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Abstract. Rainfall interception loss remains one of the most uncertain fluxes in the global water balance, hindering water 

management in forested regions and precluding an accurate formulation in climate models. Here, a synthesis of interception 

loss data from past field experiments conducted worldwide is performed, resulting in a meta-analysis comprising 166 forest 

sites and 17 agricultural plots. This meta-analysis is used to constrain a global process-based model driven by satellite-

observed vegetation dynamics, potential evaporation and precipitation. The model considers subgrid heterogeneity and 15 

vegetation dynamics, and formulates rainfall interception for tall and short vegetation separately. A global, 40-year (1980–

2019), 0.1º spatial resolution, daily temporal resolution dataset is created, analysed and validated against in situ data. The 

validation shows a good consistency between the modelled interception and field observations over tall vegetation, both in 

terms of correlations and bias. While an underestimation is found in short vegetation, the degree to which it responds to in 

situ representativeness errors and difficulties inherent to the measurement of interception in short vegetated ecosystems is 20 

unclear. Global estimates are compared to existing datasets, showing overall comparable patterns. According to our findings, 

global interception averages to 73.81 mm yr–1 or 10.96 × 103 km3 yr–1, accounting for 10.53% of continental rainfall, and 

approximately 14.06% of terrestrial evaporation. The seasonal variability of interception follows the annual cycle of canopy 

cover, precipitation, and atmospheric demand for water. Tropical rainforests show low intra-annual vegetation variability, 

and seasonal patterns are dictated by rainfall. Interception shows a strong variance among vegetation types and biomes, 25 

supported by both the modelling and the meta-analysis of field data. The global synthesis of field observations and the new 

global interception dataset will serve as a benchmark for future investigations, and facilitate large-scale hydrological and 

climate research.  
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1. Introduction 

Vegetation rainfall interception loss (I) is the volume of rainfall captured by plant surfaces and evaporated back into the 30 

atmosphere without reaching the ground. It plays a pivotal role in the hydrological cycle and land–atmosphere interactions, 

representing a net 'loss' of water for ecosystems, and a net 'gain' of moisture for the atmosphere. Its accurate monitoring is 

therefore not only crucial for water and forest management, but also for climatic and meteorological applications. In forests, 

the intercepted rainfall by plant canopies typically accounts for 10–30% of the gross rainfall (P), but it may reach up to 50% 

in dense boreal forests (Molina and Del Campo, 2012; Zabret et al., 2017; Hassan et al., 2017) and montane rainforests 35 

(Tarazona et al., 1996; Schellekens et al., 2000). Despite this importance, I has been traditionally overlooked by global 

hydrological models, and in ecosystem-scale research dedicated to exploring evaporation and its partitioning based on eddy-

covariance data (Stoy et al., 2019). 

Nonetheless, decades of experimental research have contributed to increasing our process-understanding of this flux, 

especially over forests (Van Dijk et al., 2015). Experiments conducted either at the single tree or plot level have allowed the 40 

design of multiple models, ranging from fully empirical I vs. P regressions (Zhang et al., 2017; Zheng et al., 2018), to 

stochastic models (Calder et al., 1986; Calder, 1996; Xiao et al., 2000), to process-based formulations (Rutter et al., 1971; 

Gash et al., 1980; Valente et al., 1997; Van Dijk and Bruijnzeel, 2001b). New approaches for estimating I have also been 

developed recently, including, for example, a physically-based model only forced by precipitation (Návar, 2019, 2020) or a 

novel soil moisture-based method used to estimate storage capacity assuming that infiltration begins only after interception 45 

storage is full (Acharya et al., 2020). Besides, improved technology and process understanding have allowed increasingly 

detailed studies on I in the field, that range from investigating the intrastorm-scale interception (Reid and Lewis, 2009; Iida 

et al., 2017), to assessing the influence of canopy structure (Ginebra-Solanellas et al., 2020; Yan et al., 2021) and climate 

factors (Pérez‐Suárez et al., 2014; Zabret et al., 2018). Such detailed research provides an opportunity for further insights 

into the interception process, but the requirement for information about specific rainfall properties (e.g., raindrop size and 50 

velocity) and vegetation characteristics (e.g., stem density and litter layer thickness) challenges the consideration of these 

advances in global model applications.  

