
hess-2022-16 Responses to comments by referee #1 (Jasper Vrugt) 

 

Dear Editor, dear Referee, 

We thank the first referee, Jasper Vrugt, for the very detailed and constructive review of our 
manuscript. Working on the replies triggered a lot of very valuable additional insights, and they will 
definitely help us to better communicate our research. We will in the following reply to the 
comments point by point. The Referee comments are in blue. 

Comment 1: Summary: The authors resort to information theory and present the so-called c-u-curve 
to describe/quantify characteristic properties of hydrometeorological data. This c-u-curve displays 
graphically the relationship between what authors refer to as system uncertainty and complexity. 
This information is thought to be expressed and/or contained within spatial and/or temporal 
measurements of the data generating process of interest. System uncertainty is defined as the mean 
Shannon information entropy of many different time slices (time windows). The authors define 
system complexity as the ‘…uncertainty about uncertainty’ (P1, Line 11) and express this 
quantitatively as the entropy of the entropies of all time slices. As the two metrics depend strongly 
on the temporal extent (width) of the time window, the authors repeat their analysis for many 
different slice sizes. The c-u-curve is a graphical depiction of the relationship between the so-
obtained system uncertainty (x-axis) and system complexity (y-axis), both of which have units of bits. 
The authors illustrate this idea by application to six different signals (time series), including simulated 
data of a (i) deterministic (horizontal line), (ii) random (normally distributed variates) and (iii) chaotic 
system (Lorenz attractor) and measured time series of (iv) precipitation and (v,vi) catchment 
discharge of the South Toe and Green Rivers in the United States. The authors conclude that the c-u-
curve can be used to analyze, classify and compare dynamical systems. 

Evaluation: The manuscript discusses an important topic in hydrology and complex systems analysis 
in general, namely the characterization of the dimensionality and complexity of dynamical systems. I 
enjoyed reading this manuscript. The document is well written and relatively easy to understand. 
Rationales and ideas are clearly presented. The six case studies demonstrate/showcase the potential 
use of the c-u-curve, inform readers about the methodology and how to interpret its results. I 
applaud the authors for their work, which I believe is very interesting. I do have serious concerns 
however about the mathematical and literature underpinning of the methodology, and the 
robustness and convergence properties of the c-u-curve. Based on these comments, I recommend a 
major revision. 

Reply 1: We are glad that the referee finds our work interesting and relevant. The main points of 
concern raised by the referee (mathematical and literature underpinning of the method, robustness 
and convergence properties of the method) will be addressed below in the corresponding specific 
detail comments. 

Comment 2: General comment. The authors decided to present their work in the form of a technical 
note. This is an efficient way to rapidly disseminate new ideas. But technical notes have strict length 
requirements which can make it difficult to address all important aspects of the work presented. The 
ideas presented are very interesting, yet a full paper may do more justification to the ideas and work 
presented. I have several questions about the methodology, which I think should be addressed 
before readers can judge that what is presented is a substantial and/or important advance in our 
ability to analyse, classify and compare dynamical systems. Note that in my review below I use the 
word ‘signal’ for a measured or simulated time series of some quantity of interest. I also use the 
word ‘paper’ in reference to this technical note. This word is conveniently used and should certainly 
not imply that I was expecting a much longer manuscript. 



Reply 2: Initially we indeed thought about presenting the c-u-curve method in a full scientific paper, 
with the method description and a range of applications, including: 

 Hydrological classification: Use data from hydrologically distinctly different catchments such 
as groundwater dominated, interflow dominated, dominated by reservoir operation, arid, 
humid and snow-influenced catchments from large data sets (e.g. Addor et al. 2017, Kuentz 
et al., 2017) and see if and how these differences are reflected by c-u-curve properties). 

 Comparison to existing hydrological classifiers and signatures (such as those discussed in 
Jehn et al., 2020; Addor et al. 2018; Kuentz et al., 2017)  at the example of large data sets 
(e.g. Addor et al., 2017). This includes evaluating the classification power of c-u-curve and 
the evaluation how similar or dissimilar its classifications are to those from existing 
classifiers. 

