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Abstract. 

We propose and provide a proof-of-concept of a method to analyse, classify and compare dynamical systems of arbitrary 

dimension by the two key features uncertainty and complexity. It starts by subdividing the system’s time-trajectory into a 

number of time slices. For all values in a time slice, the Shannon information entropy is calculated, measuring within-slice 10 

variability. System uncertainty is then expressed by the mean entropy of all time slices. We define system complexity as 

“uncertainty about uncertainty”, and express it by the entropy of the entropies of all time slices. Calculating and plotting 

uncertainty u and complexity c for many different numbers of time slices yields the c-u-curve. Systems can be analysed, 

compared and classified by the c-u-curve in terms of i) its overall shape, ii) mean and maximum uncertainty, iii) mean and 

maximum complexity, and iv) its characteristic time scale expressed by the width of the time slice for which maximum 15 

complexity occurs. We demonstrate the method at the example of both synthetic and real-world time series (constant, 

random noise, Lorenz attractor, precipitation and streamflow) and show that the shape and properties of the respective c-u-

curves clearly reflect the particular characteristics of each time series. For the hydrological time series we also show that the 

c-u-curve characteristics are in accordance with hydrological system understanding. We conclude that the c-u-curve method 

can be used to analyse, classify and compare dynamical systems. In particular, it can be used to classify hydrological systems 20 

into similar groups, a precondition for regionalization, and it can be used as a diagnostic measure which can be used as an 

objective function in hydrological model calibration. Distinctive features of the method are i) that it is based on unit-free 

probabilities, thus permitting application to any kind of data, ii) that it is bounded, iii) that it naturally expands from single- 

to multivariate systems, and iv) that it is applicable to both deterministic and probabilistic value representations, permitting 

e.g. application to ensemble model predictions.  25 
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1 Introduction 

In the earth sciences, many systems of interest are dynamical, i.e. their states are ordered by time and evolve as a function of 30 

time. The theory of dynamical systems (Forrester, 1968; Strogatz, 1994) therefore has proven useful across a wide range of 

earth science systems and problems such as weather prediction (Lorenz, 1969), ecology (Hastings et al., 1993; Bossel, 1986), 

hydrology (Koutsoyiannis, 2006), geomorphology (Phillips, 2006) and coupled human-ecological systems (Bossel, 2007). 

Key characteristics of dynamical systems include their mean states (e.g. climatic mean values in the atmospheric sciences), 

their variability (e.g. annual minimum and maximum streamflow in hydrology) and their complexity (e.g. population 35 

dynamics in ecological predator-prey cycles). Interestingly, despite its importance and widespread use there is to date no 

single agreed-upon definition and interpretation of complexity, and no agreed-upon base set of features characterizing a 

complex system. Gell-Mann (1995), Lloyd (2001), Prokopenko et al. (2009) and Ladyman et al. (2013) provide interesting 

overviews on the topic. Gell-Mann (1995) points out that while measures of complexity for entities in the real world are to 
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some degree always context-dependent, they have in common that "… complexity can be high only in a region intermediate 40 

between total order and complete disorder.". Lloyd (2001) provides a short yet comprehensive list of complexity measures 

categorized by difficulty of description, difficulty of creation, and degree of organization. Prokopenko et al. (2009) discuss 

the connection of complexity, self-organization, emergence and adaptation, and suggest an information-theoretic framework 

to promote inter- and transdisciplinary communication on these topics. Ladyman et al. (2013) review various approaches to 

define complex systems, distil a set of core features common to all definitions (nonlinearity, feedback, emergence, hierarchy, 45 

numerosity, among others) and provide a large collection and a taxonomy for measures of complexity.  

Characterizing dynamical systems by few and meaningful statistics representing the above-mentioned key features is 

important for several reasons: System classification, intercomparison and similarity analysis is a precondition for the transfer 

of knowledge from well-known to poorly-known systems or situations (see e.g. Wagener et al., 2007; Sawicz et al., 2011; 

and Seibert et al., 2017 for applications in hydrology). Further, dynamical system analysis helps detecting and quantifying 50 

nonstationarity, a key aspect in the context of global change (Ehret et al., 2014), and it is important for evaluating the realism 

of dynamical system models and for guiding their targeted improvement (Moriasi et al., 2007; Yapo et al., 1998). 

In this paper, we address the task of parsimonious yet comprehensive characterization of dynamical systems by proposing a 

method based on concepts of information theory. It comprises both variability and complexity, and adopts the view that the 

overall variability (or uncertainty) of a time series is the mean of its variabilities in sub periods, and that the complexity of a 55 

time series is the overall variability of these variabilities. We use examples from hydrology, as due to the multitude of 

subsystems and processes involved, most hydrological systems classify as variable and complex systems (Dooge, 1986). 

Hydrological systems and models thereof have been analysed in terms of predictive, model structural and model parameter 

uncertainty by Vrugt et al. (2003), Liu and Gupta (2007) and Vrugt et al. (2009), among others. Hydrological systems have 

been classified in terms of their complexity by Jenerette et al. (2012), Jovanovic et al. (2017), Ossola et al. (2015), Bras 60 

(2015), Engelhardt et al. (2009), Pande and Moayeri (2018), Sivakumar and Singh (2012), Sivakumar et al. (2007) and 

Omabdi et al. (2021) among others. Following early attempts by Jakeman and Hornberger (1993), Pande and Moayeri (2018) 

have investigated how the relation between the information content and complexity of hydrological systems can guide the 

selection of adequate models thereof, and vice versa. 

In particular, concepts from information theory have been applied for hydrological system analysis and classification by 65 

Pachepsky et al. (2006), Hauhs and Lange (2008), Zhou et al., (2012), Castillo et al., (2015), and recently by Dey and 

Mujumdar (2021). Information-based approaches rely on log-transformed probability distributions of the quantities of 

interest, and are thus independent of the units of the data. Compared to methods relying directly on the data values, this 

poses an advantage in terms of generality and comparability across disciplines. Being rooted in information theory, the 

method we propose in this paper makes use of this advantage. The same applies to the methods of multiscale entropy (MSE) 70 

proposed by Costa et al. (2002) in the context of physiologic time series, and the method suggested by López-Ruiz et al. 

(1995) for physical systems. Both share similarities with the c-u-curve method, but also differ in some important aspects, 

which will be discussed in Sect. 2.3, after the c-u-curve method has been introduced in Sect. 2.1. The MSE method has been 

applied to a wide range of complex systems, such as biological signals (Costa et al. 2005), ball bearing fault measurements 

(Wu et al., 2013), seismic (Guzmán-Vargas et al., 2008) and hydro-meteorological time series. For the latter, Li and Zhang 75 

(2008) analysed long time series of Mississippi river flow data, Chou (2011) used MSE in combination with wavelet 

transformation to analyse properties of station-based rainfall time series. Brunsell (2010) also applied entropy measures on 

various temporal scales to assess spatial-temporal variability of daily precipitation, similar to the MSE method, but refers to 

it as “a multiscale information theory approach“.  

The remainder of the text is organized as follows: In Sect. 2, we present all steps of the method, describe its properties and 80 

compare it to existing methods. In Sect. 3, we apply the method to both synthetic time series and observed hydrological data 
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to demonstrate uses and interpretations of the c-u-curve method. We summarize the method, discuss its limitations and draw 

conclusions in the final Sect. 4. 

2 Method 

Please note that in what follows, for clarity we introduce the method at the example of univariate time series with 85 

deterministic values, and we calculate discrete entropy based on a uniform binning approach. 

2.1 Method description 

The mathematical variable names used in this section and throughout the paper were chosen with the goal of straightforward 

interpretation. The names were constructed by combination of the following base “alphabet“: 𝑛 is for “number“, 𝑣 is for 

“value“, 𝑏 is for “bin“, 𝑠 is for “(time) slice“, 𝑒 is for “entropy“, 𝑡 is for “time“, 𝑤 is for “width“. For example, variable 𝑛𝑣𝑏 90 

is formed by a combination of three symbols and represents the “number of value bins“. To avoid confusion of combined 

variable names with multiplication (e.g. 𝑛𝑣𝑏  could be falsely interpreted as the product of variables 𝑛 , 𝑣 , and 𝑏), we 

explicitly indicate each multiplication with the “∙“ symbol. 