Global I estimation is essential for understanding the land influence on climate and the large-scale availability of water 

resources. Current global land surface models as well as remote sensing-based approaches typically rely on Rutter-like 

formulations (Rutter et al., 1971; Rutter et al., 1975), which track the flow and storage of precipitation through different 55 

compartments across vegetation. Of these formulations, the Gash analytical model (Gash et al., 1980; Gash et al., 1995), and 

subsequent adaptations (Valente et al., 1997; Van Dijk and Bruijnzeel, 2001b), have been particularly popular for large-scale 

applications, owing to their low input data requirements and daily scale simulation with the assumption of one storm per rain 

day. Based on the adaptation by Valente et al. (1997), Miralles et al. (2010) presented the first global interception model 

solely based on satellite data as input, which was later applied, for instance, to benchmark reanalysis products (Reichle et al., 60 

2011) and climate models (Yang et al., 2019). Likewise, the adapted version of the Gash analytical model proposed by Van 
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Dijk and Bruijnzeel (2001b) – hereafter referred to as vD–B model – has witnessed great success in recent years, largely due 

to its parsimonious parameterization of canopy cover and storage capacity, and its applicability to crops and other vegetation 

types beyond trees. This formulation has been successfully applied in remote sensing models (Zhang et al., 2016a; Zheng 

and Jia, 2020) and continental to global landscape hydrological models (Van Dijk, 2010; Wallace et al., 2013; Van Dijk et al, 65 

2013). Most of these studies do not provide details about parameterization, and when values for these parameters are 

reported, they are generally taken from limited literature review exercises and often lack formal evaluations. These 

parameters, pertaining to either canopy structure or climatological conditions, are frequently considered as a constant due to 

the scarcity of measurements, whereas their spatial and temporal variability can still be very large (Deguchi et al., 2006; 

Fathizadeh et al., 2018). 70 

Despite these efforts, I remains one of the most uncertain fluxes in the global water balance (Dorigo et al., 2021). However, 

the valuable data and knowledge gained from field campaigns worldwide provides a unique opportunity to constrain and 

inform global I modelling. To date, this opportunity has not been exploited fully, partly due to the difficulties inherent to 

data collection and harmonisation of the hundreds of experimental campaigns conducted over the past decades. Unlike for 

eddy-covariance, lysimeters or sap-flow measurements, no international observational network exists for I, and past 75 

campaigns are based on inconsistent measurement methods and limited observational periods. The development of a global-

scale synthesis of parameters and field observations remains thus crucial for large-scale studies of interception loss. Despite 

the paucity of these experimental data, we already know from past campaigns that the heterogeneity in I induced by different 

vegetation types is large (Waterloo et al., 1999; Pérez‐Suárez et al., 2014; Wang and Wang, 2020), which implies that 

subgrid parameterization and validation are needed in global models. In general, forests can intercept more rainfall than short 80 

vegetation under the same weather conditions, due to their higher storage capacity and evaporation rates during rainfall. 

Therefore, the sensitivities shown by analytical models to the parameterizations of storage capacity and wet canopy 

evaporation rates should differ for different land cover types (Limousin et al., 2008; Linhoss and Siegert, 2016; Liu et al., 

2018; Fathizadeh et al., 2018; Ma et al., 2019). Finally, a comprehensive synthesis of past field campaigns could also 

provide an opportunity to validate global model performance in a much more extensive way than what has been done in the 85 

past.  

Therefore, this study presents a synthesis of interception loss data from past field campaigns worldwide (Sect. 2.1 and Sect. 

4), with the goal of using it to constrain a global vD–B model driven by satellite-observed vegetation dynamics, potential 

evaporation and precipitation data (Sect. 3). The model considers subgrid heterogeneity and vegetation dynamics, and 

formulates rainfall interception for tall and short vegetation separately. A global, 40-year (1980–2019) I dataset is generated 90 

at a daily temporal and 0.1º spatial resolution, which is validated against past field observations (Sect. 5.1) and compared to 

existing global datasets (Sect. 5.5). The I patterns are analysed in terms of global magnitude and spatial variability (Sect. 5.2), 

seasonal dynamics (Sect. 5.3), and differences between biome types (Sect. 5.4). 
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2. Data 

2.1 Field campaign data 95 

A comprehensive meta-analysis of previous interception loss field campaigns provides an extensive archive of data to 

parameterize and/or validate model estimates over multiple biome types. We search for peer-reviewed articles and academic 

dissertations reporting rainfall interception or rainfall partitioning published before September 2021 on Google Scholar, Web 

of Science, China National Knowledge Infrastructure, and in reference lists of identified primary studies or review papers. In 

this study, we mainly focus on parameters related to vegetation storage capacity and wet canopy evaporation rate, and field 100 

observations of interception, precipitation and rainfall rates.  

We synthesis the partitioning of incident rainfall into interception, stemflow and throughfall by trees and shrubs at the global 

scale. In total, 268 observational records are collected from 169 independent publications. Most of them span up to 2 years. 

To ensure the representativeness of the observations and minimise their inconsistencies with estimations, records are 

discarded if (a) the campaign lasts less than half a year; (b) they include cloud and/or snow interception; (c) they are affected 105 

by abundant epiphytes; (d) they belong to city parks; (e) they are based on insufficient measurements (less than 10 

throughfall gauges and no assessment of stemflow) or fixed rain gauges. After such screening, 193 observations from 125 

sites are retained for validation. The locations of experimental sites are shown in Fig. 1. All the metadata collected from 

literature is given in Supplement. 