 Use for model improvement: Test if c-u-curve characteristics can be used for targeted model 
improvement, either as an objective function for parameter identification during model 
calibration, or as a signature which may point to model structural deficiencies 

 System analysis: Compare c-u-curve characteristics for input, internal states and output of 
hydrological systems to analyse system behaviour: Are uncertainty and complexity increasing 
or decreasing on the way through the system? 

Looking at this list we decided it will be too much material for a single paper to introduce the method 
and provide all these use-cases. So instead we decided to introduce the c-u-curve method in a 
compact manner in a technical note, along with a few examples illustrating its properties and 
behaviour, and presenting the other aspects in a follow-up scientific paper. We suggest that this is 
the best compromise for rapid yet thorough presentation of the method. To clarify this to the reader, 
we suggest adding in a revised version of the manuscript a sentence to the last paragraph of section 
4 ('summary and conclusions'), explaining possible further avenues of research along the above 
bullet-point list. 

Comment 3: Section 2.1: The authors resort to information theory to analyze the temporal 
properties of the signal of interest. They coin two measures of system functioning/behavior, namely 
system uncertainty and system complexity and provide a mathematical definition for both that are 
subsequently used to construct the c-u-curves in the analysis. No references and/or background is 
provided about their definition. There is a large body of literature on complex systems and imagine 
that others have defined similar metrics to classify, describe and characterize time series data. This 
begs the questions whether the two criteria stand completely on their own and if earlier attempts 
have been made to analyze time series data in a similar fashion? I think the paper would be 
considerably stronger if the authors can relate their work to previous published work. Have other 
definitions of these criteria appeared in the complex systems literature? 

Reply 3: Uncertainty and complexity have no single agreed-upon definition in hydrology and in the 
earth sciences in general. Instead, many authors have suggested different definitions and methods to 
quantify them (see references cited in line 36, and lines 48-50 in the manuscript). But to the best of 
our knowledge, we are not aware of an approach identical to the c-u-curve method, both in the 
hydrological and in the complex systems literature. We searched especially the hydrological 
literature to find comparable approaches based on information measures. Here, the work by 
Pachepsky, Hauhs and Lange stands out, and we included it in the introduction (line 51). From the 
field of physics, LopezRuiz et al. (1995) and Feldman and Crutchfield (1998) suggest similar, but not 
identical approaches. Nevertheless, we followed the referee's suggestion and repeated the literature 
search. In a revised version of the manuscript, we suggest including (and discussing) into the 
introduction the following references: 

 About complex systems: Ladyman et al. (2013), Lloyd (2001), LopezRuiz et al. (1995),  
Feldman and Crutchfield (1998) 



 About uncertainty in hydrological modelling (predictive uncertainty, model structural and 
parameter uncertainty): Vrugt et al. (2003), Liu and Gupta (2007), Vrugt et al. (2009). 

Comment 4: Section 2.1: Related to my previous comment, what is wrong with specifying system 
complexity as the temporal variance of the Shannon entropies? Then you the first moment (mean) as 
measure of system uncertainty and the second moment (variance) as measure of system complexity. 
I am sure the authors have thought about this. In the present paper I just miss rationales and 
arguments so as to why their definitions are appropriate – also in light of past work done in the 
literature on this topic. 

Reply 4: Yes, this makes a lot of sense from the perspective of describing distribution in terms of their 
moments (first, second, etc.). However, we think there are good reasons for expressing variability in 
terms of entropy: 

 Independence from units: Expressing the joint variability of a multidimensional data set 
within a time slice is difficult to achieve by variance, as the variance of each variable 
dimension comes with its own unit, which makes direct combination impossible. A way out is 
to standardize variances (e.g. by the variation coefficient) before combination. As entropy 
operates on probabilities, the units of the variables play no role, which we think is an 
advantage when working with multivariate data sets, which is a key use case for the c-u-
curve method. 

 Consistency of the method: if we express variability of the distribution within a time slice by 
entropy for the reasons given in the previous bullet point, we think that it is a natural choice 
to express variability of the variabilities also by entropy. Thus, variability is always expressed 
in the same units, which increases interpretability of the method. Also, by expressing both 
variabilities in terms of entropy, useful and comparable upper bounds can be established, 
which would not be the case if variance is used for expressing complexity. 

 Interpretability: Entropy has the (in our eyes) very intuitive interpretation of 'number of 
binary Yes/No questions to ask to move from a prior to a posterior state of knowledge' (e.g. 
guessing a value coming from a known distribution). Variance lacks this straightforward 
interpretation.  

