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Abstract. Rainfall interception loss remains one of the most uncertain fluxes in the global water balance, hindering water 

management in forested regions and precluding an accurate formulation in climate models. Here, a synthesis of interception 

loss data from past field experiments conducted worldwide is performed, resulting in a meta-analysis comprising 166 forest 

sites and 17 agricultural plots. This meta-analysis is used to constrain a global process-based model driven by satellite-

observed vegetation dynamics, potential evaporation and precipitation. The model considers subgrid heterogeneity and 15 

vegetation dynamics, and formulates rainfall interception for tall and short vegetation separately. A global, 40-year (1980–

2019), 0.1º spatial resolution, daily temporal resolution dataset is created, analysed and validated against in situ data. The 

validation shows a good consistency between the modelled interception and field observations over tall vegetation, both in 

terms of correlations and bias. While an underestimation is found in short vegetation, the degree to which it responds to in 

situ representativeness errors and difficulties inherent to the measurement of interception in short vegetated ecosystems is 20 

unclear. Global estimates are compared to existing datasets, showing overall comparable patterns. According to our findings, 

global interception averages to 73.81 mm yr–1 or 10.96 × 103 km3 yr–1, accounting for 10.53% of continental rainfall, and 

approximately 14.06% of terrestrial evaporation. The seasonal variability of interception follows the annual cycle of canopy 

cover, precipitation, and atmospheric demand for water. Tropical rainforests show low intra-annual vegetation variability, 

and seasonal patterns are dictated by rainfall. Interception shows a strong variance among vegetation types and biomes, 25 

supported by both the modelling and the meta-analysis of field data. The global synthesis of field observations and the new 

global interception dataset will serve as a benchmark for future investigations, and facilitate large-scale hydrological and 

climate research. 
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1. Introduction 

Vegetation rainfall interception loss (I) is the volume of rainfall captured by plant surfaces and evaporated back into the 30 

atmosphere without reaching the ground. It plays a pivotal role in the hydrological cycle and land–atmosphere interactions, 

representing a net 'loss' of water for ecosystems, and a net 'gain' of moisture for the atmosphere. Its accurate monitoring is 

therefore not only crucial for water and forest management, but also for climatic and meteorological applications. In forests, 

the intercepted rainfall by plant canopies typically accounts for 10–30% of the gross rainfall (P), but it may reach up to 50% 

in dense boreal forests (Molina and Del Campo, 2012; Zabret et al., 2017; Hassan et al., 2017) and montane rainforests 35 

(Tarazona et al., 1996; Schellekens et al., 2000). Despite this importance, I has been traditionally overlooked by global 

hydrological models, and in ecosystem-scale research dedicated to exploring evaporation (E), and E partitioning, based on 

eddy-covariance data (Stoy et al., 2019). 

Nonetheless, decades of experimental research have contributed to increasing our process-understanding of this flux, 

especially over forests (Van Dijk et al., 2015). Experiments conducted either at the single tree or plot level have allowed the 40 

design of multiple models, ranging from fully empirical I vs. P regressions (Zhang et al., 2017; Zheng et al., 2018), to 

stochastic models (Calder et al., 1986; Calder, 1996; Xiao et al., 2000), to process-based formulations (Rutter et al., 1971; 

Gash et al., 1980; Valente et al., 1997; Van Dijk and Bruijnzeel, 2001b). New approaches for estimating I have also been 

developed recently, including, for example, a physically-based model only forced by precipitation (Návar, 2019, 2020) or a 

novel soil moisture-based method used to estimate storage capacity assuming that infiltration begins only after interception 45 

storage is full (Acharya et al., 2020). Besides, improved technology and process understanding have allowed increasingly 

detailed studies on I in the field, that range from investigating the intrastorm-scale interception (Reid and Lewis, 2009; Iida 

et al., 2017), to assessing the influence of canopy structure (Ginebra-Solanellas et al., 2020; Yan et al., 2021) and climate 

factors (Pérez‐Suárez et al., 2014; Zabret et al., 2018). Such detailed research provides an opportunity for further insights 

into the interception process, but the requirement for information about specific rainfall properties (e.g., raindrop size and 50 

velocity) and vegetation characteristics (e.g., stem density and litter layer thickness) challenges the consideration of these 

advances in global model applications.  

Global I estimation is essential for understanding the land influence on climate and the large-scale availability of water 

resources. Current global land surface models as well as remote sensing-based approaches typically rely on Rutter-like 

formulations (Rutter et al., 1971; Rutter et al., 1975), which track the flow and storage of precipitation through different 55 

compartments across vegetation. Of these formulations, the Gash analytical model (Gash et al., 1980; Gash et al., 1995), and 

subsequent adaptations (Valente et al., 1997; Van Dijk and Bruijnzeel, 2001b), have been particularly popular for large-scale 

applications, owing to their low input data requirements and daily scale simulation with the assumption of one storm per rain 

day. Based on the adaptation by Valente et al. (1997), Miralles et al. (2010) presented the first global interception model 

solely based on satellite data as input, which was later applied, for instance, to benchmark reanalysis products (Reichle et al., 60 

2011) and climate models (Yang et al., 2019). Likewise, the adapted version of the Gash analytical model proposed by Van 
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Dijk and Bruijnzeel (2001b) – hereafter referred to as vD–B model – has witnessed great success in recent years, largely due 

to its parsimonious parameterization of canopy cover and storage capacity, and its applicability to crops and other vegetation 

types beyond trees. This formulation has been successfully applied in remote sensing models (Zhang et al., 2016a; Zheng 

and Jia, 2020) and continental to global landscape hydrological models (Van Dijk, 2010; Wallace et al., 2013; Van Dijk et al, 65 

2013). 