2.2 Gridded data 110 

Several observational datasets are used to compute I at the global scale based on a global vD–B model (Sect. 3) 

parameterised and constrained using the in situ data (Sect. 4). To characterise canopy cover fraction (c), global Vegetation 

Continuous Fields (VCF) products from the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD44B and the 

Making Earth System data records for Use in Research EnvironmentS (MEaSURES) are selected. Both products are 

generated on an annual basis and provide the percentage of each gridcell covered by each of the following land cover classes: 115 

tall vegetation (i.e. tree canopies), short vegetation (i.e. non-tree vegetation), and bare ground. The MEaSURES product 

(Hansen and Song, 2017) is created with a bagged linear model algorithm based on surface reflectance and brightness 

temperature from the Advanced Very High Resolution Radiometer (AVHRR) and MODIS, covering a 35-year record from 

1982 to 2016. The MOD44B product (Dimiceli et al., 2017) is retrieved from MODIS on the basis of regression tree models 

created using machine learning, and spans from 2000 to near present. In order to have a long and consistent data series, a 120 

cumulative density function matching approach of Reichle and Koster (2004) is applied. This removes systematic differences 

between the two, and yields a merged VCF dataset covering 1982–2019. For the period 1980–1981, the VCF of 1982 is used. 

Moreover, the MODIS Land Cover Product (MCD12C1) (Sulla-Menashe et al., 2019), based on the International 

Geosphere–Biosphere Programme (IGBP) classification, is selected to extract the spatial distribution and fractions of forest 

(FF, including Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, Deciduous 125 
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Broadleaf Forests, Mixed Forests, Woody Savannas and Savannas) and non-forest (Closed Shrublands, Open Shrublands, 

Grasslands, Croplands, Cropland/Natural Vegetation Mosaics, and Permanent Wetlands) ecosystems per pixel for validation 

purposes (see Sect. 5.1).  

 

Figure 1. (a) Spatial distribution of experimental sites and vegetation cover types. Red and black stars represent tall vegetation 130 
and short vegetation sites retained for validation (respectively), while blue triangles are discarded sites. Vegetation cover is based 

on the IGBP classification of MCD12C1 corresponding to 2001, including Evergreen Needleleaf Forests and Deciduous Needleleaf 

Forests (NF), Evergreen Broadleaf Forests (EBF), Deciduous Broadleaf Forests (DBF), Mixed Forests (MF), Woody Savannas and 

Savannas (SAV), Closed Shrublands and Open Shrublands (SHL), Grasslands, Croplands and Cropland/Natural Vegetation 

Mosaics (GCM). (b) Observational days of field experiments (left), and the number of days and sites each year (right). 135 
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Fraction of absorbed Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI) retrievals are taken from the 

MODIS V6 MCD15A3H product. This newest version at 500 m resolution benefits from an improved biome map from the 

high spatial resolution MODIS Land Cover Product (MCD12Q1), which provides an accurate parameter estimation related 

to vegetation structural types for three-dimensional radiative transfer formulations (Yan et al., 2016a). To discriminate 

between tall vegetation and short vegetation fractional covers, and obtain representative fPAR and LAI for each of these two 140 

fractions at 0.1° resolution, 250 m resolution MOD44B data is used to select the values of fPAR and LAI from the 'purest' 

high-resolution pixels; for instance, the fPAR for tall vegetation in a certain 0.1° gridcell is the average of the 500 m 

resolution fPAR values for the pixels with a fraction of tall vegetation >98th percentile in the 0.1° gridcell. This work is done 

in Google Earth Engine, and its quality flag is used to exclude low-accuracy observations contaminated by clouds and snow. 

The original 4-day resolution is temporally smoothed and gap filled based on the Temporal Smoothing and Gap Filling 145 

(TSGF) method proposed by Verger et al. (2011). A 7-year climatology is applied to fill gaps with missing data longer than 

64 days. The gap-free daily time series are achieved with linear interpolation. The daily climatology of fPAR and LAI based 

on 2003–2007 is used for the period prior to MODIS. 

Taking advantage of the complementary strengths of gauge-, satellite-, and reanalysis-based data, the Multi-Source 

Weighted-Ensemble Precipitation (MSWEP v2.8) data (Beck et al., 2019) is selected as the precipitation forcing in this study. 150 

The climatological rainfall rate (R) during P events is also derived from the 3-hr MSWEP, by taking the maximum 

accumulated volume over the 3-hr periods at the monthly time scale. To mask out snow periods, observations of Snow-

Water Equivalent (SWE) from the European Space Agency (ESA) GLOBSNOW product (Luojus et al., 2013) are used over 

the Northern Hemisphere; the monthly SWE climatology product from the National Snow and Ice Data Centre (NSIDC) 

(Armstrong et al., 2005) is used for the Southern Hemisphere. The Priestley and Taylor-based potential evaporation (Ep) 155 

from the Global Land Evaporation Amsterdam Model (GLEAM, Miralles et al., 2011b) version v3.5a (Martens et al., 2017) 

is selected as a proxy of mean wet canopy evaporation (EC) for short vegetation. Natural neighbour interpolation is applied in 

resampling the datasets from their original spatial resolution to a common 0.1° global grid. An overview of all gridded 

datasets used can be found in Table 1.   