Applying the method to a given time series with overall 𝑛𝑡 time steps consists of a number of steps and related choices: At 

first, for each variate involved a suitable discretization (binning) scheme is chosen. The bins must cover the entire value 95 

range, and their total number 𝑛𝑣𝑏 can be chosen according to a user’s demands on data-resolution. Next, the time series is 

divided into a number of 𝑛𝑠 time slices. The slices must be mutually exclusive and together must cover the time series. The 

slices are preferably, but not necessarily, of uniform width. Next, separately for each slice, a discrete probability distribution 

(histogram) is calculated using the data in the slice and the chosen binning scheme. From the so-obtained histogram, the 

Shannon information entropy 𝐻 (Shannon, 1948) is calculated following Eq. (1), 100 

𝐻(𝑋) = − ∑ 𝑝(𝑥𝑣𝑏)

𝑛𝑣𝑏

𝑣𝑏=1

∙ log2(𝑝(𝑥𝑣𝑏)) (1) 

where 𝑋 is all sample data within the slice, 𝑝(𝑥𝑣𝑏) refers to the probability of variate value 𝑥 falling into bin 𝑣𝑏, and 𝑛𝑣𝑏 is 

the total number of value bins. Entropy measures data variability or uncertainty in bit, with the intuitive interpretation as “the 

minimum number of binary (Yes/No) questions needed to be asked to correctly guess values drawn from a known 

distribution”. Cover and Thomas (2006) provide an excellent introduction to information theory, applications to hydrology 

and hydrometeorology are e.g. presented in Singh (2013) and Neuper and Ehret (2019). Neuper and Ehret (2019) also 105 

describe the relation of entropy and variance: “Like the variance of a distribution, entropy is a measure of spread, but there 

are some important differences: while variance takes the values of the data into account and is expressed in (squared) units of 

the underlying data, entropy takes the probabilities of the data into account and is measured in bit. Variance is influenced by 

the relative position of the data on the measure scale and dominated by values far from the mean; entropy is influenced by 

the distribution of probability mass and is dominated by large probabilities. Some welcome properties of entropy are that it is 110 

applicable to data that cannot be placed on a measure scale (categorical data), and that it allows comparison of distributions 

from different data due to its generalized expression in bit. 

As entropy values may differ between slices, an overall uncertainty estimate for all slices is calculated as the expected value 

of all slice entropies. For equal-width slices, this is mean entropy according to Eq. (2), 

𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = 𝐸(𝐻(𝑋)) = 𝐻(𝑋)̅̅ ̅̅ ̅̅ ̅ =
1

𝑛𝑠
 ∙ ∑ 𝐻𝑠(𝑋)

𝑛𝑠

𝑠=1

 (2) 

where 𝑠 refers to a particular slice of all 𝑛𝑠 time slices. The so-defined uncertainty measures average within-slice variability 115 

of the data, i.e. uncertainty of the time series as seen through the lens of the chosen time slicing scheme.  
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Next, we consider variability of entropy across all slices, and as before we measure variability by entropy. In order to 

calculate this higher-order “entropy of entropies”, a suitable binning scheme for entropy values must be chosen, which can 

be based on the same criteria as outlined above. It is then used to calculate a histogram of the 𝑛𝑠 entropy values. We thus 

define complexity as the entropy of entropy values, which is calculated following Eq. (3), 120 

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐻(𝐻(𝑋)) = − ∑ 𝑝(𝐻𝑒𝑏)

𝑛𝑒𝑏

𝑒𝑏=1

∙ log2(𝑝(𝐻𝑒𝑏))    (3) 

where 𝑛𝑒𝑏 denotes the total number of entropy bins, 𝑒𝑏 a particular entropy bin, and 𝑝(𝐻𝑒𝑏) the probability of a time slice 

entropy 𝐻𝑠  falling into bin 𝑒𝑏. Complexity measures how uncertain we are about the uncertainty in a particular time slice, 

when all we know is the distribution of uncertainties (entropies) across all time slices in the time series. The question may 

arise why complexity is calculated as the entropy rather than the variance (= 2nd moment) of entropies, which would seem a 

logical extension of uncertainty being calculated as the mean (=1st moment) of entropies. There are three reasons for this 125 

choice, namely consistency, interpretability, and robustness. “Consistency“ refers to the idea that when expressing the 

variability of the distribution within a time slice by entropy, we think that it is a natural choice to express variability of the 

variabilities also by entropy. Thus, variability is always expressed in the same unit of bit, which increases comparability 

among the values and upper bounds of uncertainty and complexity. “Interpretability“ refers to the fact that entropy has the 

intuitive interpretation of “number of binary Yes/No questions to ask to move from a prior to a posterior state of 130 

knowledge“, while variance lacks this straightforward interpretation. “Robustness“ refers to the previously discussed 

property of variance being more sensitive to outliers in the data than entropy. While for extreme-value statistics with a focus 

on the tails of a distribution, variance is a good choice, we think that for a characterization of the overall variability of a data 

set, entropy is more appropriate. 

The entire procedure of calculating uncertainty and complexity is repeated for many different choices of 𝑛𝑠 (time slicing 135 

schemes). For each choice of 𝑛𝑠, for equal-width slices the width of a time slice is 𝑠𝑤 =  𝑛𝑡 𝑛𝑠⁄ . In principle, 𝑛𝑠 can be 

chosen to take any value in the range [1,𝑛𝑡]. For 𝑛𝑠 = 1, the entire time series is contained in a single slice of width 𝑠𝑤 =

𝑛𝑡. For 𝑛𝑠 = 𝑛𝑡, each time slice contains only a single time step. However, it is recommended to choose 𝑛𝑠 - and with it 𝑠𝑤 

- from a smaller range: If we require that for a robust estimation of a time slice histogram, each of its 𝑛𝑣𝑏 bins should on 

average be populated by a minimum number of 𝑚 values, then the width 𝑠𝑤 of a time slice (i.e. the number of values within) 140 

must at least be 𝑛𝑣𝑏 ∙ 𝑚 (see Eq. 4). This means that for robust estimates of uncertainty, the time series should be split into 

only few but wide time slices. For robust estimates of complexity, however, it is the opposite: The histogram of uncertainty 

values is populated by a total of 𝑛𝑠 values (the entropies of all time slices). If for the sake of a robust estimation we again 

require that each of the histogram bins should be populated by at least 𝑚 values, then at least 𝑛𝑒𝑏 ∙ 𝑚 time slice entropy 

values are needed. This means that the time series should be split into many - and hence narrow - time slices. These two 145 

antagonistic constraints lead to an upper and lower limit for the choice of 𝑠𝑤, which is formalized in Eq. 4: For a (subjective) 

user’s choice of 𝑚, Eq. 4 yields the range of time slice widths 𝑠𝑤 satisfying the “𝑚-criterion“ for both the uncertainty and 

complexity histogram as a function of time series length 𝑛𝑡  and the number of bins for both uncertainty (𝑛𝑣𝑏 ) and 

complexity (𝑛𝑒𝑏). 

𝑛𝑡

𝑛𝑒𝑏 ∙ 𝑚
≥ 𝑠𝑤 ≥ 𝑛𝑣𝑏 ∙ 𝑚 (4) 

For example, for a time series with 𝑛𝑡 = 30000 time steps, and choices of 𝑚 = 3, and 𝑛𝑣𝑏 = 𝑛𝑒𝑏 = 10 (all histograms 150 

resolved by ten bins), the range of suitable time slice widths is [30,1000]. It should be noted that Eq. 4, through the choice of 

𝑠𝑤, provides one possible guideline for robust histogram estimation, but a user can also resort to other binning guidelines, 

such as the methods suggested by Sturges (1926), Scott (1979), Freedman and Diaconis (1981), Pechlivanidis et al. (2016) or 

Knuth (2019). Throughout all time slicing schemes, the number of value and entropy bins must be kept constant to assure 

comparability. Together, the set of all time slicing schemes produces a set of complexity-uncertainty value pairs. Plotting 155 
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them with uncertainty values on the x-axis and complexity values on the y-axis is what we call the complexity-uncertainty-

curve, or short c-u-curve. It summarizes several interesting properties of the time series under consideration, which will be 

discussed in Sect. 3. 