Despite these efforts, I remains one of the most uncertain fluxes in the global water balance (Dorigo et al., 2021). However, 

the valuable data and knowledge gained from field campaigns worldwide provides a unique opportunity to constrain and 

inform global I modelling. To date, this opportunity has not been exploited fully, partly due to the difficulties inherent to 

data collection and harmonisation of the hundreds of experimental campaigns conducted over the past decades. Unlike for 70 

eddy-covariance, lysimeters or sap-flow measurements, no international observational network exists for I, and past 

campaigns are based on inconsistent measurement methods and limited observational periods. The development of a global-

scale synthesis of parameters and field observations remains thus crucial for large-scale studies of interception loss. Despite 

the paucity of these experimental data, we already know from past campaigns that the heterogeneity in I induced by different 

vegetation types is large (Waterloo et al., 1999; Pérez‐Suárez et al., 2014; Wang and Wang, 2020), which implies that 75 

subgrid parameterization and validation are needed in global models. In general, forests can intercept more rainfall than short 

vegetation under the same weather conditions, due to their higher storage capacity and evaporation rates during rainfall. 

Therefore, the sensitivities shown by analytical models to the parameterizations of storage capacity and wet canopy 

evaporation rates should differ for different land cover types (Limousin et al., 2008; Linhoss and Siegert, 2016; Liu et al., 

2018; Fathizadeh et al., 2018; Ma et al., 2019). These parameters, pertaining to either canopy structure or weather 80 

conditions, are frequently considered a constant due to a lack of measurements, whereas their spatial and temporal variability 

can still be very large (Deguchi et al., 2006; Fathizadeh et al., 2018). Finally, a comprehensive synthesis of past field 

campaigns could also provide an opportunity to validate global model performance in a much more extensive way than what 

has been done in the past.  

Therefore, this study presents a synthesis of interception loss data from past field campaigns worldwide (Sect. 2.1 and Sect. 85 

4), with the goal of using it to constrain a global vD–B model driven by satellite-observed vegetation dynamics, potential 

evaporation and precipitation data (Sect. 3). The model considers subgrid heterogeneity and vegetation dynamics, and 

formulates rainfall interception for tall and short vegetation separately. A global, 40-year (1980–2019) I dataset is generated 

at a daily temporal and 0.1º spatial resolution, which is validated against past field observations (Sect. 5.1) and compared to 

existing global datasets (Sect. 5.5). The I patterns are analysed in terms of global magnitude and spatial variability (Sect. 90 

5.2), seasonal dynamics (Sect. 5.3), and differences between biome types (Sect. 5.4). 
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2. Data 

2.1 Field campaign data 

A comprehensive meta-analysis of previous interception loss field campaigns provides an extensive archive of data to 

parameterize and/or validate model estimates over multiple biome types. We search for peer-reviewed articles and academic 95 

dissertations reporting rainfall interception or rainfall partitioning published before September 2021 on Google Scholar, Web 

of Science, China National Knowledge Infrastructure, and in reference lists of identified primary studies or review papers. In 

this study, we mainly focus on parameters related to vegetation storage capacity and wet canopy evaporation rate, and field 

observations of interception, precipitation and rainfall rates.  

We synthesis the partitioning of incident rainfall into interception, stemflow and throughfall by trees and shrubs at the global 100 

scale. In total, 268 observational records are collected from 169 independent publications. Most of them span up to 2 years. 

To ensure the representativeness of the observations and minimise their inconsistencies with estimations, records are 

discarded if (a) the campaign lasts less than half a year; (b) they include cloud and/or snow interception; (c) they are affected 

by abundant epiphytes; (d) they belong to city parks; (e) they are based on insufficient or fixed rain gauges. After such 

screening, 193 observations from 125 sites are retained for validation. The locations of experimental sites are shown in Fig. 105 

1. All the metadata collected from literature is given in Supplement. 

2.2 Gridded data 

Several observational datasets are used to compute I at the global scale based on a global vD–B model (Sect. 3) 

parameterised and constrained using the in situ data (Sect. 4). To characterise canopy cover fraction (cc), global Vegetation 

Continuous Fields (VCF) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD44B and the 110 

Making Earth System data records for Use in Research EnvironmentS (MEaSURES) are selected. Both products are 

generated on an annual basis and provide the percentage of each gridcell covered by each of the following land cover 

classes: tall vegetation (i.e. tree canopies), short vegetation (i.e. non-tree vegetation), and bare ground. The MEaSURES 

product (Hansen and Song, 2017) is created with a bagged linear model algorithm based on surface reflectance and 

brightness temperature from the Advanced Very High Resolution Radiometer (AVHRR) and MODIS, covering a 35-year 115 

record from 1982 to 2016. The MOD44B product (Dimiceli et al., 2017) is retrieved from MODIS on the basis of regression 

tree models created using machine learning, and spans from 2000 to near present. In order to have a long and consistent data 

series, a cumulative density function matching approach of Reichle and Koster (2004) is applied. This removes systematic 

differences between the two, and yields a merged VCF dataset covering 1982–2019. For the period 1980–1981, the VCF of 

1982 is used. Moreover, the MODIS Land Cover Product (MCD12C1) (Sulla-Menashe et al., 2019), based on the 120 

International Geosphere–Biosphere Programme (IGBP) classification, is selected to extract the spatial distribution and 

fractions of forest (FF, including Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, 

Deciduous Broadleaf Forests, Mixed Forests, Woody Savannas and Savannas) and non-forest (Closed Shrublands, Open 
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Shrublands, Grasslands, Croplands, Cropland/Natural Vegetation Mosaics, and Permanent Wetlands) ecosystems per pixel 

for validation purposes (see Sect. 5.1).  125 

 

Figure 1. (a) Spatial distribution of experimental sites and vegetation cover types. Red and black stars represent tall vegetation 

and short vegetation sites retained for validation (respectively), while blue triangles are discarded sites. Vegetation cover is based 

on the IGBP classification of MCD12C1 corresponding to 2001, including Evergreen Needleleaf Forests and Deciduous Needleleaf 

Forests (NF), Evergreen Broadleaf Forests (EBF), Deciduous Broadleaf Forests (DBF), Mixed Forests (MF), Woody Savannas and 130 
Savannas (SAV), Closed Shrublands and Open Shrublands (SHL), Grasslands, Croplands and Cropland/Natural Vegetation 

Mosaics (GCM). (b) Observational days of field experiments (left), and the number of days and sites each year (right). 
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Fraction of absorbed Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI) retrievals are taken from the 

MODIS V6 MCD15A3H product. This newest version at 500 m resolution benefits from an improved biome map from the 

high spatial resolution MODIS Land Cover Product (MCD12Q1), which provides an accurate parameter estimation related 135 

to vegetation structural types for three-dimensional radiative transfer formulations (Yan et al., 2016a). To discriminate 

between tall vegetation and short vegetation fractional covers, and obtain representative fPAR and LAI for each of these two 

fractions at 0.1° resolution, 250 m resolution MOD44B data is used to select the values of fPAR and LAI from the 'purest' 

high-resolution pixels; for instance, the fPAR for tall vegetation in a certain 0.1° gridcell is the average of the 500 m 

resolution fPAR values for the pixels with a fraction of tall vegetation >98th percentile in the 0.1° gridcell. This work is done 140 

in Google Earth Engine, and its quality flag is used to exclude low-accuracy observations contaminated by clouds and snow. 