Table 1. Overview of the selected forcing datasets used in the global application of the vD–B model. 160 

Variables Dataset Resolution Period References 

P MSWEP v2.8 Daily; 0.1° 1979–2020 Beck et al. (2019) 

R MSWEP v2.8 3-hour; 0.1° 1979–2020 Beck et al. (2019) 

VCF MOD44B v6.1 Yearly; 250m 2000–2019 Dimiceli et al. (2017)  

MEaSURES Yearly; 0.05° 1982–2016 Hansen and Song (2017) 

FF MCD12C1 Yearly; 0.05° 2001–2019 Sulla-Menashe et al. (2019) 

fPAR & LAI MCD15A3H v6 4-day; 500m 2002–2020 Yan et al. (2016a); (2016b) 

Ep GLEAM v3.5a Daily; 0.25° 1980–2020 Miralles et al. (2011b); Martens et al. (2017) 

SWE GLOBSNOW L3av2  

+NSIDC v0.1 

Daily; 0.25° 1980–2015 Luojus et al. (2013)  

Armstrong et al. (2005) 
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3. Model formulation 

Most studies of I are focused on forest plots or single trees, often following the assumption that I in short vegetation 

ecosystems is less important, due to the lower aerodynamic conductance and weaker coupling to the atmosphere (David et al., 

2006; Paço et al., 2009). However, short vegetation I cannot be ignored; the fraction of terrestrial evaporation that relates to 

plant water consumption (transpiration) needs to be isolated from the entire evaporative flux to understand water use 165 

efficiency and the links to the carbon cycle (Miralles et al., 2020). Previous uses of the modified Gash model described by 

Van Dijk and Bruijnzeel (2001b) (i.e. the vD–B model) confirm its applicability to agricultural cropping systems (Van Dijk 

and Bruijnzeel, 2001a; Fernandes et al., 2017) and grasslands (Finch and Riche, 2010). In fact, the vD–B model has already 

been applied to estimate I in tall and short vegetation ecosystems, both regionally (Cui and Jia, 2014; Cui et al., 2017) as 

well as globally (Zhang et al., 2016a; Zheng and Jia, 2020). The vD–B model is also implemented in the Australian Water 170 

Resources Assessment (AWRA) system (Van Dijk, 2010; Wallace et al., 2013) and the global WR3A/W3 models (e.g., Van 

Dijk et al. (2013); (2018); Schellekens et al. (2017)). 

The vD–B model proposes several improvements to the assumptions and parameterization in the sparse Gash model (Gash et 

al., 1995; Valente et al., 1997). The main feature of the vD–B model is the incorporation of LAI to evaluate the influence of 

vegetation structure and density on I. Analogous to the transmittance of light through the canopy considering the vegetation 175 

elements as opaque, c is approximated as an exponential function of LAI using Beer–Lambert's Law:  

 𝑐 = 1 − 𝑒(−𝜅⋅𝐶⋅𝐿𝐴𝐼/𝜇)                                                                               (1) 

with 𝜅 being the extinction coefficient, and with the clumping index (C) and the cosine of the Sun zenith angle (𝜇) being set 

to unity in the vD–B model. Moreover, the canopy storage capacity (S) is assumed to be linearly related to LAI, instead of 

being linearly related to c as in the sparse Gash model by Valente et al. (1997). These adaptations make I directly sensitive to 180 

temporal changes in LAI, thus providing insight into seasonal phenology influences. Furthermore, the vD–B model makes a 

modification to the questionable assumption that no water evaporates from stems before the canopy is saturated, through 

treating the rainfall retained on stems similarly to that retained by the canopy. Under such assumptions, the storage capacity 

of canopies (S) and stems (SS) can be integrated into a total storage capacity (SV). Hence, the rainfall intercepted by canopies 

and stems is no longer strictly distinguished in the model calculations. The corresponding equations and parameters of the 185 

vD–B model are given in Table 2. For a detailed description of the conceptual framework and improvements please see Gash 

et al. (1995) and van Dijk and Bruijnzeel (2001b). 

Recently, C is shown to be an important biophysical parameter in characterising the effective LAI as a function of the 

distribution and density of foliage within crowns using radiative transfer models (Béland and Baldocchi, 2021). The impacts 

of clumping on transpiration and photosynthesis have also been evaluated in detail (Braghiere et al., 2019; 2020; 2021). Here, 190 

we exploit the value of fPAR data in order to evaluate the impact of canopy structure and density on I without the need to 
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retrieve suitable values for C, 𝜇 and 𝜅 over different regions. Meanwhile, the approach allows the consideration of intra-

annual dynamics in c: 