 Robustness: Variance is dominated by values far away from the mean and is therefore 
sensitive to outliers in the data set. Entropy is dominated by frequent values, i.e. the centre 
of a distribution, which makes it less sensitive to outliers. While for extreme value-statistics, 
where the tails of a distribution are of special interest, variance is a good choice, we think 
that for a characterization of the overall variability of a data set, entropy is a better choice. 

We suggest adding in a revised version of the manuscript to section 2.1 (method description) a brief 
explanation about why we express uncertainty and complexity by entropies rather than variance 
along the lines of the above bullet points. 

Comment 5: Section 2.1: In their analysis of the signal, the authors coined the words system 
complexity and system uncertainty. I do not think these labels are accurate. System uncertainty and 
system complexity refer to the system as a whole – and should, in principle, not depend on which 
variable of the system is observed. They should be invariant properties (unless the system 
experiences change). Instead, what the authors determine is the uncertainty and complexity of the 
signal only. Thus, I think it is more accurate to use the words signal uncertainty and signal complexity. 
Indeed, I expect you will get different c-u-curves for different signals of system behavior. If we take 
hydrology as example, then soil-moisture will likely give a different c-u-curve than a time series of 
groundwater table depths and this curve will be different from its counterpart of the discharge. 
Certainly, I would argue that a single component of system behavior is insufficient to characterize the 
complexity and uncertainty of the system as whole. 



Reply 5: We agree. In a revised version of the manuscript, we will use the terms 'signal uncertainty' 
and 'signal complexity' instead of 'system uncertainty' and 'system complexity'. We will also add a 
related sentence describing that we will only be able to capture true system uncertainty and 
complexity if we include all of the system's state variables into the analysis, which is impossible for 
natural systems (basically repeating the referee's argument). We will also mention that an advantage 
of the c-u-curve method is that it allows joint treatment of all available system signals, such that we 
can (with increasing availability of different signals), approach system uncertainty and complexity. 

Comment 6: Section 2.1: The choice of the number of time slices and their spatial extent; I’ll call this 
the temporal discretization of the signal; play a crucial role in the analysis. Without derivation and 
much explanation at all the authors introduce Equation (4) which provides a lower and upper bound 
for the width of the time slices. How is this equation derived? Is this a rule of thumb? The lack of a 
theoretical underpinning is a concern. It may be productive to have a look at Sturges method (or for 
that matter Scott’s method or Freedman-Diaconis) which provide a rule of thumb for the number of 
histogram bins that should be used for a given length of data. This may be used to improve the 
statistical underpinning of Equation (4). 

Reply 6: Eq. (4) formalizes constraints on the range of suitable time slice widths as a consequence of 
the length of the time series (nt) and user choices on the binning resolution (nvv and neb) and a 
desired average binning population (m). The latter three choices can be made based on the methods 
mentioned by the referee (Sturges, 1926; Scott, 1979; Freedman and Diaconis, 1981) or others such 
as (Knuth, 2019; Pechlivanidis et al., 2016). However, while the three user choices include some 
subjectivity, Eq. 4 simply, and without subjectivity, express how from these choices upper and lower 
limits of time slices arise as a consequence of the antagonistic interplay of constraints for uncertainty 
calculation according to Eq. (2) (preferably wide – hence few -  time slices) and complexity calculation 
according to Eq. (3) (preferably many – hence narrow – time slices). This is described in lines 94-104. 

As this was apparently hard to understand, we suggest adding to a revised version of the manuscript 
in section 2.1 a sentence including possible methods for binning choice (including the references 
above) and an explanation that Eq. (4) itself is not subjective, but formalizes hard constraints based 
on subjective choices made by the user.  

Comment 7: Section 2.1: Readers may be interested to see a few of the histograms that went into 
the computation of system uncertainty and system complexity. Do the histograms differ substantially 
from one time slice to the next? Do they have an overarching distribution? Skew, kurtosis, etc? 