The original 4-day resolution is temporally smoothed and gap filled based on the TSGF method (Verger et al., 2011). A 7-

year climatology is applied to fill gaps with missing data longer than 64 days. The gap-free daily time series are achieved 

with linear interpolation. The daily climatology of fPAR and LAI based on 2003–2007 is used for the period prior to MODIS. 

Taking advantage of the complementary strengths of gauge-, satellite-, and reanalysis-based data, the Multi-Source 145 

Weighted-Ensemble Precipitation (MSWEP v2.8) data (Beck et al., 2019) is selected as the precipitation forcing in this 

study. The climatological rainfall rate (R) during P events is also derived from the 3-hr MSWEP, by taking the maximum 

accumulated volume over the 3-hr periods at the monthly time scale. To mask out snow periods, observations of Snow-

Water Equivalent (SWE) from the European Space Agency (ESA) GLOBSNOW product (Luojus et al., 2013) are used over 

the Northern Hemisphere; the monthly SWE climatology product from the National Snow and Ice Data Centre (NSIDC) 150 

(Armstrong et al., 2005) is used for the Southern Hemisphere. The Priestley and Taylor-based potential evaporation (Ep) 

from the Global Land Evaporation Amsterdam Model (GLEAM) v3.5(a) (Miralles et al., 2011b; Martens et al., 2017) is 

selected as a proxy of mean wet canopy evaporation (EC) for short vegetation. Natural neighbour interpolation is applied in 

resampling the datasets from their original spatial resolution to a common 0.1° global grid. An overview of all gridded 

datasets used can be found in Table 1.   155 

Table 1. Overview of the selected forcing datasets used in the global application of the vD–B model. 

Variables Dataset Resolution Period References 

P MSWEP v2.8 Daily; 0.1° 1979–2020 Beck et al. (2019) 

R MSWEP v2.8 3-hour; 0.1° 1979–2020 Beck et al. (2019) 

VCF MOD44B v6.1 Yearly; 250m 2000–2019 Dimiceli et al. (2017)  

MEaSURES Yearly; 0.05° 1982–2016 Hansen and Song (2017) 

FF MCD12C1 Yearly; 0.05° 2001–2019 Sulla-Menashe et al. (2019) 

fPAR & LAI MCD15A3H v6 4-day; 500m 2002–2020 Yan et al. (2016a); (2016b) 

Ep GLEAM v3.5a Daily; 0.25° 1980–2020 Miralles et al. (2011b); Martens et al. (2017) 

SWE GLOBSNOW L3av2  

+NSIDC v0.1 

Daily; 0.25° 1980–2015 Luojus et al. (2013)  

Armstrong et al. (2005) 
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3. Model formulation 

Most studies of I are focused on forest plots or single trees, often following the assumption that I in short vegetation 

ecosystems is less important, due to the lower aerodynamic conductance and weaker coupling to the atmosphere (David et 

al., 2006; Paço et al., 2009). However, short vegetation I cannot be ignored; the fraction of terrestrial evaporation that relates 160 

to plant water consumption (transpiration) needs to be isolated from the entire evaporative flux to understand water use 

efficiency and the links to the carbon cycle (Miralles et al., 2020). Previous uses of the modified Gash model described by 

Van Dijk and Bruijnzeel (2001b) (i.e. the vD–B model) confirm its applicability to agricultural cropping systems (Van Dijk 

and Bruijnzeel, 2001a; Fernandes et al., 2017) and grasslands (Finch and Riche, 2010). In fact, the vD–B model has already 

been applied to estimate I in tall and short vegetation ecosystems, both regionally (Cui and Jia, 2014; Cui et al., 2017) as 165 

well as globally (Zhang et al., 2016a; Zheng and Jia, 2020). The vD–B model is also implemented in the Australian Water 

Resources Assessment (AWRA) system (Van Dijk, 2010; Wallace et al., 2013) and the global WR3A/W3 models (e.g., Van 

Dijk et al. (2013); (2018); Schellekens et al. (2017)). 

The vD–B model proposes several improvements to the assumptions and parameterization in the sparse Gash model (Gash et 

al., 1995; Valente et al., 1997). The main feature of the vD–B model is the incorporation of LAI to evaluate the influence of 170 

vegetation structure and density on I. Analogous to the transmittance of light through the canopy considering the vegetation 

elements as opaque, cc is approximated as an exponential function of LAI using Beer–Lambert's Law:  

 𝑐𝑐 = 1 − 𝑒(−𝜅⋅𝐶⋅𝐿𝐴𝐼/𝜇)                                                                               (1) 

with 𝜅 being the extinction coefficient, and with the clumping index (C) and the cosine of the Sun zenith angle (𝜇) being set 

to unity in the vD–B model. Moreover, the canopy storage capacity (S) is assumed to be linearly related to LAI, instead of 175 

being linearly related to cc as in the sparse Gash model by Valente et al. (1997). These adaptations make I directly sensitive 

to temporal changes in LAI, thus providing insight into seasonal phenology influences. Furthermore, the vD–B model makes 

a modification to the questionable assumption that no water evaporates from stems before the canopy is saturated, through 

treating the rainfall retained on stems similarly to that retained by the canopy. Under such assumptions, the storage capacity 

of canopies (S) and stems (SS) can be integrated into a total storage capacity (SV). Hence, the rainfall intercepted by canopies 180 

and stems is no longer strictly distinguished in the model calculations. 