𝑐 = 𝑉𝐶𝐹 ⋅ [
𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦

𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛
+ 𝐾(𝑠)]                                                                      (2) 

where VCF is the (annual mean) fraction of vegetation cover, 𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦  and 𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛  are the daily and annual mean fPAR 195 

for the corresponding land cover fraction (tall or short vegetation) within each pixel – see Sect. 2.2 for the data sources and 

pre-processing. K(s) is a coefficient indicating the proportion of non-green vegetation, i.e., trunks, branches and necrotic 

leaves, a parameter similar to the stemflow partitioning coefficient (Pt) in Rutter and Gash models; values 0.028 (Gash et al., 

1995; Zeng et al., 2000) and 0.010 (Návar et al., 1999) are chosen for tall and short vegetation, respectively. After applying 

Eq. (2), spurious c values larger than unity are set to unity. Implicit to the approach of using fPAR to compute the rainfall 200 

intercepting surface fraction (i.e. c) is the assumption that the light and rain penetration through the canopy is alike. Previous 

studies have shown that fPAR and c can be derived using the same equation either from LAI (Majasalmi et al., 2017) or the 

Normalized Difference Vegetation Index (NDVI, Carlson and Ripley, 1997), and fPAR exhibits strong linear correlation to c 

(Mu et al., 2018). For instance, in the Priestley and Taylor Jet Propulsion Laboratory (PT-JPL) model (Fisher et al., 2008), c 

is assumed equal to light intercepted (not absorbed) by the vegetation fraction (fIPAR), and in the Penman–Monteith 205 

MODerate Resolution Imaging Spectroradiometer (PM-MOD) model (Mu et al., 2011), the fPAR from MOD15A2 is directly 

used as a surrogate of c in estimating global terrestrial evaporation. Conversely, in the Penman–Monteith-Leuning (PML) 

model (Zhang et al., 2016a) and the ETMonitor model (Hu and Jia, 2015), both based on the model by Van Dijk and 

Bruijnzeel (2001b), c is calculated as a function of LAI following the Beer’s law.   

Table 2. Equations and parameters in the original vD–B model and this study. In the original vD–B model, 𝜶 is the energy 210 
exchange coefficient between canopy and atmosphere, and 𝑬̅𝒂 is a constant evaporation rate when 𝜶 approaches infinity. The 

values of SL and SS in the original vD–B model come from van Dijk and Bruijnzeel (2001a), and the parameterisation in this study 

is based on the meta-analysis of past field campaigns. EBF, DBF, NF and others represent Evergreen Broadleaf Forests, Deciduous 

Broadleaf Forests, Needleleaf Forests, and other tall vegetation, separately. 

 
The original vD–B model 

This study 

tall vegetation short vegetation 

I calculation 

For storms insufficient to saturate vegetation, i.e. P ≤ 𝑃′ 

 

𝐼 = 𝑐 ∙ 𝑃 

 

𝐼 = 𝑐 ∙ 𝑃 

For storms sufficient to saturate vegetation, i.e. P > 𝑃′ 𝐼 = 𝑐[𝑃′ + (𝐸𝐶/𝑅)(𝑃 − 𝑃′)] 𝐼 = 𝑐[𝑃′ + (𝐸𝐶/𝑅)(𝑃 − 𝑃′)] 
Parameters   

Rainfall necessary to saturate vegetation, 𝑃′ (mm) −[𝑅𝑆𝑉/(𝑐 ∙ 𝐸𝐶)]ln(1 − 𝐸𝐶/𝑅) −[𝑅𝑆𝑉/𝐸𝐶]ln(1 − 𝐸𝐶/𝑅) 
Vegetation cover fraction, c (-) 1 − 𝑒(−𝜅⋅𝐿𝐴𝐼) 𝑉𝐶𝐹[𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦/𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛 + 𝐾(𝑠)] 

Vegetation storage capacity, SV (mm) 𝐿𝐴𝐼 ∙ 𝑆𝐿 + 𝑆𝑆 𝐿𝐴𝐼 ∙ 𝑆𝐿 + 𝑆𝑆 

Mean wet canopy evaporation rate, EC (mm h-1) {[1 − 𝑒(−𝛼⋅𝐿𝐴𝐼)]𝐸̅𝑎}/𝑐 0.32 Ep 

Leaf storage capacity, 𝑆𝐿 (mm) 0.077 for maize 

0.042 for rice 

0.049 for cassava 

0.20 for EBF 

0.18 for DBF 

0.29 for NF 

0.23 for others 

0.10 

Trunk/Stem capacity, 𝑆𝑆 (mm) 0.001–0.012 0.09 0.03 

Note: LAI and SS are expressed per unit area of total land in the original vD–B model, while per unit area of canopy in this study. 215 
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In addition to c, other parameters in the global vD–B model include EC, leaf storage capacity (SL) and SS. In this study, we 

take advantage of the large archive of field data collected from literature (Sect. 2.1) to select the most adequate values of EC, 

SL and SS for different biomes (Sect. 4). The formulations and parameter values of the global vD–B model are provided in 

Table 2. 