Reply 7: Good point. For illustration, we have chosen the time series "streamflow Green River GR", 
and calculated uncertainties for time the slice width "60 days". This is the slice width for which the 
series shows highest complexity (compare Table 1 and Figure 3 in the manuscript). Overall, the time 
series (12418 time steps) splits into 12418/60=206 slices. For each slice, we calculated entropy. From 
the 206 time slices, we selected three interesting ones: One with the smallest of all entropy values (0 
bit), one with the highest of all entropy values (2.27 bit), and one with an entropy of 0.61 bit, which is  
close to the overall mean of the 206 values ("uncertainty"), 0.60 bit. The normalized time series of 
the three 60-day slices, and the corresponding histograms are shown in Fig. R1 ("R" for "figure in 
Reply", to distinguish them from Figures in the manuscript). 

Comparing the time slice series with the corresponding histogram helps developing an intuition 
about how a time series maps into a histogram, and comparing the three histograms reveals the 
range of possible histograms. For the streamflow Green River data set and 60-day slices, the range is 
quite wide. This is summarized in  Fig. R2, which shows the distribution of all 206 entropy values. Its 
entropy (="complexity") is 2.33 bit (compare Table 1 in the manuscript). 

About the question of an overarching distribution: In principle, the histograms can take any shape 
between a Dirac and a uniform distribution. Each time slice distribution should to some degree be 



influenced by the distribution of the overall data set the slices were taken from. E.g. if the overall 
distribution is highly skewed (e.g. rainfall), then chances are that the time slice histograms will also 
be skewed. A further investigation of this point is interesting, but we think it is beyond the scope of 
this manuscript. 

 

Fig. R1 

 

Fig. R2 



We propose to add Fig. R1 and a short explanation into the Appendix of a revised version of the 
manuscript.  

Comment 8: Figures 2 and 3: The authors assume that the c-u-curve is continuous, and connect the 
individual (u,c) pairs for individual time slices with a solid line. But is the curve continuous? Are there 
theoretical arguments from which one expects the curve to be continuous and not discrete? 

Reply 8: Good point. We are not aware of theoretical arguments guaranteeing continuity. So in fact 
the most honest way to show the c-u-curve is by non-connected (u,c) dots. However, the general 
shape of the curve is best visualized by a line connecting the dots, which is the reason why we used 
it. To make this point clear, we suggest adding a sentence about 'no guarantee for continuity' to a 
new section 2.2 ('Properties') in a revised version of the manuscript. Further, we suggest adding 
similar short comments to the captions of Figs. 2 and 3. 

To better illustrate the (dis-)continuity behaviour of the c-u-curve, we have repeated the calculations 
for time series "streamflow GR" (see Fig. 3 in the manuscript) for a large number of slice widths. 

For Fig. 3 in the manuscript, we used the following slice widths: 

 [1 7 14 21 30 60 91 182 365 730 6209 12418] days  overall 12 slice widths 

For the new runs, we used the following slice widths:   

 [1:1:100 110:10:300 350:50:3100 3145 6209 12418] days  overall 179 slice widths 

In Fig. R3, the original (c,u) pairs are shown as red open circles (compare with Fig. 3 in the 
manuscript). The blue dots are from the new runs without moving window option, the green dots are 
from the new runs with the moving window option (please see Comment 19 for a description of the 
new "moving window" option). 

 

Fig R3 



In Fig. R3, it can be seen from the new runs that the c-u-curve behaves generally continuous, and 
that the red-circle c-u-pairs chosen for the manuscript reflect the overall shape of the curve. But 
again, there is no guarantee. E.g., there is a distinct discontinuity in the c-u-curve between slice width 
16 days and 17 days (indicated by the arrows in Fig. R3), which could be caused by a single, 
exceptional event in the time series. However, this discontinuity should not be overemphasized, as 
for such narrow time slices (16 and 17 values in the slice, respectively), a robust population of the 
binned distribution (10 bin) is not guaranteed. According to Eq. 4, time slice widths between 30 and 
1000 are recommended (see lines 106-107 in the manuscript).  

We also repeated the calculations for all other time series. The results were very similar to those of 
"streamflow GR" shown above (not shown). 

Comment 9: Figure 2: What happens to the Lorenz c-u-curve if we use windows (slices) of a size 
smaller than 30? Equation (4) suggests that such value is not recommended, but what happens to the 
curve itself? Does the curve oscillate close to the origin? 