2.2 Properties 

In this section, we briefly summarize some general properties of the c-u-curve and discuss its limitations and possible 160 

generalizations. 

Axes units. For the c-u-curve, both the x-axis (showing uncertainty) and the y-axis (showing complexity) are in units of bit 

(see Eqs. 2 and 3), i.e. they are independent of the units of the data. This facilitates intercomparison of different systems, and 

application to multivariate systems where variates are in different units.  

Existence of lower and upper bounds for uncertainty. The lower bound for uncertainty is always zero, which is reached if for 165 

all time slices, all values within a time slice fall into the same value bin. The upper bound is dependent on the choice of 𝑛𝑣𝑏 

(the number of bins resolving the value range). Its value, 𝑙𝑜𝑔2(𝑛𝑣𝑏), is the entropy of a uniform (=maximum entropy) 

distribution. It is reached when the data within each time slice are uniformly distributed across all value bins. In a plot of the 

c-u-curve, the upper uncertainty bound appears as a vertical line. 

Existence of lower and upper bounds for complexity. Same as for uncertainty, the lower bound of complexity is always zero. 170 

It is reached if the entropy values calculated for all time slices all fall into the same entropy bin. The upper bound is 

dependent on the choice of 𝑛𝑒𝑏  (the number of bins resolving the entropy range). Similar to uncertainty, its value, 

𝑙𝑜𝑔2(𝑛𝑒𝑏),  is the entropy of a uniform distribution and reached when the entropies of all time slices are uniformly 

distributed across all entropy bins. In a plot of the c-u-curve, this global upper complexity bound appears as a horizontal line. 

However, there exists another, more strict upper bound, where maximum reachable complexity is a function of uncertainty: 175 

Consider the distribution of entropy values of all time slices. Its mean value is represented by uncertainty (see Eq. 2). It 

poses a constraint on how the entropy values can be distributed over the entropy bins, and hence the maximum entropy this 

distribution can reach. For example, if the mean entropy lies within the lowest entropy bin, all entropy values necessarily 

also have to be placed in that bin, which corresponds to a Dirac distribution, which has an entropy of zero. Zero uncertainty 

therefore necessarily implies zero complexity. The same applies if mean entropy lies in the maximum entropy bin: In that 180 

case, all entropy values necessarily have to lie in that bin, too, which again corresponds to a Dirac distribution with zero 

complexity. More general, the reachable upper bound for complexity is determined by solving the task to find, for a discrete 

(binned) probability distribution with a finite number of distinguishable states and known mean (here: uncertainty) from all 

possible distributions the one which maximizes entropy (here: complexity). The solution for this task has been provided by 

Conrad (2022), and is summarized in Appendix B. In a plot of the c-u-curve, this upper bound for complexity appears as an 185 

arch, starting at the origin, and terminating at the upper uncertainty bound with zero complexity.  

Invariance under normalization. The shape and values of the c-curve remain invariant under prior normalization of the data 

if the binning scheme is also transformed. Normalization can therefore be applied for convenience to use the same binning 

scheme for all time series. Likewise, for better comparability among time series of different length, normalization of the time 

domain is also possible. As a consequence, the time slice widths 𝑠𝑤 will be expressed in units of “length relative to the 190 

length of the time series“ rather than in the original time units. However, this potentially comes at the cost of losing 

interpretability, e.g. to detect the effect of diurnal or seasonal cycles in the c-u-curve. 

Influence of the chosen binning scheme. The values of the bounds, and all uncertainty and complexity values of the curve 

depend on the chosen binning for the values and the entropies. For direct comparison of c-u-curves, the binnings should 

therefore agree. If this is for some reason not feasible, comparability can be established by normalizing values to a [0,1] 195 

range. This can be achieved by dividing values of the c-u-curve with the values of the global upper bounds for uncertainty 

and complexity. 
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No guarantee for continuity. For better visibility, we connected the c-u points calculated for different time slice widths 𝑠𝑤 in 

Fig. 2 and Fig. 3 by a line. However, there is no theoretical argument guaranteeing continuity of the c-u-curve, and the lines 

should not be interpreted in this manner. Nevertheless, test runs with many different data sets and many time slice widths 200 

suggest that the c-u-curve generally is smooth.  

Influence of time slice positioning. For short time series with highly variable data, different splits of the time series into time 

slices might return quite different results. In other words, the default splitting scheme starting at the first time step (e.g. “1-2-

3“, “4-5-6“, etc. for time slices of width 𝑠𝑤 = 3) might not be representative for all other possible splitting schemes (e.g. “2-

3-4“, “5-6-7“, etc.). To investigate the sensitivity of the c-u-curve results to time slice positioning, we repeated all 205 

applications as discussed in Sect. 3 with a moving-window approach, applying all possible splitting schemes, and analysed 

the variability of the results (not shown). For all applications, the results were almost indistinguishable from each other, the 

overall sensitivity to the splitting scheme therefore seems small. Nevertheless, in the c-u-curve code (Ehret, 2022) published 

together with this paper, the user can choose between the default splitting scheme and a moving-window approach, where all 

possible splitting schemes are applied and the results are averaged. 210 

Influence of errors and trends in the data. Without formal proofs, we briefly discuss here the effect of errors or trends in the 

data on the values and shape of the c-u-curve. In the case of random errors coming from a particular distribution (e.g. 

measurement error), uncertainty about the true entropy of a time slice will be equal to the entropy of the error distribution, 

and, as information from independent sources is additive, the total entropy of a time slice will be the sum of the within-slice 

entropy without the error plus the entropy of the error distribution. As the additional entropy by the error is the same for all 215 

time slices, mean entropy of all time slices (uncertainty) will also increase by the entropy of the error, but the distribution of 

entropies will remain its shape, as a consequence the entropy of that distribution (complexity) will remain unchanged. 

Random error therefore will shift the c-u-curve to the right. A bias in the data will shift the distribution of the values in a 

time slice, but its shape will remain unchanged, and so will its entropy. As this applies to all time slices, the c-u-curve will 

remain unchanged. Trends in the data will increase the variability within all time slices in the same manner, such that 220 

uncertainty increases, but complexity remains unchanged. Breakpoints in the data, where one (or no) trend is replaced by 

another, will increase the variability of the time slice entropies, and hence complexity. 

Generalizations and limitations. We introduced the c-u-curve method by an univariate and deterministic example. However, 

the method is also applicable to multivariate and/or probabilistic data. When moving from univariate to multivariate data, the 

entropy within a time slice simply changes from uni- to multivariate entropy. When moving from deterministic to 225 

probabilistic variables, for each time step in a time slice, a value distribution rather than a crisp value will be used to 

populate the distribution of all values in the time slice, but the result will still be a single distribution with a single entropy 

value, which can be plotted as before in the c-u-curve. In Ehret (2022), we provide multivariate and probabilistic application 

examples, and the related generalized code. Also, in the method description in Sect. 2.1, we calculated discrete entropy based 

on a uniform binning approach. We did so as it has some useful properties (ease of interpretation is one of them) compared 230 

to calculating continuous entropy. Nevertheless, the method can also be used with non-uniform binning or continuous 

representations of data-distributions, as long as entropy can be calculated from the data distribution. For a detailed discussion 

of discrete vs. continuous entropy, see Azmi et al. (2021) and references therein. Please also note that strictly speaking, the 

c-u-curve method does not measure the uncertainty and complexity of an entire dynamical system, but only of its signals 

(time series) which are available for analysis. For cases where the signals do not completely cover the system's state space, 235 

we should therefore refer to the results as “signal uncertainty“ and “signal complexity“. As throughout the literature on 

dynamical system analysis, this distinction is usually not made, we also stick to the term “system“ rather than “signal“ 

throughout the paper.  
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2.3 Comparison to existing methods 

Two methods similar to the c-u-curve have been proposed in the literature, which we will in the following briefly explain 240 

and discuss. The first, CLMC, was proposed by López-Ruiz (1995), the second, multiscale entropy (MSE) by Costa et al. 