Recently, C is shown to be an important biophysical parameter in characterising the effective LAI as a function of the 

distribution and density of foliage within crowns using radiative transfer models (Béland and Baldocchi, 2021). The impacts 

of clumping on transpiration and photosynthesis have also been evaluated in detail (Braghiere et al., 2019; 2020; 2021). 

Here, we exploit the value of fPAR data in order to evaluate the impact of canopy structure and density on I without the need 185 

to retrieve suitable values for C, 𝜇 and 𝜅 over different regions. Meanwhile, the approach allows the consideration of intra-

annual dynamics in cc: 

𝑐𝑐 = 𝑉𝐶𝐹 ⋅ [
𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦

𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛
+ 𝐾(𝑠)]                                                                      (2) 
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where VCF is the (annual mean) fraction of vegetation cover, 𝑓𝑃𝐴𝑅 𝑑𝑎𝑖𝑙𝑦  and 𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛  are the daily and annual mean 

fPAR for the corresponding land cover fraction (tall or short vegetation) within each pixel – see Sect. 2.2 for the data sources 190 

and pre-processing. K(s) is a coefficient indicating the proportion of non-green vegetation, i.e., trunks, branches and necrotic 

leaves, a parameter similar to the stemflow partitioning coefficient (Pt) in Rutter and Gash models; values 0.028 (Gash et al., 

1995; Zeng et al., 2000) and 0.010 (Návar et al., 1999) are chosen for tall and short vegetation, respectively. After applying 

eq. (2), spurious cc values larger than unity are set to unity. Implicit to the approach of using fPAR to compute the rainfall 

intercepting surface fraction (i.e. cc) is the assumption that the light and rain penetration through the canopy is alike. 195 

Previous studies have shown that fPAR and cc can be derived using the same equation either from LAI (Majasalmi et al., 

2017) or NDVI (Carlson and Ripley, 1997), and fPAR exhibits strong linear correlation to cc (Mu et al., 2018). For instance, 

in the Priestley and Taylor Jet Propulsion Laboratory (PT-JPL) model (Fisher et al., 2008), cc is assumed equal to light 

intercepted (not absorbed) by the vegetation fraction (fIPAR), and in the Penman–Monteith MODerate Resolution Imaging 

Spectroradiometer (PM-MOD) model (Mu et al., 2011), the fPAR from MOD15A2 is directly used as a surrogate of cc in 200 

estimating global terrestrial evaporation. Conversely, in the Penman–Monteith-Leuning (PML) model (Zhang et al., 2016a) 

and the ETMonitor model (Hu and Jia, 2015), both based on the model by Van Dijk and Bruijnzeel (2001b), cc is calculated 

as a function of LAI following the Beer’s law.   

In addition to cc, other parameters in the global vD–B model include EC, leaf storage capacity (SL) and SS. In this study, we 

take advantage of the large archive of field data collected from literature (Sect. 2.1) to select the most adequate values of EC, 205 

SL and SS for different biomes (Sect. 4). The formulations and parameter values of the global vD–B model are provided in 

Table 2.  

Table 2. Equations and parameters in the global vD–B model. The equations calculating I, 𝑃′and SV are adopted from Van Dijk 

and Bruijnzeel (2001b), the formulation of cc is presented in eq. (2), and the parameterisation is based on the meta-analysis of past 

field campaigns. 210 

 The global vD–B model 

tall vegetation short vegetation 

I calculation 

For storms insufficient to saturate vegetation, i.e. P ≤ 𝑃′ 

 

 𝐼 = 𝑐𝑐 ∙ 𝑃 

For storms sufficient to saturate vegetation, i.e. P > 𝑃′  𝐼 = 𝑐𝑐[𝑃′ + 𝐸𝐶/𝑅(𝑃 − 𝑃′)] 
Parameters  

Rainfall necessary to saturate vegetation, 𝑃′ (mm) −[𝑅𝑆𝑉/𝐸𝐶]𝑙𝑛(1 − 𝐸𝐶/𝑅) 

Vegetation cover fraction, cc (-) 𝑉𝐶𝐹[𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦/𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛 + 𝐾(𝑠)] 

Vegetation storage capacity, SV (mm) 𝐿𝐴𝐼 ∙ 𝑆𝐿 + 𝑆𝑆 

Mean wet canopy evaporation rate, EC (mm h-1) 0.32 Ep 

Leaf storage capacity, 𝑆𝐿 (mm) 0.20 for EBF 

0.18 for DBF 

0.29 for NF 

0.23 for others 

0.10 

Trunk/Stem capacity, 𝑆𝑆 (mm) 0.09 0.03 
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4. Meta-analysis and model parameterisation 

4.1 Vegetation storage capacity 

Generally in the literature, canopy storage capacity is expressed either per unit of total area (S), canopy area (SC) and leaf 

surface area (SL). In most rainfall interception studies, S is assumed to be linearly related to SC and cc. SC is often assumed to 

vary per vegetation type and is dependent on climate conditions. In nature, SC is dependent on vegetation morphological 215 

characteristics such as leaf surface area, inclination and hydrophobicity (Garcia-Estringana et al., 2010; Holder, 2013; 

Ginebra-Solanellas et al., 2020), as well as meteorological variables like rainfall intensity, droplet size and wind (Hörmann 

et al., 1996; Klaassen et al., 1996; Sun et al., 2018, Gerrits et al., 2010). It may explain why the SC values collected in 

previous campaigns can vary widely, from 0.35 mm (Valente et al., 1997) to 4.47 mm (Shi et al., 2010) – see Fig. 2a. The 

concepts of static/dynamic storage (Keim et al., 2006) and minimum/maximum storage (Xiao and Mcpherson, 2016) have 220 

been proposed to account for the storage changes driven by meteorological variables during specific rainfall events. Some 

studies suggest that LAI can be a valuable variable to explain the variability in S, and further study their potential relation 

using linear (Van Dijk and Bruijnzeel, 2001b; Deguchi et al., 2006; Wallace and McJannet, 2008), nonlinear (De Jong and 

Jetten, 2007; Mianabadi et al., 2019) and exponential (Wallace et al., 2013) regressions. Here, we revisit the relationship 

between S, LAI and cc over multiple ecosystems based on previous studies (Fig. S1). A linear relationship between S and LAI 225 

is only found for short vegetation (r=0.73) and coniferous forests (r=0.60), while S shows a weak linear correlation to cc only 

in broadleaf forest (r=0.54~0.59). Nonlinear regressions do not show a higher accuracy than linear regressions in the 

prediction of S (based on either LAI or cc) over any ecosystems. 

