity is very low (position of the pink pentagram in Fig. 2 and values in Table 1), which is what 195 

we expected from random noise as a purely chaotic process.  

The Lorenz attractor in Fig. 2 reveals a more diverse behaviour across the range of time slicing schemes. We start discussing 

it for the case of 𝑠𝑤 = 30000, i.e. when a single time slice covers the entire time series. As described in the general 
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properties, for this case uncertainty is always at its maximum and equals the entropy of the time series, and complexity is 

zero, because only a single entropy value populates the entropy distribution. The actual uncertainty value (3.11 bit), or its 200 

distance from the upper limit of uncertainty (3.11 3.32 = 94%⁄ ), is a key characteristic of the time series and expresses its 

overall variability. Decreasing the time slice width 𝑠𝑤 decreases within-slice variability (uncertainty). Also, it provides the 

potential for nonzero complexity as more and more entropy values populate the entropy distribution. For the curve shown in 

Fig. 2, complexity continuously increases and reaches its first maximum value of 2.66 bit (or 2.66 3.32 = 80%⁄ ) for 𝑠𝑤 =

200 and at 2.22 bit of uncertainty. This point is another key characteristic of a c-u-curve, indicating at which temporal 205 

aggregation the across-slices variability is highest. Further decreasing slice width first leads to a decrease and then another 

increase in complexity until a second maximum of 2.66 bit is reached at 𝑠𝑤 = 50 (see values in Table 1). Afterwards, 

complexity and uncertainty decrease to zero for 𝑠𝑤 = 1, which is a general property of any c-u-curve (see discussion of 

general properties above). Taking the uncertainty and complexity mean across all time slices summarizes the c-u-curve in a 

single point (purple pentagram in Fig. 2, values in Table 1). For the Lorenz attractor, it reveals medium average uncertainty, 210 

and high average complexity. This is in accordance with expectations, as the Lorenz attractor is known for exhibiting 

complex behaviour. Interestingly, apart from revealing its generally complex behaviour, the c-u-curve also reveals at which 

particular time slice width complexity of the Lorenz attractor is at a maximum. This can be interpreted as a “characteristic 

time scale” of the time series. 

 215 

Table 1. Key characteristics of the c-u-curves for both the synthetic and the hydro-meteorological time series. 

Time series 

Uncertainty (bit) Complexity (bit) Characteristic 

time scale 

(days)a 
max mean max mean 

Line 0 0 0 0 n.a. 

Random noise 3.32 3.04 0.67 0.06 30 

Lorenz attractor 3.11 1.84 2.66 2.07 50, 200 

Precipitation STR 0.38 0.30 1.49 0.88 14 

Streamflow STR 0.09 0.06 0.53 0.17 14 

Streamflow GR 0.80 0.57 2.33 1.45 60 

a width of time slice at which maximum complexity occurred. 

 

Next, we discuss the c-u-curves of the hydro-meteorological time series. In Fig. 2, they are indicated by the lines without 

markers. It is immediately obvious that they all possess low uncertainty, much lower than the theoretical maximum 220 

(indicated by the vertical “max. Uncertainty” limit) and the random noise, and also lower than the Lorenz attractor. This is in 

accordance with our expectations, and a consequence of the typically high temporal autocorrelation of hydro-meteorological 

time series, which clearly separates them from purely random time series. For a better view of detail, we re-plotted the 

hydro-meteorological time series in a sub region of the uncertainty limits in Fig. 3, which we will refer to in the following. 

Despite the generally low uncertainties, the precipitation STR time series in Fig. 3 displays considerable average complexity 225 

(indicated by the pentagram position), which can be explained by the existence of meteorological regimes with different 

levels of precipitation variability, such as dry periods (low variability), periods with alternating dry and wet periods (high 

variability), and wet times with diverse precipitation amounts (high variability). The highest complexity occurs for a time 

slice width of 𝑠𝑤 = 14 days, indicating that the greatest variability of within-slice precipitation variability occurs for two-

week periods. 230 

Interestingly, the corresponding streamflow STR time series displays much lower mean and maximum values (see Table 1) 

for both uncertainty (within-slice variability) and complexity (across-slices variability). This is in accordance with the 

general hydrological understanding that in the absence of major carryover mechanisms, rainfall-runoff transformation in 
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catchments is mainly by aggregation and convolution, thus reducing the variability of the precipitation signal. It is 

noteworthy that while this harmonizing effect changes uncertainty and complexity means and maxima, it does not affect the 235 

characteristic time scale: For streamflow STR - just as for precipitation STR - it is two weeks. This suggests that 

precipitation remains the main control of streamflow complexity, despite the processes involved in rainfall-runoff-

transformation.  