4. Meta-analysis and model parameterisation 220 

4.1 Vegetation storage capacity 

Generally in the literature, canopy storage capacity is expressed either per unit of total area (S), canopy area (SC) and leaf 

surface area (SL). In most rainfall interception studies, S is assumed to be linearly related to SC and c. SC is often assumed to 

vary per vegetation type and is dependent on climate conditions. In nature, SC is dependent on vegetation morphological 

characteristics such as leaf surface area, inclination and hydrophobicity (Garcia-Estringana et al., 2010; Holder, 2013; 225 

Ginebra-Solanellas et al., 2020), as well as meteorological variables like rainfall intensity, droplet size and wind (Hörmann 

et al., 1996; Klaassen et al., 1996; Sun et al., 2018, Gerrits et al., 2010). It may explain why the SC values collected in 

previous campaigns can vary widely, from 0.35 mm (Valente et al., 1997) to 4.47 mm (Shi et al., 2010) – see Fig. 2a. The 

concepts of static/dynamic storage (Keim et al., 2006) and minimum/maximum storage (Xiao and Mcpherson, 2016) have 

been proposed to account for the storage changes driven by meteorological variables during specific rainfall events. Some 230 

studies suggest that LAI can be a valuable variable to explain the variability in S, and further study their potential relation 

using linear (Van Dijk and Bruijnzeel, 2001b; Deguchi et al., 2006; Wallace and McJannet, 2008), nonlinear (De Jong and 

Jetten, 2007; Mianabadi et al., 2019) and exponential (Wallace et al., 2013) regressions. Here, we revisit the relationship 

between S, LAI and c over multiple ecosystems based on previous studies (Fig. S1). A linear relationship between S and LAI 

is only found for short vegetation (r=0.73) and coniferous forests (r=0.60), while S shows a weak linear correlation to c only 235 

in broadleaf forest (r=0.54~0.59). Nonlinear regressions do not show a higher accuracy than linear regressions in the 

prediction of S (based on either LAI or c) over any ecosystems. 

As the majority of studies focus on either S or SC, c and LAI are collected to derive SL indirectly under the assumption that 

canopy capacity is linearly related to LAI. As such, caution should be taken in calculating SL that canopy capacity and LAI 

should be expressed in uniform scales, as LAI can be given in per unit of total land area or just canopy area which often have 240 

to be deduced from the context of the study. Based on traditional statistical analysis, needleleaf forest shows larger SL with a 

median value 0.29 mm (95% confidence level 0.25–0.34 mm), while within other forest types SL is similar; 0.20 (0.16–0.24), 

0.18 (0.16–0.21) and 0.20 (0.18–0.22) mm are found for evergreen broadleaf forests, deciduous broadleaf forests, and mixed 

forests, respectively (Fig. 2b). The median value of 0.23 (0.20–0.27) mm for all forest types is much larger than the 0.10 

(0.08–0.12) mm found for short vegetation plant functional types (i.e., crops, grass and shrubs). Stem storage capacity (SS) is 245 

influenced by stem density, bark surface roughness, the arrangement of twigs and leaves, and epiphytes. Large discrepancies 
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are shown in reported studies with a range from 0.01 mm (Návar, 2013) to 0.83 mm (Chen et al., 2013). Often, SS is obtained 

from an indirect, regression-based method in I simulations based on field observations (Gash and Morton, 1978; Gash, 1979; 

Lloyd et al., 1988). Compared to other variables like SC, which can have a large influence, the sensitivity of I to SS is fairly 

low (Liu et al., 2018; Ma et al., 2019), being even ignored in some early studies (Lundgren and Lundgren, 1979; Lankreijer 250 

et al., 1993). Despite the strong range of variability in the values of SS reported in past field campaigns, the median value 

around 0.09 mm is found for all tall vegetation types (Fig. 2c). Reviewing the limited literature on short vegetation SS, the 

values from mixed crops, i.e. maize, rice and cassava (Van Dijk and Bruijnzeel, 2001a), hedgerow (Herbst et al., 2006), and 

thornscrub (Návar and Bryan, 1994; Návar et al., 1999) are remarkably similar, ranging from 0.01–0.05 mm (Table S1). 

Based on the results of this comprehensive meta-analysis, the median value is used in the execution of the global vD–B 255 

model over different vegetation types (Sect. 3), as shown in Table 2. 

 
Figure 2. Violin plots of parameter statistics based on a meta-analysis of 183 field campaigns. (a, b, c) Parameters related to 

storage capacity, i.e., canopy storage capacity per unit of canopy area (SC), leaf area (SL), and stem storage capacity (SS). (d, e) 

Parameters related to evaporation, i.e., wet canopy evaporation rate (EC) and the ratio between wet canopy evaporation rate and 260 
rainfall rate (EC/R). Green bars are used for plant functional types, including Evergreen Broadleaf Forests (EBF), Deciduous 