(2002). CLMC is a statistical measure of complexity for physical systems. It is calculated as the product of the system's 

information content, which is measured by the (normalized) Shannon entropy of the probability distribution of all of its 

accessible discrete states, and disequilibrium, which is measured by the sum - taken over all accessible discrete states - of 

squared differences between the system's probability distribution and a corresponding uniform (=maximum Entropy) 245 

distribution. For example, a crystal has high disequilibrium but low information content, and an ideal gas has low 

disequilibrium but high information content, but for both the product CLMC is small, indicating low complexity. Plotting a 

system's CLMC over its information content (see Fig. 2 in López-Ruiz, 1995) looks similar to the c-u-curve, including the 

limit behaviour (complexity approaches zero for systems with very high and very low entropy) and the existence of an upper 

bound for complexity as a function of entropy. Feldman and Crutchfield (1998) later proposed replacing the somewhat 250 

arbitrary measure of disequilibrium in López-Ruiz (1995) by Kullback-Leibler divergence, but the essential differences of 

CLMC and the c-u-curve methods remain: Firstly, the former defines complexity as the product of two separate system 

characteristics, of which one is the departure from a benchmark system, the latter derives both characteristics from the 

system alone. Secondly, the former does not take the order of the data into account, while the latter explicitly does when 

calculating entropy for data within temporally neighbouring data within time slices. 255 

The MSE method calculates entropy of a time series for various coarse-grained (=time-averaged) versions thereof, and then 

plots entropy over the size of the averaging window (referred to a scale factor 𝜏 in Costa et al, 2002). MSE shares with the c-

u-curve the idea that from the joint display and comparison of various entropy values of a time series much can be learned 

about the underlying dynamical system, it is also similar in that the temporal order of the data is explicitly taken into 

account. The main difference is that in MSE, data in a time window are averaged, i.e. the within-window variability of the 260 

data is essentially removed, while in the c-u-curve entropy calculations are always done on the original data. The second 

difference is that MSE does not provide an objective measure of system complexity, rather this is visually inferred from the 

plot: Complex systems are those revealing high entropy values across a wide range of scale factors. Obviously, the MSE and 

the c-u-curve approach can be joined by repeating c-u-curve calculations for various coarse-grained versions of a time series, 

which seems like a very promising idea for future work. 265 

3 Application to synthetic and real-world time series 

3.1 Time series description 

We discuss the properties of the c-u-curve at the example of six time series as shown in Fig. 1a-f. Time series a-c are 

synthetic time series: a straight line, random uniform noise, and the famous Lorenz attractor (Lorenz, 1963). We chose them 

for their simple, exemplary and well-known behaviour. The straight line (Fig 1a) contains no variability whatsoever and 270 

should therefore show both very little uncertainty and complexity. The random noise (Fig. 1b) contains very high, but 

constant variability and should therefore show high uncertainty and low complexity. The Lorenz attractor (Fig. 1c) is a prime 

example of complex behaviour arising from feedbacks in dynamical systems. We used the code as provided by Moiseev 

(2022) with standard parameters to produce a time series of the Lorenz attractor. From its three variates, for clarity only the 

first one is shown and discussed, the results for jointly considering all three variates are similar. All synthetic time series 275 

consist of 𝑛𝑡 = 30000 time steps, and both for value binning and entropy binning ten bins were used. With a choice of 𝑚 =

3, the range of recommended time slice widths is 𝑠𝑤 = [30,1000] according to Eq. 4. In addition to the recommended range 

of time slice widths, we also included the two extremes values 𝑠𝑤 = 1 and 𝑠𝑤 = 30000 for demonstration purposes. 
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Time series d-f are hydro-meteorological observations taken from the CAMELS US data set (Newman et al., 2015). The first 

(Fig. 1d) is daily precipitation observations for the South Toe River, NC (short: STR) basin, the second (Fig. 1e) is the 280 

corresponding time series of daily streamflow observations. The basin size is 113.1 km², and precipitation mainly falls as 

rain (fraction of precipitation as snow is 8.5%). The third time series (Fig. 1f) also contains daily streamflow observations, 

but from the 111.5 km² Green River, MA (short: GR) basin, which is more snow-dominated (fraction of precipitation as 

snow is 22.2 %). We chose the time series for the following reasons: Comparing precipitation and streamflow series from the 

same basin (STR) allows analysing the effect of the rainfall-runoff transformation process on uncertainty and complexity. 285 

Here we expect that a basin - by spatio-temporal convolution of precipitation - mainly reduces precipitation variability, and 

with it uncertainty and complexity. Comparing streamflow from two basins with different levels of snow influence (STR and 

GR) allows analysing the effect of snow processes on uncertainty and complexity. Here we expect that the carryover effect 

of snow accumulation, and the influence of an independent additional driver of hydrological dynamics – radiation – should 

increase both uncertainty and complexity. All hydro-meteorological time series contain 12418 daily observations from 1 290 

October 1980 – 30 September 2014 (34 years). As for the synthetic time series, we also used ten bins to resolve both the 

range of values and the range of entropies. However, we used a different time slicing scheme to reflect standard ways of 

time-aggregation of real-world data. In particular, we used the set of 𝑠𝑤 = {1,7,14,21,30,60,91,182,365,730,12418} days, 

which corresponds to 1 day, 1-3 weeks, 1-6 months, 1-2 years, and the entire 34-year period. Please note that for a choice of 

𝑚 = 3, the range of recommended time slice widths is 𝑠𝑤 = [30,414] days according to Eq. 4. Results for time slices 295 

outside of this range should therefore be treated with caution. We included them nevertheless for a more complete 

assessment of the time series. 

For convenience we normalized all six time series to a [0,1] value range and then calculated uncertainty and complexity 

according to Eqs. (2) and (3).  

 300 

Figure 1. Synthetic and hydro-meteorological time series used for demonstration of the c-u-curve. Time series for subplots (a-c) comprise 

30000 time steps; for clarity only 300 (subplots (a-b)) and 3000 (subplot (c)) time steps are shown. Time series for subplots (d-f) comprise 

12418 daily time steps (34 years); for clarity only four years (1 October 1993 – 30 September 1997) are shown. All values are normalized 

to [0,1] value range. Further details on the time series are provided in the text. 
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3.2 Results and discussion 305 

In this section, we present and discuss the c-u-curves of all six time series. We start by discussing the three artificial time 

series, followed by the three hydro-meteorological time series. All c-u-curves are shown in Fig. 2, and their key 

characteristics are summarized in Table 1. For clarity, Fig. 3 additionally shows only the hydro-meteorological time series in 

a sub region of Fig. 2. For further illustration, selected histograms of time series streamflow GR are shown in Appendix A. 

 310 

 

Figure 2. C-u-curves for synthetic (dotted) and hydro-meteorological (no marker) time series as shown in Fig. 1. Time series length is 

30000 for the synthetic data and 12418 for the hydro-meteorological data. The number of value bins and entropy bins is ten, maximum 

uncertainty limit and maximum complexity limit is at 𝑙𝑜𝑔2(10) = 3.32 bits. The black arch shows the maximum complexity limit as a 

function of uncertainty. For the synthetic series, dot labels indicate the time slice width 𝑠𝑤 used to calculate uncertainty and complexity, 315 

and the pentagram positions indicate mean uncertainty and mean complexity across all chosen time slicing schemes. The hydro-

meteorological series are included to indicate their position within the full range of uncertainty and complexity; their details are shown in 

Fig. 3. For interpretations of the axes units “bit“, see Sect. 2.1. The lines connecting individual c-u points were included for better 

visibility, and should not be interpreted as an indication of guaranteed continuity of a c-u-curve. 