As the majority of studies focus on either S or SC, cc and LAI are collected to derive SL indirectly under the assumption that 

canopy capacity is linearly related to LAI. As such, caution should be taken in calculating SL that canopy capacity and LAI 230 

should be expressed in uniform scales, as LAI can be given in per unit of total land area or just canopy area which often have 

to be deduced from the context of the study. Based on traditional statistical analysis, NF shows larger SL with a median value 

0.29 mm (95% confidence level 0.25–0.34 mm), while within other forest types SL is similar; 0.20 (0.16–0.24), 0.18 (0.16–

0.21) and 0.20 (0.18–0.22) mm are found for EBF, DBF and MF, respectively (Fig. 2b). The median value of 0.23 (0.20–

0.27) mm for all forest types is much larger than the 0.10 (0.08–0.12) mm found for short vegetation plant functional types 235 

(i.e., crops, grass and shrubs). Stem storage capacity (SS) is influenced by stem density, bark surface roughness, the 

arrangement of twigs and leaves, and epiphytes. Large discrepancies are shown in reported studies with a range from 0.01 

mm (Návar, 2013) to 0.83 mm (Chen et al., 2013). Often, SS is obtained from an indirect, regression-based method in I 

simulations based on field observations (Gash and Morton, 1978; Gash, 1979; Lloyd et al., 1988). Compared to other 

variables like SC, which can have a large influence, the sensitivity of I to SS is fairly low (Liu et al., 2018; Ma et al., 2019), 240 

being even ignored in some early studies (Lundgren and Lundgren, 1979; Lankreijer et al., 1993). Despite the strong range 

of variability in the values of SS reported in past field campaigns, the median value around 0.09 mm is found for all tall 

vegetation types (Fig. 2c). Reviewing the limited literature on short vegetation SS, the values from mixed crops, i.e. maize, 
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rice and cassava (Van Dijk and Bruijnzeel, 2001a), hedgerow (Herbst et al., 2006), and thornscrub (Návar and Bryan, 1994; 

Návar et al., 1999) are remarkably similar, ranging from 0.01–0.05 mm (Table S1). Based on the results of this 245 

comprehensive meta-analysis, the median value is used in the execution of the global vD–B model over different vegetation 

types (Sect. 3), as shown in Table 2. 

 
Figure 2. Violin plots of parameter statistics based on a meta-analysis of 183 field campaigns. (a, b, c) Parameters related to 

storage capacity, i.e., canopy storage capacity per unit of canopy area (SC), leaf area (SL), and stem storage capacity (SS). (d, e) 250 
Parameters related to evaporation, i.e., wet canopy evaporation rate (EC) and the ratio between wet canopy evaporation rate and 

rainfall rate (EC/R). Green bars are used for plant functional types, including Evergreen Broadleaf Forests (EBF), Deciduous 

Broadleaf Forests (DBF), Evergreen Needleleaf Forests and Deciduous Needleleaf Forests (NF) and Mixed Forests (MF). Blue bars 

represent the statistics for all tall vegetation (TV) and short vegetation (SV) plant functional types. The methods to obtain EC in (d) 

include the Penman–Monteith equation (PM), Regression (Reg), Optimization (Opt) and Other (Oth) methods. Labels with 255 
numbers represent the number of field observations. 

4.2 Wet canopy evaporation rate 

EC is usually estimated from the canopy energy balance or the surface water budget. A conventional method is to derive E/R 

from the slope of the linear regression of observed evaporation (i.e. I) against observed P (Gash, 1979; Klaassen et al., 1998; 

Wallace and McJannet, 2006). Alternatively, based on meteorological data (e.g., net radiation, temperature, humidity and 260 

wind speed), the Penman–Monteith equation (PM) (Monteith, 1965) is often applied to estimate EC from wet canopies, with 

the surface resistance being set to zero, essentially equating to the original Penman equation (Penman, 1948). The main 

drawback in applying PM is systematic underestimation of EC due to the underestimation of the aerodynamic conductance, 

and to a lesser extent, the available energy for wet canopy evaporation (Holwerda et al., 2012; Van Dijk et al., 2015). 

Considering that EC is driven largely by water vapour pressure deficit and aerodynamic conductance, to a smaller extent by 265 

available energy, Pereira et al. (2009; 2016) suggested that Dalton-type equation, a simple water vapour diffusion equation 
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determined by air wet bulb temperature, could be used to estimate EC from wet sparse canopies. Besides, EC can be 

optimised by minimising the squared differences between the paired simulated and observed I (Ghimire et al., 2012; Wallace 

et al., 2013; Fan et al., 2014). Finally, less commonly, EC can be estimated on the basis of eddy-covariance or Bowen-ratio 

measurements (Hörmann et al., 1996; Holwerda et al., 2012; Ringgaard et al., 2014). All these methods suffer from their 270 

own potential issues and uncertainties (Van Dijk et al., 2015). 

Before comparing the EC from previous studies published in the literature, it is essential to clear their units and scale them 

correctly. The evaporation obtained from the PM and Dalton-type equation represents the rate per unit area of canopy cover 

(i.e., EC), but the value derived from regression is expressed per unit of total area (E). When it comes to estimating EC on the 

basis of eddy-covariance or Bowen-ratio measurements, it is important to note the influence of all components of 275 

evaporation from canopies and bare soils. Although transpiration tends to be very low during rain (Gash and Stewart, 1977), 

Ringgaard et al. (2014) suggested restricting this method to canopies with sufficient cover when evaporation from soils 

approaches zero. Here, the value of EC is obtained by dividing E by cc for the studies in which only E is given. The synthesis 

of all these studies shows that the values of EC predicted from regression and optimization methods have greater fluctuations 

(Fig.1d), and they can be several times larger than those based on PM and other energy balance based methods (i.e. Dalton 280 

equation, eddy covariance and Bowen ratio). This discrepancy is recognised and critically discussed by Van Dijk et al. 