Broadleaf Forests (DBF), Evergreen Needleleaf Forests and Deciduous Needleleaf Forests (NF) and Mixed Forests (MF). Blue bars 

represent the statistics for all tall vegetation (TV) and short vegetation (SV) plant functional types. The methods to obtain EC in (d) 

include the Penman–Monteith equation (PM), Regression (Reg), Optimization (Opt) and Other (Oth) methods. Labels with 

numbers represent the number of field observations. 265 

4.2 Wet canopy evaporation rate 

EC is usually estimated from the canopy energy balance or the surface water budget. A conventional method is to derive E/R 

from the slope of the linear regression of observed evaporation (i.e. I) against observed P (Gash, 1979; Klaassen et al., 1998; 

Wallace and McJannet, 2006). Alternatively, based on meteorological data (e.g., net radiation, temperature, humidity and 
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wind speed), the Penman–Monteith equation (PM) (Monteith, 1965) is often applied to estimate EC from wet canopies, with 270 

the surface resistance being set to zero, essentially equating to the original Penman equation (Penman, 1948). The main 

drawback in applying PM is systematic underestimation of EC due to the underestimation of the aerodynamic conductance, 

and to a lesser extent, the available energy for wet canopy evaporation (Holwerda et al., 2012; Van Dijk et al., 2015). 

Considering that EC is driven largely by water vapour pressure deficit and aerodynamic conductance, to a smaller extent by 

available energy, Pereira et al. (2009; 2016) suggested that Dalton-type equation, a simple water vapour diffusion equation 275 

determined by air wet bulb temperature, could be used to estimate EC from wet sparse canopies. Besides, EC can be 

optimised by minimising the squared differences between the paired simulated and observed I (Ghimire et al., 2012; Wallace 

et al., 2013; Fan et al., 2014). Finally, less commonly, EC can be estimated on the basis of eddy-covariance or Bowen-ratio 

measurements (Hörmann et al., 1996; Holwerda et al., 2012; Ringgaard et al., 2014). All these methods suffer from their 

own potential issues and uncertainties (Van Dijk et al., 2015). 280 

Before comparing the EC from previous studies published in the literature, it is essential to clear their units and scale them 

correctly. The evaporation obtained from the PM and Dalton-type equation represents the rate per unit area of canopy cover 

(i.e., EC), but the value derived from regression is expressed per unit of total area (E). When it comes to estimating EC on the 

basis of eddy-covariance or Bowen-ratio measurements, it is important to note the influence of all components of 

evaporation from canopies and bare soils. Although transpiration tends to be very low during rain (Gash and Stewart, 1977), 285 

Ringgaard et al. (2014) suggested restricting this method to canopies with sufficient cover when evaporation from soils 

approaches zero. Here, the value of EC is obtained by dividing E by cc for the studies in which only E is given. The synthesis 

of all these studies shows that the values of EC predicted from regression and optimization methods have greater fluctuations 

(Fig.2d), and they can be several times larger than those based on PM and other energy balance based methods (i.e. Dalton 

equation, eddy covariance and Bowen ratio). This discrepancy is recognised and critically discussed by Van Dijk et al. 290 

(2015). For tall vegetation, the median value of EC is 0.32 mm hr-1 with 95% confidence level 0.29–0.36 mm hr-1. For short 

vegetation, EC exhibits large variability, from 0.09 mm hr-1 for Potentilla fruticosa in China (Zhang et al., 2018) to 2.96 mm 

hr-1 for thornscrub in Mexico (Návar et al., 1999), and is on average slightly higher than that for tall vegetation. Besides, in 

terms of the ratio of EC to R, low vegetation has a higher median value and a smaller range of variability (see Fig. 2e). We 

note, however, that the short vegetation data comes only from 8 publications (Table S4). These findings seem to contradict 295 

the expectations of lower evaporation rates over short vegetation types (see e.g., Van Dijk et al. 2015), likely due to 

limitations in the number of short vegetation campaigns and the lack of representation of grasslands (in particular) where 

interception measurements are impractical. In those ecosystems, EC is expected to be lower due to the higher aerodynamic 

resistance, presenting analogous rates to those of transpiration in similar weather conditions (David et al., 2006). Based on 

this assumption, potential evaporation (Ep) is selected as a proxy of EC for short vegetation in the execution of the global 300 

vD–B model (Sect. 3), despite the high EC from the 8 short vegetation campaigns. For tall vegetation, the median value from 

this comprehensive meta-analysis of 50 studies is used, as shown in Table 2. 
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5. Results and discussion 

5.1 Validation 

The validation of the global vD–B model estimates of I is performed by comparison to the 193 field I observations. We note 305 

that while the parameterization in Sect. 4 also uses the field campaign data, the calibration is not performed per site but 

globally, so the comparison against the field observations to evaluate model performance appears adequate. A major 

challenge is the need to account for differences in forest cover between the 0.1° resolution grid cells and the study sites, 

bearing in mind that field observations are usually taken in local forest or shrubland plots whose density may not be 

representative of that of the 0.1° resolution grid cell. For most natural forest stands, gaps exist between and within tree 310 

crowns, so standardising the pixel I estimates by c might result in an overestimation with respect to the field data. 