 320 

The overall shape of each c-u-curve contains key characteristics of the underlying time series. We start by discussing the c-u-

plot of the straight line in Fig. 2: It shows – as expected - the simplest behaviour: For all time-slicing schemes, both within-

slice and across-slices variability is zero, i.e. the series displays zero uncertainty and complexity throughout (all dots are 

stacked at the origin). As a consequence, mean uncertainty and complexity across all time-slicing schemes (indicated by the 

brown pentagram in the plot and listed in Table 1) is also zero. 325 

The random noise series in Fig. 2 on the contrary displays very high uncertainty and low complexity for most of the time 

slicing schemes (most dots are stacked in the lower right corner of the plot), and only for many but narrow time slices of 50, 

40 and 30 values per slice does complexity assume non-zero values. This can be attributed to random effects in small 

samples, where purely by chance both highly and hardly variable samples can occur, thus creating a wide range of time slice 

entropies, resulting in apparent non-zero complexity. For wider slices, the larger sample size leads to more similarly 330 
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distributed samples, resulting in a narrow range of time slice entropies and hence low complexity. Overall, mean uncertainty 

is very high and mean complexity is very low (position of the pink pentagram in Fig. 2 and values in Table 1), which is what 

we expected from random noise..  

The Lorenz attractor in Fig. 2 reveals a more diverse behaviour across the range of time slicing schemes. We start discussing 

it for the case of 𝑠𝑤 = 30000, i.e. when a single time slice covers the entire time series. As described in the general 335 

properties, for this case uncertainty is always at its maximum and equals the entropy of the time series, and complexity is 

zero, because only a single entropy value populates the entropy distribution. The actual uncertainty value (3.11 bits), or its 

distance from the upper limit of uncertainty (3.11 3.32 = 94%⁄ ), is a key characteristic of the time series and expresses its 

overall variability. Decreasing the time slice width 𝑠𝑤 decreases within-slice variability (uncertainty). Also, it provides the 

potential for nonzero complexity as more and more entropy values populate the entropy distribution. For the curve shown in 340 

Fig. 2, complexity continuously increases and reaches its first maximum value of 2.66 bits (or 2.66 3.32 = 80%⁄ ) for 𝑠𝑤 =

200 and at 2.22 bits of uncertainty. This point is another key characteristic of a c-u-curve, indicating at which temporal 

aggregation the across-slices variability is highest. Further decreasing slice width first leads to a decrease and then another 

increase in complexity until a second maximum of 2.66 bits is reached at 𝑠𝑤 = 50 (see values in Table 1). Afterwards, 

complexity and uncertainty decrease to zero for 𝑠𝑤 = 1, which is a general property of any c-u-curve (see discussion of 345 

general properties above). Taking the uncertainty and complexity mean across all time slices summarizes the c-u-curve in a 

single point (purple pentagram in Fig. 2, values in Table 1). For the Lorenz attractor, it reveals medium average uncertainty, 

and high average complexity. In fact, the overall shape of the c-u-curve is close to the upper complexity limit reachable at a 

given uncertainty (shown in the plot as a black arch). This is in accordance with expectations, as the Lorenz attractor is 

known for exhibiting complex behaviour on many time scales. Interestingly, apart from revealing its generally complex 350 

behaviour, the c-u-curve also reveals at which particular time slice width complexity of the Lorenz attractor is at a 

maximum. This can be interpreted as a “characteristic time scale” of the time series. 

 

Table 1. Key characteristics of the c-u-curves for both the synthetic and the hydro-meteorological time series. 

Time series 

Uncertainty (bit) Complexity (bit) Characteristic 

time scale 

(days)a 
max mean max mean 

Line 0 0 0 0 n.a. 

Random noise 3.32 3.04 0.67 0.06 30 

Lorenz attractor 3.11 1.84 2.66 2.07 50, 200 

Precipitation STR 0.38 0.30 1.49 0.88 14 

Streamflow STR 0.09 0.06 0.53 0.17 14 

Streamflow GR 0.80 0.57 2.33 1.45 60 

a width of time slice at which maximum complexity occurs. 355 

 

Next, we discuss the c-u-curves of the hydro-meteorological time series. In Fig. 2, they are indicated by the lines without 

markers. It is immediately obvious that they all possess low uncertainty, much lower than the theoretical maximum 

(indicated by the vertical “max. Uncertainty” limit) and the random noise, and also lower than the Lorenz attractor. This is in 

accordance with our expectations, and a consequence of the typically high temporal autocorrelation of hydro-meteorological 360 

time series, which clearly separates them from purely random time series. For a better view of detail, we re-plotted the 

hydro-meteorological time series in a sub region of the uncertainty limits in Fig. 3, which we will refer to in the following. 

Despite the generally low uncertainties, the precipitation STR time series in Fig. 3 displays considerable complexity 

(indicated overall by the c-u-curve being close to the upper complexity limit, and for mean complexity by the relatively high 

pentagram position), which can be explained by the existence of meteorological regimes with different levels of precipitation 365 
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variability, such as dry periods (low variability), periods with alternating dry and wet periods (high variability), and wet 

times with diverse precipitation amounts (high variability). The highest complexity occurs for a time slice width of 𝑠𝑤 = 14 

days, indicating that the greatest variability of within-slice precipitation variability occurs for two-week periods. 

Interestingly, the corresponding streamflow STR time series displays much lower mean and maximum values (see Table 1) 

for both uncertainty (within-slice variability) and complexity (across-slices variability). This is in accordance with the 370 

general hydrological understanding that in the absence of major carryover mechanisms, rainfall-runoff transformation in 

catchments is mainly by aggregation and convolution, thus reducing the variability of the precipitation signal. It is 

noteworthy that while this harmonizing effect changes uncertainty and complexity means and maxima, it does not affect the 

characteristic time scale: Both for streamflow STR and precipitation STR it is two weeks. This suggests that precipitation 

remains the main control of streamflow complexity, despite the processes involved in rainfall-runoff-transformation.  375 

This is different for the second streamflow GR time series. Here, in addition to the above-mentioned rainfall-runoff 

transformation, precipitation is partly stored as snow and later released as streamflow by melting. The temporal pattern of 

snowmelt is not only governed by snow availability, i.e. the precipitation regime, but also energy availability, i.e. the long-

term radiation and temperature regime. Such additional, independent controls of hydrological function can add uncertainty 

and complexity to streamflow production. Compared to streamflow STR, both uncertainty and complexity are indeed much 380 

larger in terms of mean and maximum values, they are even larger than the corresponding values for precipitation STR 

(compare pentagram positions in Fig. 3 and values in Table 1). The characteristic time scale of streamflow GR is at 2-3 

months (60-91 days). This is considerably longer than for streamflow STR, and can be explained by the carryover effect of 

snow accumulation and snowmelt acting at time scales in the order of months rather than days or weeks. For further 

illustration of the c-u-curve method, selected histograms for streamflow GR are shown in Appendix A. 385 

 

 

Figure 3. C-u-curves for all hydro-meteorological time series as shown in Fig. 1d-f. All time series comprise 12418 time steps, the number 

of value bins and entropy bins is ten, maximum uncertainty limit and maximum complexity limit is at 𝑙𝑜𝑔2(10) = 3.32 bits. The black 

arch shows the maximum complexity limit as a function of uncertainty. Note that for better display of details this is a horizontally zoomed-390 

in version of Fig. 2. Dot labels indicate the time slice width 𝑠𝑤 used to calculate uncertainty and complexity. The pentagram positions 
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indicate mean uncertainty and mean complexity across all chosen time slicing schemes. For interpretations of the axes units “bit“, see 

Sect. 2.1. The lines connecting individual c-u points were included for better visibility, and should not be interpreted as an indication of 

guaranteed continuity of a c-u-curve. 

4 Summary and conclusions 395 

In this paper we presented a method to analyse and classify dynamical systems by the two key features uncertainty and 

complexity. After dividing the time series into a set of time slices, the Shannon information entropy is calculated for the data 

in each time slice. Uncertainty is then calculated as the mean entropy of all time slices, complexity as the entropy of all 

entropy values. Complexity thus expresses “uncertainty about uncertainty” in the time series. Calculating and plotting 

uncertainty and complexity for many time slicing schemes yields the c-u-curve, with key characteristics mean and maximum 400 

uncertainty, mean and maximum complexity, and the characteristic time scale of the time series. The latter is defined as the 

time slice width at which maximum complexity occurs.  