(2015). For tall vegetation, the median value of EC is 0.32 mm hr-1 with 95% confidence level 0.29–0.36 mm hr-1. For short 

vegetation, EC exhibits large variability, from 0.09 mm hr-1 for Potentilla fruticosa in China (Zhang et al., 2018) to 2.96 mm 

hr-1 for thornscrub in Mexico (Návar et al., 1999), and is on average slightly higher than that for tall vegetation. Besides, in 

terms of the ratio of EC to R, low vegetation has a higher median value and a smaller range of variability (see Fig. 2e). We 285 

note, however, that the short vegetation data comes only from 8 publications (Table S4). These findings seem to contradict 

the expectations of lower evaporation rates over short vegetation types (see e.g., Van Dijk et al. 2015), likely due to 

limitations in the number of short vegetation campaigns and the lack of representation of grasslands (in particular) where 

interception measurements are impractical. In those ecosystems, EC is expected to be lower due to the higher aerodynamic 

resistance, presenting analogous rates to those of transpiration in similar weather conditions (David et al., 2006). Based on 290 

this assumption, potential evaporation (Ep) is selected as a proxy of EC for short vegetation in the execution of the global 

vD–B model (Sect. 3), despite the high EC from the 8 short vegetation campaigns. For tall vegetation, the median value from 

this comprehensive meta-analysis of 50 studies is used, as shown in Table 2. 

5. Results and discussion 

5.1 Validation 295 

The validation of the global vD–B model estimates of I is performed by comparison to the 193 field I observations. We note 

that while the parameterization in Sect. 4 also uses the field campaign data, the calibration is not performed per site but 
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globally, so the comparison against the field observations to evaluate model performance appears adequate. A major 

challenge is the need to account for differences in forest cover between the 0.1° resolution grid cells and the study sites, 

bearing in mind that field observations are usually taken in local forest or shrubland plots whose density may not be 300 

representative of that of the 0.1° resolution grid cell. For most natural forest stands, gaps exist between and within tree 

crowns, so standardising the pixel I estimates by cc might result in an overestimation with respect to the field data. 

Conversely, dividing the pixel estimates by FF (instead of cc) might result in an underestimation, especially when the 

interception experiment is carried out only under specific trees. In order to allow for a fair comparison, we explore the 

characteristics of the individual field campaigns (e.g., vegetation types, observed cc and LAI, throughfall measurement 305 

method, etc.). Standardisation by cc is used for campaigns based on individual tree observations, when throughfall gauges 

are positioned beneath tree canopies only, or where cc exceeds FF within the pixel; for all other sites, standardisation by FF 

is used. The correspondence between the observed and modelled I for all sites is shown in Fig. 3. 

In tall vegetation ecosystems, both I (mm d–1) and I/P (%) generally agree well with field observations, with correlation 

coefficients (r) of 0.70 and 0.73, respectively. A slight underestimation is shown by the mean bias error (MBE) of –0.05 mm 310 

d–1 for I and –2.09 % for I/P. This underestimation mainly occurs for high I values associated with high-advection coastal 

forests (Schellekens et al., 1999; Sadeghi et al., 2015; Fathizadeh et al., 2018) (Fig. S2). Similar validation results are found 

over different forest types (Fig. S3), except for MF where the performance is lower. The accuracy of estimates is strongly 

influenced by P (Sadeghi et al., 2015; Fathizadeh et al., 2018), which may explain some discrepancies in I and be attenuated 

when expressing the results as I/P (Fig. S4). The slight underestimation may also relate to the assumption of one storm per 315 

rainy day in the daily application of Gash-type models. A precipitation event-scale validation can also be performed using 

the few field campaigns in which P and I have reported for individual events. Figure S5 shows the comparison between daily 

estimates from the global vD–B model and event-based observations reported by Link et al. (2004) in a temperate NF in 

southwestern Washington, USA and by Chen and Li (2016) in a subtropical EBF in Taiwan, China. Here, events spanning 

more than 24 hr are not included. These two sites are well represented due to a good consistency of pixel-based vegetation 320 

cover compared to their site-level descriptions, even though I during the largest P events is underestimated by the model, 

probably affected by the daily scale of our simulations. A good agreement is found between the daily estimated I/P and 

event-based observed I/P, and significant negative logarithmic relationships are shown between I/P and P as described by 

Sadeghi et al. (2015).  

For short vegetation interception, the estimated I has a good consistency with observations (r=0.81) but shows a larger 325 

underestimation (MBE=–0.29 mm d–1). Moreover, a low correlation is found between estimated and observed I/P (r=0.36). 

This lower performance is likely related to the errors derived from the modelling, measurement and validation, in addition to 

the limited number of short vegetation studies. From the modelling perspective, the underestimation of EC related to the 

lower values of Ep (Sect. 4.2) explains the lower estimates of short vegetation interception. Besides, although the study 

species (e.g., shrubs, sugarcane, maize, etc.) from limited publications are defined here as 'short vegetation', they are all tall 330 
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enough to fit funnels or gutters under them. Hence, these studies normally report higher I and I/P, and may not be 

representative for global short vegetation ecosystems, especially grasslands, that have a weaker coupling to the atmosphere 

and may experience shelter effects from the overstorey tall vegetation (Carlyle-Moses et al., 2010). For example, the 

measured I/P around 24% in hedgerows (Herbst et al., 2006) and sugarcane fields (Fernandes et al., 2017), is of similar 

magnitude with that typically reported in forests, and much higher than our estimates of 10.48%, 8.56% in these sites (Fig. 335 

3). Waterloo et al. (1999) found grass interception was only about 4.53% of P in Fiji, which is, in fact, slightly lower than 

our estimates of 6.19%. Note as well that most observations in past campaigns come from single species of shrubs (Zhang et 

al., 2018) and crops (Finch and Riche, 2010; Zheng et al., 2018; Nazari et al., 2020), and that past studies have found large 

variability in I for different short vegetation species, even when exposed to the same climate. For instance, Zhang et al. 