Reply 9: As in our reply to comment 8, we repeated the c-u-curve calculations for the Lorenz system, 
but with more slice widths. For Fig. 2 in the manuscript, we used the following slice widths: 

 [1 30:10:90 100:50:200 300:100:500 1000 30000]  overall 16 slice widths 

For the new runs, we used the following slice widths:   

 [1:1:100 110:10:300 350:50:500 1000 30000]  overall 126 slice widths 

The results are shown in Fig. R4. As before, the original (c,u) pairs are shown as red open circles 
(compare with Fig. 2 in the manuscript). The blue dots are from the new runs without moving 
window option. 

 

Fig. R4 

Similar to the results from the "streamflow GR" series that we showed in the reply to comment 8, the 
overall shape of the c-u-curve is generally smooth, and there are no oscillations close to the origin. 

Comment 10: Line 145: The authors use normalization of the signal to yield values between 0 and 1. 
This itself is inconsequential yet allows a fixed recipe for data types with very different magnitudes. 
Why do the authors not use a similar normalization in the time domain? This may help (or not) to 



standardize the characterization of the width of the slices. The only variable left is then the number 
of data points. 

Reply 10: We agree with the referee that the time axis could also be scaled to [0,1], resulting in 
normalized time slice widths. In fact this can be very useful to increase comparability of c-u-curves 
derived from time series of different length. However, normalizing time comes at the cost of losing 
interpretability. E.g. for the observed time series 'streamflow GR' in Fig. 3, we think it is more helpful 
to see that maximum complexity occurs for time slices of 60 days rather than expressing this in [0,1] 
units as 60/12418=0.0048. We therefore prefer keeping the time scale in the original axis in the 
manuscript, but we suggest adding in a revised version a short remark to the sentence in line 146-
147 that normalizing the time scale is also possible. 

Comment 11: How does the c-u-curve respond to the frequency of measurement of the signal? For 
example, in the case of discharge, you can construct the curve for hourly, daily, weekly and monthly 
data (average flows) – do we see convergence of the c-u-curve to it counterpart of the horizontal 
line? I expect such convergence to be faster for timeaverage data points than for a signal made up of 
instantaneous measurements. This analysis is important as it will help establish convergence 
properties of the c-u-curve. 

Reply 11: Very interesting question! To address it, we used the "streamflow GR" curve, and 
calculated block averages for various block sizes as suggested by the referee. In particular, we 
calculated averages for 

 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 1 month 

For each averaged series, we calculated c-u-pairs for many different slice widths. The corresponding 
c-u-curves are shown in Fig. R5. The bold blue curve is for the original (non-averaged) series 
(compare Fig. 3 in the manuscript). Several interesting features are apparent in Fig. R5: First, all c-u-
curves start at the origin, as to be expected. Second, maximum uncertainty (the lower right end of 
each c-u-curve), which is entropy of all values of the time series within a single large time slice 
generally increases with the size of the averaging block. This seems counterintuitive at first, as 
averaging should decrease variability, and with it entropy. The explanation is that by the averaging, 
the number of data points in the series changes (decreases), so it is not two series of the same 
number of time steps - one unsmoothed, one smoothed – that is compared, but rather it is two 
different series. Both series are normalized by their respective minimum and maximum values, and 
then entropy from the resulting 10-bin histogram is calculated. And apparently, daily values are less 
variable within their range of maxima and minima (most likely because there are many low-flow 
values), than e.g. monthly means, within their range of maxima and minima (most likely because 
seasonal variation causes a more uniform distribution of monthly values). Third, maximum 
complexity increases, then decrease with the size of the averaging block, for which we have no direct 
explanation, but we suspect it also has to do with the previously discussed effect.  

In short, there is a clear effect of block-averaging on the c-u-curve. Exploring it would be very 
interesting, and probably fill a paper of its own, but beyond the scope of this manuscript. We 
therefore suggest adding to a revised version of the manuscript a sentence to a new section 2.2 
('Properties') explaining that the support (block size of summation or averaging) of the data has an 
influence on the results, and that this should be taken into account when comparing different c-u-
curves (e.g. by comparing only curves from time series with the same support, which is also standard 
in conventional analysis: we usually do not compare daily temperature time series from one station 
with monthly averages from another station). 

 



 

Fig. R5 

Comment 12: How does the c-u-curve respond to a) numerical errors (in case of simulated signals) 
and b) system nonstationarity? This analysis is not difficult to do with simulated discharge data (for 
example using fixed step integration versus a variable time step or implicit solution) and will provide 
further insights into the method. 