The c-u-curve method has several useful properties: Independence from the units of the data (both uncertainty and 

complexity are expressed in bit), existence of upper and lower bounds for both uncertainty and complexity as a function of 

the chosen data resolution, and bounded behaviour when approaching upper and lower limits of time-slicing: For a single 405 

time-slice containing all data, uncertainty equals the time series entropy and complexity is zero, for time-slices containing 

single values both uncertainty and complexity are zero. The c-u-curve method is applicable to single- and multivariate data 

sets, and to deterministic and probabilistic value representations (ensemble data sets), making it suitable for a wide range of 

tasks and systems. The main limitation of the method arises from the requirement of sufficiently populating distributions, 

which sets bounds to both the minimum and maximum width of time slices.  410 

We provided a proof-of-concept at the example of six time series, three of them artificial, three of them from hydro-

meteorological observations. The artificial time series (straight line, random noise, Lorenz attractor) were chosen for their 

very different, exemplary and well-known behaviour, and with the goal to demonstrate that the c-u-curve successfully 

reveals this behaviour, i.e. to demonstrate the general applicability of the method across a wide range of time series types. 

The observed time series (precipitation and streamflow from a mainly rainfall-dominated basin, and streamflow from a basin 415 

where additionally snow processes influence the hydrological function) were chosen with the goal to demonstrate that the c-

u-curve method reveals characteristics of real-world time series that are in accordance with general knowledge of 

hydrological system functioning. For all time series, we could show that the c-u-curve properties were distinctly different 

among the time series – which indicates that the method has discriminative capabilities useful for system classification -, and 

that the properties are in accordance with expectations based on system understanding – which indicates that the method 420 

captures relevant time series properties and expresses them in terms of uncertainty and complexity -. 

While the range of applications presented in this paper is small, and mainly intended as a proof-of-concept, the results  

encourage further studies. Particularly for hydro-meteorological applications, we suggest that the c-u-curve method can be 

used for hydrological classification, as objective function in hydrological model training, and for hydrological system 

analysis. For classification, we suggest using large hydrometeorological data sets such as from Addor et al. (2017) or Kuentz 425 

et al. (2017) for analysing whether the c-u-curve distinguishes among catchments with known differences, such as 

groundwater and interflow dominated, pristine and regulated, snow-free and snow-influenced, arid and humid. In the same 

context, classifications by the c-u-curve can be compared to existing hydrological classifiers and signatures (such as the 

flow-duration curve and others as discussed in Jehn et al., 2020; Addor et al., 2018; Kuentz et al., 2017) in terms of 

classification similarity and strength. The clear differences of c-u-curve properties between the two streamflow time series 430 

investigated in this paper encourage further research in this direction. In terms of hydrological model training, we suggest 

that the c-u-curve and its characteristic values can be used as an additional objective function: While standard hydrological 

objective functions such as Nash-Sutcliffe efficiency guide models towards point-by-point agreement of model output and 
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observations, c-u-curve characteristics can guide models towards correct representations of short- and long-term variability 

patterns. Supported by the (dis-)similarities of the c-u-curve properties of the precipitation and streamflow time series 435 

presented in this paper, we also suggest that by analysing and comparing c-u-curve properties of input, internal states and 

output of hydrological systems, valuable insights about the functioning of these systems can be gained, e.g. if they in- or 

decrease uncertainty and complexity of the signals propagating through them. Further work on these topics is in progress. 

Finally, we propose the combination of the multiscale entropy (MSE) and the c-u-curve approach as discussed in Sect. 2.3 as 

a very promising avenue for future work. 440 

Appendix A: Histograms for time series streamflow GR 

As an illustration how time series values within a time slice translate into histograms and entropy values, we show, for 

streamflow GR, in Fig. A1 the streamflow hydrographs and corresponding histograms for three time slices. All time slices 

have a width of 60 days, which is the slice width for which the series shows highest complexity (compare Table 1 and Fig. 

3). Overall, the time series (12418 time steps) splits into 12418/60 = 206 time slices. For each slice, we calculated entropy 445 

and selected three interesting ones: One with the smallest of all entropy values (0 bits), one with the highest of all entropy 

values (2.27 bits), and one with an entropy of 0.61 bits, which is close to the overall mean entropy of 0.60 bits of all 206 time 

slices (“uncertainty“). The normalized time series of the three 60-day slices are shown in Figs. A1a,b,c, the corresponding 

histograms are shown in Figs. A1d,e,f. As can be seen from Fig. A1a-c, for streamflow GR the possible range of variability 

within 60-day time slices is quite high, ranging from almost uniform flow (Fig. A1a) to time slices including very variable 450 

flow with both high and low flow conditions (Fig. A1c). This is summarized in Fig. A2, which shows the histogram of all 

206 entropy values. Its entropy (“complexity“) is 2.33 bits (compare Table 1).  

 

Figure A1. Normalized streamflow hydrographs and corresponding histograms of three time slices from time series streamflow GR. Each 

time slice comprises 60 days. For the histograms, the value range of the normalized streamflow was split into ten bins of uniform width. 455 

Subplots a) and d): time slice 2 October – 30 November 1980, entropy = 0 bits; subplots b) and e): time slice 10 October – 8 December 

1990, entropy = 0.61 bits; subplots c) and f): time slice 9 March – 7 May 2008, entropy = 2.27 bits. 
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Figure A2. Histogram of entropies from normalized time series streamflow GR split into 206 time slices, each with a width of 60 days. 460 

Entropy for each time slice was calculated from histograms (see Fig. A1). For the histogram, the possible range of entropy values ([0, 

𝑙𝑜𝑔2(10) = 3.32] bits was split into ten bins of uniform width. The entropy of the histogram “complexity“) is 2.33 bits (compare Table 

1). 

Appendix B: Proof for the existence of an upper bound of the c-u-curve 

For the convenience of the reader, we repeat Theorem 5.12 from Conrad (2022) here and some related explanation in slightly 465 

modified and shortened form, but for the full proof the reader is referred to the original publication. In the following, 𝑆 =

{𝑠1, … 𝑠𝑛} refers to a finite set of discrete, distinguishable states of a (physical) system, with corresponding energy states 

{𝐸1, … , 𝐸𝑛} and probabilities {𝑝1, … 𝑝𝑛} of the system to be in a particular state. For each probability distribution 𝑝 on 𝑆, the 

corresponding expected value of 𝐸 is given by Eq. B1. 

�̅� = ∑ 𝑝𝑗 ∙ 𝐸𝑗 (B1) 

This number is between min 𝐸𝑗 and max 𝐸𝑗. For a chosen (a priori known) value of �̅�, the goal is to find the probability 470 

distribution 𝑞 with the given �̅� and maximum entropy. For the general case when 𝑞 is not a uniform distribution, Theorem 

5.12 provides a semi-analytical solution. 

Theorem 5.12. If the 𝐸𝑗 's are not all equal, then for each �̅�  between min 𝐸𝑗  and max 𝐸𝑗  , there is a unique probability 

distribution 𝑞 on {𝑠1, … 𝑠𝑛} satisfying the condition ∑ 𝑞𝑗𝐸𝑗 = �̅� and having maximum entropy. It is given by the formula 

𝑞𝑗 =
𝑒−𝛽∙𝐸𝑗

∑ 𝑒−𝛽∙𝐸𝑖𝑛
𝑖=1

 (B2) 

for a unique extended real number 𝛽 in [−∞, ∞] that depends on �̅�. In particular, 𝛽 = −∞ corresponds to �̅� = max 𝐸𝑗, 𝛽 =475 

∞ corresponds to �̅� = min 𝐸𝑗, and 𝛽 = 0 (the uniform distribution) corresponds to the arithmetic mean �̅� = (∑ 𝐸𝑗) 𝑛⁄ , so 
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𝛽 > 0  when �̅� < (∑ 𝐸𝑗) 𝑛⁄  and 𝛽 < 0  when �̅� > (∑ 𝐸𝑗) 𝑛⁄ . The value of 𝛽  can be numerically approximated with an 

iterative algorithmic recipe and Eqs. B1 and  B2 (see example 5.14 in Conrad, 2022). 