(2016b) reported I/P values of 29.1% and 17.1% for Caragana korshinskii and Artemisia ordosica in the Shapotou Desert 340 

(China). Likewise, Zhang et al. (2017) reported 24.9% and 19.2% for two xerophytic shrub communities (dominated by 

Hippophae rhamnoides and Spiraea pubescens) in the Loess Plateau. Hence, rainfall interception may have high subgrid 

heterogeneity due to the large spatial complexity of biome compositions. The observed I from certain species may, therefore, 

not be representative for the whole grid. Finally, the average I/P values over low vegetated regions compare well with the 

findings by Wang-Erlandsson et al. (2014) based on a hydrological land-surface model. 345 

  

Figure 3. Field validation. Black and blue scatters represent the stand-scale simulations of tall vegetation and short vegetation, 

respectively. 

5.2 Magnitude and spatial variability 

The global distribution of I is shown in Fig. 4, and its seasonal-mean latitudinal variations are presented in Fig. 5. During the 350 

40-year period 1980–2019, the estimated global average I is 73.81 mm yr–1 or 10.96 × 103 km3 yr–1, accounting for 10.53% 

of continental P and representing 14.06% of continental E (taking GLEAM v3.5a E as reference). As expected, most 

(68.70%) of I comes from tall vegetation, with a global average of 50.69 mm yr–1 or 7.52 × 103 km3 yr–1; this amounts to 

6.12% of the continental precipitation, in agreement with the values reported by Miralles et al. (2011a). Although short 
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vegetation I is estimated to be substantially lower (bearing in mind the underestimation reported in Sect. 5.1 against past 355 

field campaigns), it still accounts for 4.20% of the continental P, and has a widespread influence across most of the land 

surface, deserving full consideration as a separate flux. 

In general, the spatial patterns of I agree well with the distribution of vegetation and precipitation. The high I volumes shown 

in tropical rainforests occur due to the combination of high P, dense evergreen vegetation, and high evaporation rates. High 

values of I expressed in percentage of P, are estimated in both tropical and boreal regions, where cc can approach 100%. 360 

Moreover, the lower rainfall rates in high latitude regions (Fig. S6) contribute to increasing I as a percentage of P by 

delaying canopy saturation. Tall vegetation dominates I in tropical and boreal latitudes, while the magnitude of short 

vegetation I can be comparable or even exceed that of tall vegetation in midlatitudes (15° N–40° N and 20° S–35° S) (Fig. 

5a, b). This relates to low forest cover coverage of croplands, grasslands and shrublands over the south of Europe and North 

America, southeastern Asia, southern Africa and Australia. The highest annual I/P of short vegetation is shown in African 365 

drylands and the Tibetan Plateau (Fig. 4f). Note that the fluctuations around 40° S–60° S (Fig. 5) relate to the low fraction of 

land in those latitudes. 

 

Figure 4. Global distribution of annual rainfall interception loss. Average I in mm yr–1 (a), and the contributions from tall (c) and 

short (e) vegetation. Average I/P (%) (b), and the contributions from tall (d) and short (f) vegetation. 370 
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Figure 5. Variation of average I along different latitudinal bands. (a) I (mm yr–1) for tall vegetation, short vegetation and their 

sum. (b) Same but for I/P (%). Seasonal patterns of I in mm yr–1 (c), and of I/P in % (d). 

5.3 Seasonal patterns 

The mean seasonal patterns of I are represented in a latitudinal profile (Fig. 5) and globally (Fig. 6). Overall, the seasonal 375 

variability of I follows the annual cycle of canopy cover, and rainfall volumes and intensity. The global averaged I and I/P 

are higher during boreal summer (June–August) and lower during austral summer (December–February) (Fig.6). The largest 

seasonal variations in I are found in mid-high latitude regions (15° N–60° N and 10° S–30° S), with the highest values in 

summer and lowest in winter (Fig. 5c), following the seasonal green wave (Fig. S7).  In tropical areas, the seasonal I is the 

highest in March–May, but it is rather stable throughout the seasons (Fig. 5c). However, when expressed in I/P, the 380 

latitudinal average shows higher values in June–August in mid-high northern latitude due to the increased cc, and in the 

tropics south of the equator, i.e., Amazon and Congo forests, as a consequence of the reduced P in this time of the year (Fig. 

5d, Fig. 6f). Similarly, higher I/P occurs in December–February over midlatitude regions in the Southern Hemisphere and in 

the tropics north of the equator. In mid-high latitude regions, characterised with high seasonal variations in vegetation cover 

(Fig. S7), the lower cc results in both lower I and lower I/P during the dormant season (Fig. 5d).  385 

5.4 Interception across different vegetation types 

To investigate differences in I for different ecosystems, Figure 7 illustrates the quantile range and kernel density for different 

plant functional types. Model estimates are presented both per m2 of land surface as well as per m2 of canopy cover, and the 

field data from past campaigns is shown as well. The highest I is found in EBF, with mean pixel-based estimates of 362.96 

mm yr–1 (per m2 of land surface), at least three times larger than that for other ecosystems. This large difference relates to the 390 

high I values in tropical rainforests (Fig. 4a). EBF is followed by NF, DBF and MF, showing similar mean I values of 

approximately 101.74–111.18 mm yr–1. Lower I values are found in sparsely vegetated land-use types, as expected: SAV, 

GCM and SHL. When expressed in percentage of P, differences between plant functional types are lower. No large contrasts 

are found between NF, MF and EBF (all around 16.58–17.56%). On the other hand, values in DBF are lower (11.91%), 
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approaching those in SAV ecosystems (11.27%). The lowest I/P is found in SHL (4.86%), followed by GCM (5.75%). These 395 

pixel-based I/P agree well with the estimates reported by Miralles et al. (2010) for NF (16.1%) and DBF (12.7%), but are 

higher than those reported by Miralles et al. (2010) for EBF (10.4%). Wang-Erlandsson et al. (2014) also arrived at a 

comparable I/P estimates, with 18% in EBF, 17% in DBF, 18–20% in NF, 9% in SAV, 9–13% in SHL and GCM, but their 

estimated I (in mm yr-1) was generally slightly higher.  

 400 

Figure 6. Global I seasonal distribution. (a, b), December–February (DJF); (c, d), March–May (MAM); (e, f), June–August (JJA) 

and (g, h), September–November (SON). 

Similar differences among the different land-use types are found when I is expressed per m2 of canopy cover, but magnitudes 

are larger (Fig. 7). This canopy-level interception is also overall comparable to previous studies. For instance, Miralles et al. 