Reply 12: Again, very interesting questions! 

Influence of a numerical error: If the error is random, and follows a certain known or assumed-to-be-
known distribution around the true value (could also be a measurement error distribution in case of 
observation data), then our uncertainty about the true entropy of a time slice will be exactly the 
entropy of the error distribution, and total entropy of the time slice will be the sum of the within-
slice entropy without the error (what we normally calculate) and the entropy of the error (entropy is 
additive for independent sources of information). As this added uncertainty will be the same for 
every time slice, mean entropy (uncertainty) will be increased by the same additive amount. As this 
means the distribution of entropies is simply shifted, but its shape remains unchanged, the entropy 
of entropies (complexity) will remain unchanged. If the error is a bias, the binned distribution of a 
time slice will be shifted, but its shape will remain unchanged. In this case, both uncertainty and 
complexity will remain unchanged. 

System nonstationarity: Long term changes of the data series can either appear in the form of trends 
or breakpoints. Let us consider both at the example of only two time slices, each covering half of the 
data series as shown in Fig. R6. 



 

Fig. R6 

For the stationary series, entropies in both slices are equal and small, mean entropy (uncertainty) is 
therefore small, and the entropy of entropies (complexity) is zero. 

For the trend series, entropies in both slices are equal and high, mean entropy (uncertainty) is 
therefore large, and the entropy of entropies (complexity) is zero. 

For the breakpoint series, entropy in the first time slice is small, in the second it is large. Mean 
entropy (uncertainty) is therefore medium, and the entropy of entropies (complexity) is large. 

Comparing the three, it seems that stationary series, trends and breakpoints in a data series will 
leave characteristic and distinguishable traces in a c-u-curve.  

We suggest adding a sentence addressing both the influence of errors and nonstationarity to a new 
section 2.2 ('Properties') in a revised version of the manuscript. 

Comment 13: What is the effect of data transformation on the inferred c-u-curve? The authors can 
again resort to discharge data and compare the c-u-curve of the original signal with its counterpart 
derived from a Box-Cox transformation. One could even consider wavelet analysis, but this is for 
future work. 

Reply 13: If the binning is kept the same, a nonlinear transformation of the data will change the 
results: wherever data are squeezed, bin populations will increase, wherever data are stretched, bin 
populations will decrease, and this will directly affect the entropy of the binned distribution. If the 
binning undergoes the same transformation as the data, the results will remain unchanged. As a user 
is free to choose a suitable binning, including non-uniform binning, there is no real reason for data 
transformation, as the desired effect of stretching and squeezing data can also be achieved by the 
choice of the binning. We suggest adding a sentence addressing this point to a new section 2.2 
('Properties') in a revised version of the manuscript. 

Comment 14: Equation (4): I find the choice of mathematical variables not particularly intuitive. The 
authors must have thought about their choice of symbols much better than I did, but why not 
assume at the outset that we are looking (typically) at temporal data and use Dt for the temporal 
extent of the time slice, n, for the number of slices and so forth. Then one can assign subscripts to 
these variables to differentiate between their definitions for the two metrics. 

Reply 14: We agree that we should better explain our choice of variable names and will add a related 
sentence at the beginning of section 2.1. The reasoning behind our choice of symbols is: 'n' is for 
'number, 'v' is for 'value', 'b' is for 'bin', 's' is for 'slice', 'e' is for 'entropy', 't' is for 'time step', 'w' is for 



'width'. 'nvb' for instance then is 'number of value bins', which we hope is intuitive once it has been 
explained to the reader. 

Comment 15: Line 97: Why should each bin of the histogram have at least some nominal number of 
m values? This seems rather artificial. Why not construct the histogram using the rules of thumb of 
Scott or Sturges? A bin cannot have zero values as this introduces difficulties with the computation of 
the density and log of the density in Eqs. (1) and (3)? I can only recommend googling ‘How to 
calculate the Kullback-Leibler divergence for discrete distributions’ – this will provide ways forward 
how to compute the product of p_i and log(p_i) if p_i is zero. Additionally, the authors can think of a 
Gaussian mixture model to fit a distribution through the histogram and use this fitted mixture to 
compute system uncertainty and system complexity. This process is sufficiently fast to warrant 
practical use in a long time series with many slices. 