 

Code availability. The code used to conduct all analyses in this paper is publicly available at 480 

https://doi.org/10.5281/zenodo.7276917 (Ehret, 2022). 

 

Data availability. All data used to conduct the analyses in this paper and the result files are publicly available at 

https://doi.org/10.5281/zenodo.7276917 (Ehret, 2022). 

 485 

Author contributions. UE developed the c-u-curve method and wrote all related code. UE and PD designed the study 

together and wrote the manuscript together. 

 

Competing interests. The authors declare that they have no conflict of interest. 

 490 

Acknowledgements. We gratefully acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the Open 

Access Publishing Fund of the Karlsruhe Institute of Technology (KIT). We thank Philipp Reiser from University of 

Stuttgart for pointing us to Conrad (2022). The second author is grateful to Department of Science and Technology (DST), 

Government of India, for providing him DST INSPIRE Faculty Fellowship in 2023 (Faculty Registration No. : IFA22-EAS 

114, Application Number: DST/INSPIRE/04/2022/001952). 495 

 

Financial support. The article processing charges for this open access publication were covered by a Research Centre of the 

Helmholtz Association. 

References 

Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures 500 

Based on Their Predictability in Space, Water Resources Research, 54, 8792-8812, 

https://doi.org/10.1029/2018WR022606, 2018. 

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology 

for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293-5313, 10.5194/hess-21-5293-2017, 2017. 

Azmi, E., Ehret, U., Weijs, S. V., Ruddell, B. L., and Perdigão, R. A. P.: Technical note: “Bit by bit”: a practical and general 505 

approach for evaluating model computational complexity vs. model performance, Hydrol. Earth Syst. Sci., 25, 1103-

1115, 10.5194/hess-25-1103-2021, 2021. 

Bossel, H.: Systems and Models. Complexity, Dynamics, Evolution, Sustainability, Books on Demand GmbH, Norderstedt, 

Germany, 372 pp., 2007. 

Bossel, H.: Dynamics of forest dieback: Systems analysis and simulation, Ecol. Model., 34, 259-288, 510 

http://dx.doi.org/10.1016/0304-3800(86)90008-6, 1986. 

Bras, R. L.: Complexity and organization in hydrology: A personal view, Water Resources Research, 51, 6532-6548, 

10.1002/2015wr016958, 2015. 

Brunsell, N. A.: A multiscale information theory approach to assess spatial–temporal variability of daily precipitation, 

Journal of Hydrology, 385, 165-172, https://doi.org/10.1016/j.jhydrol.2010.02.016, 2010. 515 

Castillo, A., Castelli, F., and Entekhabi, D.: An entropy-based measure of hydrologic complexity and its applications, Water 

Resources Research, 51, 5145-5160, 10.1002/2014wr016035, 2015. 



16 

 

Conrad, K. (2022): Probability distributions and maximum entropy. 

https://kconrad.math.uconn.edu/blurbs/analysis/entropypost.pdf. Last access: 2022/10/30. 

Chou, C.-M.: Wavelet-Based Multi-Scale Entropy Analysis of Complex Rainfall Time Series, Entropy, 13, 241-253, 2011. 520 

Costa, M., Goldberger, A. L., and Peng, C. K.: Multiscale Entropy Analysis of Complex Physiologic Time Series, Physical 

Review Letters, 89, 068102, 10.1103/PhysRevLett.89.068102, 2002. 

Costa, M., Goldberger, A. L., and Peng, C. K.: Multiscale entropy analysis of biological signals, Physical review. E, 

Statistical, nonlinear, and soft matter physics, 71, 021906, 10.1103/PhysRevE.71.021906, 2005. 

Cover, T., and Thomas, J. A.: Elements of Information Theory, Wiley Series in Telecommunications and Signal Processing, 525 

Wiley-Interscience, 2006. 

Dey, P., and Mujumdar, P.: On the statistical complexity of streamflow, Hydrological Sciences Journal, 1-14, 

10.1080/02626667.2021.2000991, 2021. 

Dooge, J. C. I.: Looking for hydrologic laws, Water Resour. Res., 22, 46S-58S, 10.1029/WR022i09Sp0046S, 1986. 

Ehret, U.: KIT-HYD/c-u-curve: Version 1.1 (1.1.0). Zenodo. https://doi.org/10.5281/zenodo.7276917 , 2022. 530 

Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J., Blöschl, G., Gelfan, A. N., Harman, C., Kleidon, A.,  

Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe, E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J., van 

Beek, L. P. H., van Griensven, A., Westhoff, M. C., and Winsemius, H. C.: Advancing catchment hydrology to deal with 

predictions under change, Hydrol. Earth Syst. Sci., 18, 649-671, 10.5194/hess-18-649-2014, 2014. 

Engelhardt, S., Matyssek, R., and Huwe, B.: Complexity and information propagation in hydrological time series of 535 

mountain forest catchments, Eur. J. For. Res., 128, 621-631, 10.1007/s10342-009-0306-2, 2009. 

Feldman, D. P., and Crutchfield, J. P.: Measures of statistical complexity: Why?, Physics Letters A, 238, 244-252, 

10.1016/s0375-9601(97)00855-4, 1998. 

Forrester, J. W.: Principles of Systems (2nd ed.), Productivity Press, Portland, OR, 391 pp., 1968. 

Freedman, D., and Diaconis, P.: On the histogram as a density estimator:L2 theory, Zeitschrift für 540 

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 57, 453-476, 10.1007/BF01025868, 1981. 

Gell-Mann, M.: What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The 

Quark and the Jaguar, Complexity, 1, 16-19, 10.1002/cplx.6130010105, 1995. 

Guzmán-Vargas, L., Ramírez-Rojas, A., and Angulo-Brown, F.: Multiscale entropy analysis of electroseismic time series, 

Nat. Hazards Earth Syst. Sci., 8, 855-860, 10.5194/nhess-8-855-2008, 2008. 545 

Hastings, A., Hom, C. L., Ellner, S., Turchin, P., and Godfray, H. C. J.: Chaos in Ecology - Is Mother Nature a Strange 

Attractor?, Annu. Rev. Ecol. Syst., 24, 1-33, 1993. 

Hauhs, M., and Lange, H.: Classification of Runoff in Headwater Catchments: A Physical Problem?, Geography Compass, 

2, 235-254, https://doi.org/10.1111/j.1749-8198.2007.00075.x, 2008. 

Jakeman, A. J. and Hornberger, G. M.: How much complexity is warranted in a rainfall-runoff model?, Water Resources 550 

Research, 29(8), 2637–2649, doi:10.1029/93WR00877, 1993 

Jehn, F. U., Bestian, K., Breuer, L., Kraft, P., and Houska, T.: Using hydrological and climatic catchment clusters to explore 

drivers of catchment behavior, Hydrol. Earth Syst. Sci., 24, 1081-1100, 10.5194/hess-24-1081-2020, 2020. 

Jenerette, G. D., Barron-Gafford, G. A., Guswa, A. J., McDonnell, J. J., and Villegas, J. C.: Organization of complexity in 

water limited ecohydrology, Ecohydrology, 5, 184-199, 10.1002/eco.217, 2012. 555 

Jovanovic, T., Garcia, S., Gall, H., and Mejia, A.: Complexity as a streamflow metric of hydrologic alteration, Stochastic 

Environmental Research and Risk Assessment, 31, 2107-2119, 10.1007/s00477-016-1315-6, 2017. 

Knuth, K. H.: Optimal data-based binning for histograms and histogram-based probability density models, Digital Signal 

Processing, 95, 102581, https://doi.org/10.1016/j.dsp.2019.102581, 2019. 



17 

 

Koutsoyiannis, D.: On the quest for chaotic attractors in hydrological processes, Hydrol. Sci. J.-J. Sci. Hydrol., 51, 1065-560 

1091, 10.1623/hysj.51.6.1065, 2006. 