(2010) found a higher canopy-level I/P in forests, however, their reported I/P per m2 of forest of 21.8% in NF agrees well 405 

with our study. The estimated annual I and I/P per land cover type is further compared to the reported values in field 
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campaigns. Notice that the measured I is overall higher than the global estimates, except in EBF. In terms of I/P, the 

estimates agree well with the field data in forests, but are much higher in SHL and GCM. This result is consistent with the 

findings in field validations. In fact, the higher observed interception in SHL, GCM and DBF is reasonable, as most of 

observations are taken in the growing season or the leafed period (Fathizadeh et al., 2018), while our estimates are the 410 

average of both the growing season and the dormant season.  

 

Figure 7. Violin plots of I over different land-use types across the globe. (a) I in mm yr–1, (b) I/P in %. Blue violin limbs show 

estimates per m2 of land surface, green per m2 of canopy cover. The red circle and cross represent the mean and median values 

from field campaigns. The label in each column represents the number of field observations. 415 

5.5 Comparison to existing global datasets 

The global multiyear (1980–2019) mean annual I estimated by the global vD–B model is 73.81 mm yr-1, accounting for 

10.32% of P. This value is within the range of other global estimates – e.g., the 64.06 mm yr-1 and 7.91% of P reported in the 

Community Land Model (CML) version 5 (Lawrence et al., 2019), the 115 mm yr-1 and 13% of P found by Wang-

Erlandsson et al. (2014) based on a hydrological land-surface model. Besides, this I/P is comparable to that of 10.08% 420 

reported by Zheng and Jia (2020), whereas the magnitude of I is much higher than their finding (57.06 mm yr-1). This large 

difference suggests that forcing rainfall can bring large uncertainties, which has also been found in CML5 when driven by 

different precipitation datasets (Lawrence et al., 2019).  

The spatial patterns are also compared with two global interception products: PML v2 and GLEAM v3.5a (Figure 8). PML is 

based on the same adapted Gash model with this study, but with different parameterizations (Zhang et al., 2016a). Overall, 425 

annual I is in good agreement with PML estimates with a high correlation coefficient of 0.91, but higher globally with the 

mean difference of 21.84 mm yr-1, especially in tropical regions. GLEAM v3.5a used the version of the model proposed by 

Valente et al. (1997), and using the same precipitation forcing as in this study, hence both I and I/P are compared here 

bearing in mind this dependency. In general, our interception estimates are slightly higher than GLEAM v3.5a, with the 

mean difference of 7.89 mm yr-1 for I and 1.71% for I/P. In terms of spatial discrepancies, GLEAM v3.5a estimates are 430 

higher over Amazon forests and boreal forests, while lower in Africa, southeastern Asia and Australia. Differences in spatial 
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patterns between both datasets (r=0.82 and 0.67 for  I and I/P, respectively) largely come from the fact that only forest 

interception is estimated in GLEAM v3.5a; moreover, the phenological dynamics are not explicitly considered in GLEAM 

v3.5a. Besides, different from the constant of E/R in PML and an empirical relationship between R and lightning frequency 

in GLEAM v3.5a (Miralles et al., 2010), here use of 3-hr temporal resolution MSWEP precipitation enables a more realistic 435 

estimation of monthly averaged R (Fig, S8).  

 

Figure 8. Comparison of rainfall interception with other global products. (a) PML I (mm yr–1); (b) GLEAM I (mm yr–1); (c) 

GLEAM I/P (%). The left column is the spatial distribution of their differences, and the right column is the pixel-by-pixel scatter 

plot in which the red solid line represents the fitting curve, and the black dash marks the 1-to-1 line. 440 

6. Conclusion 

In this study, we present a new global I dataset based on a revisited vD-B model (Van Dijk and Bruijnzeel, 2001b) driven by 

satellite-observed vegetation dynamics, potential evaporation (for short vegetation) and precipitation. In order to constrain 

and validate the model performance efficiently, a global synthesis of previous I field campaigns is conducted. This synthesis 

results in an unprecedented meta-analysis of 183 sites, and a global collection of 268 past observations. Vegetation storage 445 

https://doi.org/10.5194/hess-2022-155
Preprint. Discussion started: 22 April 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

capacity and wet canopy evaporation rate are analysed using this synthesis dataset and used to parameterise the global 

model. The validation indicates the daily I estimates agree well with field observations in tall vegetation ecosystems, even 

compared at the precipitation event scale. The global multiyear (1980–2019) averaged annual I is 73.81 mm yr–1 or 10.96 × 

103 km3 yr–1, accounting for 10.53% of continental P and representing 14.06% of continental E. Short vegetation I is also 

considered separately, unlike in previous global studies in which short vegetation interception was not validated (Zheng and 450 

Jia, 2020) or even simulated (Miralles et al. 2010). The partitioning between tall and short vegetation benefits from the high-

resolution MODIS VCF and fPAR products, and the method employed here to derive cc dynamically, given the short 

growing season of most short vegetation ecosystems. Results indicate that short vegetation I accounts for 4.20% of 

continental P and contribute to nearly one third of total I, a considerable amount of net water loss back to the atmosphere. 

However, this represents an underestimation in comparisons with field campaign results. We argue that this is likely affected 455 

by the low number of field campaigns, which are often narrowed to heavily vegetated plots within the ecosystems they 

sample, and the inability to validate the results over shorter vegetation types, like grasses. Meanwhile, tall vegetation 

accounts for 6.12% of continental P. The global I estimates in this study appear plausible according to the results of 

validation and spatial and seasonal analysis. The global value of 10.96 × 103 km3 yr–1 (i.e., 10.53% of continental P) falls 

within the range of previous global estimates; it is higher than that from PML v2 but overall comparable to GLEAM v3.5a 460 

estimates. As expected, a strong variance is found among vegetation types and biomes, with tropical evergreen forests 

experiencing the largest fluxes. The seasonal variability of I is shown following the annual cycle of canopy cover, and 

rainfall volumes and intensity. This new global I dataset will become freely available from www.GLEAM.eu, and may serve 

as a benchmark for future investigations and facilitate large-scale hydrological and climate research. 
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