This is different for the second streamflow GR time series. Here, in addition to the above-mentioned rainfall-runoff 

transformation, precipitation is partly stored as snow and later released as streamflow by melting. The temporal pattern of 240 

snowmelt is not only governed by snow availability, i.e. the precipitation regime, but also energy availability, i.e. the long-

term radiation and temperature regime. Such additional, independent controls of hydrological function can add uncertainty 

and complexity to streamflow production. Compared to streamflow STR, both uncertainty and complexity are indeed much 

larger in terms of mean and maximum values, they are even larger than the corresponding values for precipitation STR 

(compare pentagram positions in Fig. 3 and values in Table 1). The characteristic time scale of streamflow GR is at 2-3 245 

months (60-91 days). This is considerably longer than for streamflow STR, and can be explained by the carryover effect of 

snow accumulation and snowmelt acting at time scales in the order of months rather than days or weeks. 

 

 

Figure 3. C-u-curves for all hydro-meteorological time series as shown in Fig. 1d-f. All time series comprise 12418 time steps, the number 250 

of value bins and entropy bins is ten, maximum uncertainty limit and maximum complexity limit is at 𝑙𝑜𝑔2(10) = 3.32 bit. Note that for 

better display of details this is a horizontally zoomed-in version of Fig. 2. Dot labels indicate the time slice width 𝑠𝑤 used to calculate 

uncertainty and complexity. The pentagram positions indicate mean uncertainty and mean complexity across all chosen time slicing 

schemes. 

4 Summary and conclusions 255 

In this paper we presented a method to analyse and classify dynamical systems by the two key features uncertainty and 

complexity. After dividing the time series into a set of time slices, the Shannon information entropy is calculated for the data 
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in each time slice. Uncertainty is then calculated as the mean entropy of all time slices, complexity as the entropy of all 

entropy values. Complexity thus expresses “uncertainty about uncertainty” in the time series. Calculating and plotting 

uncertainty and complexity for many time slicing schemes yields the c-u-curve, with key characteristics mean and maximum 260 

uncertainty, mean and maximum complexity, and the characteristic time scale of the time series. The latter is defined as the 

time slice width at which maximum complexity occurs.  

The c-u-curve method has several useful properties: Independence from the units of the data (both uncertainty and 

complexity are expressed in bit), existence of upper and lower bounds for both uncertainty and complexity as a function of 

the chosen data resolution, and bounded behaviour when approaching upper and lower limits of time-slicing: For a single 265 

time-slice containing all data, uncertainty equals the time series entropy and complexity is zero, for time-slices containing 

single values both uncertainty and complexity are zero. The c-u-curve method is applicable to single- and multivariate data 

sets, and to deterministic and probabilistic value representations (ensemble data sets), making it suitable for a wide range of 

tasks and systems. The main limitation of the method arises from the requirement of sufficiently populating distributions, 

which sets bounds to both the minimum and maximum width of time slices.  270 

We provided a proof-of-concept at the example of six time series, three of them artificial, three of them from hydro-

meteorological observations. The artificial time series (straight line, random noise, Lorenz attractor) were chosen for their 

very different, exemplary and well-known behaviour, and with the goal to demonstrate that the c-u-curve successfully 

reveals this behaviour, i.e. to demonstrate the general applicability of the method across a wide range of time series types. 

The observed time series (precipitation and streamflow from a mainly rainfall-dominated basin, and streamflow from a basin 275 

where additionally snow processes influence the hydrological function) were chosen with the goal to demonstrate that the c-

u-curve method reveals characteristics of real-world time series that are in accordance with general knowledge of 

hydrological system functioning. For all time series, we could show that the c-u-curve properties were distinctly different 

among the time series – which indicates that the method has discriminative capabilities useful for system classification -, and 

that the properties are in accordance with expectations based on system understanding – which indicates that the method 280 

captures relevant time series properties and expresses them in terms of uncertainty and complexity -. 

While the range of applications presented in this paper is small, and mainly intended as a proof-of-concept, the results  

encourage further studies. Particularly for hydro-meteorological applications, we suggest that the c-u-curve method can be 

used for data-based system classification, which is a precondition for the important hydrological task of regionalisation, i.e. 

the transfer of knowledge from well-observed to poorly-observed places. In this context, the c-u-curve and its characteristic 285 

values can be used in a fashion similar to current uses of the flow-duration curves. This is supported by the clear differences 

of c-u-curve properties between the two investigated streamflow time series. We further suggest that the c-u-curve and its 

characteristic values can be used as a useful additional objective function in hydrological model training: While standard 

hydrological objective functions such as Nash-Sutcliffe efficiency guide models towards point-by-point agreement of models 

output and observations, c-u-curve characteristics can guide models towards correct representations of short- and long-term 290 

variability patterns. Further work on this topic is in progress. 

 

Code availability. The code used to conduct all analyses in this paper is publicly available at 
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