Kuentz, A., Arheimer, B., Hundecha, Y., and Wagener, T.: Understanding hydrologic variability across Europe through 

catchment classification, Hydrol. Earth Syst. Sci., 21, 2863-2879, 10.5194/hess-21-2863-2017, 2017. 

Ladyman, J., Lambert, J., and Wiesner, K.: What is a complex system?, European Journal for Philosophy of Science, 3, 33-

67, 10.1007/s13194-012-0056-8, 2013. 565 

Li, Z., and Zhang, Y.-K.: Multi-scale entropy analysis of Mississippi River flow, Stochastic Environmental Research and 

Risk Assessment, 22, 507-512, 10.1007/s00477-007-0161-y, 2008. 

Liu, Y., and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water 

Resources Research, 43, https://doi.org/10.1029/2006WR005756, 2007. 

Lloyd, S.: Measures of complexity: a nonexhaustive list, IEEE Control Systems Magazine, 21, 7-8, 570 

10.1109/MCS.2001.939938, 2001. 

LopezRuiz, R., Mancini, H. L., and Calbet, X.: A statistical measure of complexity, Physics Letters A, 209, 321-326, 

10.1016/0375-9601(95)00867-5, 1995. 

Lorenz, E. N.: Predictability of a flow which possesses many scales of motion, Tellus, 21, 289-308, 1969. 

Lorenz, E. N.: Deterministic Nonperiodic Flow, Journal of Atmospheric Sciences, 20, 130-141, 10.1175/1520-575 

0469(1963)020<0130:Dnf>2.0.Co;2, 1963. 

Moiseev, I.: Lorenz attractor plot (https://www.mathworks.com/matlabcentral/fileexchange/30066-lorenz-attaractor-plot), 

MATLAB Central File Exchange. Retrieved January 3, 2022. 

Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., and Veith, T. L.: Model evaluation 

guidelines for systematic quantification of accuracy in watershed simulations, Transactions of the Asabe, 50, 885-900, 580 

10.13031/2013.23153, 2007. 

Neuper, M., and Ehret, U.: Quantitative precipitation estimation with weather radar using a data- and information-based 

approach, Hydrol. Earth Syst. Sci., 23, 3711-3733, 10.5194/hess-23-3711-2019, 2019. 

Newman, A. J., Clark, M. P., Sampson, K., Wood, A., Hay, L. E., Bock, A., Viger, R. J., Blodgett, D., Brekke, L., Arnold, J. 

R., Hopson, T., and Duan, Q.: Development of a large-sample watershed-scale hydrometeorological data set for the 585 

contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance, 

Hydrol. Earth Syst. Sci., 19, 209-223, 10.5194/hess-19-209-2015, 2015. 

Ombadi, M., Nguyen, P., Sorooshian, S. and Hsu, K.: Complexity of hydrologic basins: A chaotic dynamics perspective, 

Journal of Hydrology, 597, 126222, doi:10.1016/j.jhydrol.2021.126222, 2021. 

Ossola, A., Hahs, A. K., and Livesley, S. J.: Habitat complexity influences fine scale hydrological processes and the 590 

incidence of stormwater runoff in managed urban ecosystems, J. Environ. Manage., 159, 1-10, 

10.1016/j.jenvman.2015.05.002, 2015. 

Pachepsky, Y., Guber, A., Jacques, D., Simunek, J., Van Genuchten, M. T., Nicholson, T., and Cady, R.: Information 

content and complexity of simulated soil water fluxes, Geoderma, 134, 253-266, 

https://doi.org/10.1016/j.geoderma.2006.03.003, 2006. 595 

Pande, S., and Moayeri, M.: Hydrological Interpretation of a Statistical Measure of Basin Complexity, Water Resources 

Research, 54, 7403-7416, 10.1029/2018wr022675, 2018.Pechlivanidis, I. G., Jackson, B., McMillan, H., and Gupta, H. 

V.: Robust informational entropy-based descriptors of flow in catchment hydrology, Hydrological Sciences Journal, 61, 

1-18, 10.1080/02626667.2014.983516, 2016. 

Phillips, J. D.: Deterministic chaos and historical geomorphology: A review and look forward, Geomorphology, 76, 109-121, 600 

10.1016/j.geomorph.2005.10.004, 2006. 



18 

 

Prokopenko, M., Boschetti, F., and Ryan, A. J.: An information-theoretic primer on complexity, self-organization, and 

emergence, Complexity, 15, 11-28, https://doi.org/10.1002/cplx.20249, 2009. 

Sawicz, K., Wagener, T., Sivapalan, M., Troch, P. A., and Carrillo, G.: Catchment classification: empirical analysis of 

hydrologic similarity based on catchment function in the eastern USA, Hydrol. Earth Syst. Sci., 15, 2895-2911, 605 

10.5194/hess-15-2895-2011, 2011. 

Scott, D. W.: On optimal and data-based histograms, Biometrika, 66, 605-610, 10.1093/biomet/66.3.605, 1979. 

Seibert, S. P., Jackisch, C., Ehret, U., Pfister, L., and Zehe, E.: Unravelling abiotic and biotic controls on the seasonal water 

balance using data-driven dimensionless diagnostics, Hydrol. Earth Syst. Sci., 21, 2817-2841, 10.5194/hess-21-2817-

2017, 2017. 610 

Shannon, C. E.: A mathematical theory of communication, Bell system technical journal, 27, 623-656, citeulike-article-

id:1584479, 1948. 

Singh, V. P.: Entropy Theory and its Application in Environmental and Water Engineering, John Wiley & Sons, Ltd, 2013. 

Sivakumar, B., and Singh, V. P.: Hydrologic system complexity and nonlinear dynamic concepts for a catchment 

classification framework, Hydrology and Earth System Sciences, 16, 4119-4131, 10.5194/hess-16-4119-2012, 2012. 615 

Sivakumar, B., Jayawardena, A. W., and Li, W. K.: Hydrologic complexity and classification: a simple data reconstruction 

approach, Hydrol. Process., 21, 2713-2728, 10.1002/hyp.6362, 2007. 

Strogatz, S. H.: Nonlinear Dynamics and Chaos: With applications to Physics, Biology, Chemistry and Engineering, 

Addison-Wesley Publishing Company, Reading, MA, 498 pp., 1994. 

Sturges, H. A.: The Choice of a Class Interval, Journal of the American Statistical Association, 21, 65-66, 620 

10.1080/01621459.1926.10502161, 1926. 

Vrugt, J. A., ter Braak, C. J. F., Gupta, H. V., and Robinson, B. A.: Equifinality of formal (DREAM) and informal (GLUE) 

Bayesian approaches in hydrologic modeling?, Stochastic Environmental Research and Risk Assessment, 23, 1011-1026, 

10.1007/s00477-008-0274-y, 2009. 

Vrugt, J. A., Gupta, H. V., Bouten, W., and Sorooshian, S.: A Shuffled Complex Evolution Metropolis algorithm for 625 

optimization and uncertainty assessment of hydrologic model parameters, Water Resources Research, 39, 

https://doi.org/10.1029/2002WR001642, 2003. 

Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and Hydrologic Similarity, Geography 

Compass, 1, 901-931, https://doi.org/10.1111/j.1749-8198.2007.00039.x, 2007. 

Wu, S.-D., Wu, C.-W., Lin, S.-G., Wang, C.-C., and Lee, K.-Y.: Time Series Analysis Using Composite Multiscale Entropy, 630 

Entropy, 15, 1069-1084, 2013. 

Yapo, P. O., Gupta, H. V., and Sorooshian, S.: Multi-objective global optimization for hydrologic models, Journal of 

Hydrology, 204, 83-97, 10.1016/s0022-1694(97)00107-8, 1998. 

Zhou, Y., Zhang, Q., Li, K., and Chen, X. H.: Hydrological effects of water reservoirs on hydrological processes in the East 

River (China) basin: complexity evaluations based on the multi-scale entropy analysis, Hydrol. Process., 26, 3253-3262, 635 

10.1002/hyp.8406, 2012. 

 

 

 