Reply 15: The potential problem mentioned by the referee, 'infinite Kullback-Leibler divergence when 
p(observed)≠0 and p(model)=0' does not apply here, as we calculate entropy. For entropy, there is 
no problem with p=0, as in such a case, the limit of 0*log(0) goes to zero. The reason we recommend 
assuring a certain minimum average population of each bin by ensuring a good relation between the 
size of the data set (nt) and the number of bins (neb) is to assure that the binned distribution is a 
robust representation of the underlying distribution of the data, and not hampered by limited 
sample size. The goal – finding a good tradeoff between resolution and representativeness -  
underlies all of the binning methods mentioned in reply 6, all of which can be used instead of the 'm' 
approach to choose an appropriate binning. In a revised version of the manuscript, we will make this 
clear (see also our reply 6). 

Comment 16: Line 196: The authors refer to random noise as a purely chaotic process. I do not think 
this is an accurate description of random noise as draws from a normal variate do not satisfy the 
definition of chaos. 

Reply 16: We agree. In a revised version of the manuscript, we will remove 'purely chaotic process' 
from the sentence. 

Comment 17: The authors analyse the daily discharge data of two watersheds. First, I believe that 
hourly data is available for most watersheds. Maybe not for > 20 years uninterrupted but for 
sufficiently long times to satisfy the requirements of the methodology. More importantly, as a 
demonstration of the power and usefulness of the methodology the authors should consider using 
watersheds of the CAMELS data set with different hydrologic regimes (see recent classification 
methods published in HESS). How does the c-u-curve respond to the hydrologic regime? Do we see 
differences among all hydrologic regimes? And if we take multiple watersheds from the same regime, 
do they group in the c-u space? I consider this extension to all (4 or 5) hydrologic regimes to be 
important as it tests the robustness of the methodology. 

Reply 17: We fully agree with the suggestions made by the referee, but for the reasons given in 
comment 2 we suggest addressing them in a follow-up paper. Nevertheless, we here provide some 
preliminary results from application of the c-u-curve to the CAMELS US dataset. Overall 666 
catchments were classified into dry, wet and snow-influenced hydrological regimes by the fraction of 
precipitation falling as snow (fs) and the aridity index (AI=PET/P) (see Fig R7a): 

 Wet Regime (f_s<0.2 and AI<1). 

 Dry Regime (f_s<0.2 and AI>1). 

 Snow Regime (f_s>0.2). 

The variation of the maximum complexity for each catchment per hydrological regime is shown in 
R7.b. It reveals that different hydrologic regimes exhibit different variability of complexity. Moreover, 
the plot of complexity and entropy (R7.c) for different regimes shows the average complexity of all 
catchments in a hydrological regime (each dot is the average for a particular slice width). This further 



highlights the differences among hydrological classes, which can possibly be attributed to differences 
in catchment structural properties, process inventory and hydroclimatic forcing. We will explore this 
in detail in the next paper. 

 

Fig R7 

Comment 18: I very much enjoyed reading this paper. From my comments above it is clear that I 
have concerns about the statistical/mathematical and literature underpinning of the methodology, 
the use of the words system uncertainty and system complexity, and the robustness and 
convergence properties of the methodology (= c-u curve). The additional studies I suggest will help 
answer important questions about the usefulness and diagnostic power of the c-u curve and its use 
in the analysis and classification of hydrometeorological time series. My comments are intended to 
help the authors further refine/improve their methodology for maximum exposure and use in the 
community. 

PS. I did not proofread my review. Also, my comments are listed in a somewhat random order (with a 
c-u-curve that approaches a point) as a result of going back and forth in the paper. 



Jasper Vrugt 

Reply 18: We appreciate all comments by the referee! I hope we could suitably address his concerns 
in the above replies. With respect to robustness of the c-u-curve method, please see also our reply 
below on a question directly sent to us by the referee (comment 19). 

Comment 19: (this comment was directly sent to us by the referee, and we decided to include it 
here): I just realize now that I forgot to comment on the choice of non-overlapping windows. What 
are the arguments for this - or against using overlapping windows? I am sorry for my technical 
questions but this should help widespread dissemination of the methodology. 

Reply 19: When using overlapping windows, the data in the overlapping areas will be used twice, 
while the data in the non-overlapping areas will be used only once. This will give the former a higher 
weight in the overall results compared to the latter, for which we think there is no good justification. 
However, inspired by this question raised by the referee, we thought about other ways of making 
better use of the data to increase the robustness of the results. So far, for a particular time slicing 
scheme, the available data are split into time slices just once, placing each data point into exactly one 
slice. E.g. for slice width '3', the slices are '1-2-3', '4-5-6' etc. Depending on the particular position of 
the split (e.g. at the beginning or in the middle of a flood), this might lead to very high or low within-
slice uncertainty, which in turn can make uncertainty and complexity subject to random fluctuation, 
in other words non-robust. To overcome this potential limitation of the method, we tested a moving-
window approach: For each time slicing scheme, we calculated uncertainty and complexity for all 
possible window shifts, i.e. all shifts smaller than the width of the time slice. For the size-3 example 
used above, it means shift 0 = time slices '1-2-3', '4-5-6' etc; shift 1 = time slices '2-3-4', '5-6-7' etc.; 
shift 2 = time slices '3-4-5', '6-7-8' etc.; Shift 4 and higher are not required, because they would be 
shifted repetitions of previous windows. For practical reasons we assumed a circular data set, where 
the last value connects to the first. This avoids data loss at the beginning and end of the data set. For 
each window shift we calculated uncertainty and complexity, and then took the average over all 
shifts. The resulting c-u-curves are shown in Fig. R7. The figure shows the same c-u-curves as Fig. 2 in 
the manuscript, red are the original values (fixed window), black are the mean values for moving 
window shifts. 

 

Fig. R7 



In the figure, differences between the old fixed-window and the new moving-window approach are 
very small. This means that the fixed-window approach can be considered as robust, at least for the 
given data set. However, for shorter data sets, or for data sets with very high short-time variability, 
random effects due to fixed windows cannot be excluded.   

We therefore suggest including in a revised version of the manuscript a sentence where we describe 
the moving window tests (but without including the above plot) and drawing the conclusion that for 
the given data set, the non-shifted approach is robust, but recommend a moving-window approach 
for shorter data (at the price of higher computational effort). In the code repository, we will provide 
an updated version including the moving-window option. 

 

Additional comment: Pondering over Fig. R5, it also occurred to us that an upper limit of complexity 
as a function of uncertainty exists, which in parts (for very low and high uncertainty) is lower than the 
general upper limit indicated by the "max complexity" line. To explore this, we calculated c-u-pairs 
for all time series we had used, for many block averaging schemes, and for many slice widths, and 
plotted the c-u-pairs in Fig. R8. Please note that the axes in Fig. R8 are scaled to [0,1], just to give the 
editor and referee a flavour of a normalized version of the c-u-plot. Obviously, an upper complexity 
limit emerges. It arises from the fact that for very small and very high uncertainty values - which is 
the mean of all time slice entropies – the variability of these values – which is complexity – is limited. 
So an upper hull curve for complexity should arise from solving the question "what is the highest-
entropy discrete distribution for which the mean is known?". This limit indeed exists, as shown by 
Conrad (2022), Theorem 5.12, and Example 5.13. The solution is semi-analytical, i.e. the unknown 
value of parameter 𝛽0 in Eq. (5.10) is determined numerically, but the overall shape of the 
distribution function is analytically determined, and an exponential function of the expected values 
of each bin and 𝛽0 (Eq. 5.5). In Fig. R8, this new limit is plotted as red line. Obviously, the limit serves 
as a useful reference, against which complexities of time series of interest can be compared. E.g. the 
overall area under the theoretical limit could be seen as an upper limit for total integral complexity 
achievable by a time series, which it would reach only if it is maximally complex for each slice width. 
Taking the ratio between the reference area and the area under a particular c-u-curve could then 
serve as a single-numbered measure of the overall complexity of a time series. We therefore suggest 
introducing and discussing this limit in a revised version of the manuscript in section 3.2, where we 
also explain the other bounds (lines 160 pp). We also suggest plotting this limit in Figs 2 and 3, and in 
the Appendix provide the relevant equations and procedure to calculate it. 



 

Fig. R8 

 

 

Yours sincerely, 

Uwe Ehret and Pankaj Dey 
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