Conversely, dividing the pixel estimates by FF (instead of c) might result in an underestimation, especially when the 

interception experiment is carried out only under specific trees. In order to allow for a fair comparison, we explore the 

characteristics of the individual field campaigns (e.g., vegetation types, observed c and LAI, throughfall measurement 

method, etc.). Standardisation by c is used for campaigns based on individual tree observations, when throughfall gauges are 315 

positioned beneath tree canopies only, or where c exceeds FF within the pixel; for all other sites, standardisation by FF is 

used. The correspondence between the observed and modelled I for all sites is shown in Fig. 3. 

 

Figure 3. Field validation. (a) I in mm d-1, (b) I/P in %. Black and blue scatters represent the stand-scale simulations of tall 

vegetation and short vegetation, respectively. 320 

In tall vegetation ecosystems, both I (mm d–1) and I/P (%) generally agree well with field observations, with correlation 

coefficients (r) of 0.70 and 0.73, respectively. A slight underestimation is shown by the mean bias error (MBE) of –0.05 mm 

d–1 for I and –2.09 % for I/P. This underestimation mainly occurs for high I values associated with high-advection coastal 

forests (Schellekens et al., 1999; Sadeghi et al., 2015; Fathizadeh et al., 2018) (Fig. S2). Similar validation results are found 

over different forest types (Fig. S3), except for mixed forests where the performance is lower. The accuracy of estimates is 325 

strongly influenced by P (Sadeghi et al., 2015; Fathizadeh et al., 2018), which may explain some discrepancies in I and be 
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attenuated when expressing the results as I/P (Fig. S4). The slight underestimation may also relate to the assumption of one 

storm per rainy day in the daily application of Gash-type models. A precipitation event-scale validation can also be 

performed using the few field campaigns in which P and I have reported for individual events. Figure S5 shows the 

comparison between daily estimates from the global vD–B model and event-based observations reported by Link et al. (2004) 330 

in a temperate needleleaf forest in southwestern Washington, USA and by Chen and Li (2016) in a subtropical evergreen 

broadleaf forest in Taiwan, China. Here, events spanning more than 24 hr are not included. These two sites are well 

represented due to a good consistency of pixel-based vegetation cover compared to their site-level descriptions, even though 

I during the largest P events is underestimated by the model, probably affected by the daily scale of our simulations. A good 

agreement is found between the daily estimated I/P and event-based observed I/P, and significant negative logarithmic 335 

relationships are shown between I/P and P as described by Sadeghi et al. (2015).  

For short vegetation interception, the estimated I has a good consistency with observations (r=0.81) but shows a larger 

underestimation (MBE=–0.29 mm d–1). Moreover, a low correlation is found between estimated and observed I/P (r=0.36). 

This lower performance is likely related to the errors derived from the modelling, measurement and validation, in addition to 

the limited number of short vegetation studies. From the modelling perspective, the underestimation of EC related to the 340 

lower values of Ep (Sect. 4.2) explains the lower estimates of short vegetation interception. Besides, although the study 

species (e.g., shrubs, sugarcane, maize, etc.) from limited publications are defined here as 'short vegetation', they are all tall 

enough to fit funnels or gutters under them. Hence, these studies normally report higher I and I/P, and may not be 

representative for global short vegetation ecosystems, especially grasslands, that have a weaker coupling to the atmosphere 

and may experience shelter effects from the overstorey tall vegetation (Carlyle-Moses et al., 2010). For example, the 345 

measured I/P around 24% in hedgerows (Herbst et al., 2006) and sugarcane fields (Fernandes et al., 2017), is of similar 

magnitude with that typically reported in forests, and much higher than our estimates of 10.48%, 8.56% in these sites (Fig. 3). 

Waterloo et al. (1999) found grass interception was only about 4.53% of P in Fiji, which is, in fact, slightly lower than our 

estimates of 6.19%. Note as well that most observations in past campaigns come from single species of shrubs (Zhang et al., 

2018) and crops (Finch and Riche, 2010; Zheng et al., 2018; Nazari et al., 2020), and that past studies have found large 350 

variability in I for different short vegetation species, even when exposed to the same climate. For instance, Zhang et al. 

(2016b) reported I/P values of 29.1% and 17.1% for Caragana korshinskii and Artemisia ordosica in the Shapotou Desert 

(China). Likewise, Zhang et al. (2017) reported 24.9% and 19.2% for two xerophytic shrub communities (dominated by 

Hippophae rhamnoides and Spiraea pubescens) in the Loess Plateau. Hence, rainfall interception may have high subgrid 

heterogeneity due to the large spatial complexity of biome compositions. The observed I from certain species may, therefore, 355 

not be representative for the whole grid. Finally, the average I/P values over low vegetated regions compare well with the 

findings by Wang-Erlandsson et al. (2014) based on a hydrological land-surface model. 
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5.2 Magnitude and spatial variability 

The global distribution of I is shown in Fig. 4, and its seasonal-mean latitudinal variations are presented in Fig. 5. During the 

40-year period 1980–2019, the estimated global average I is 73.81 mm yr–1 or 10.96 × 103 km3 yr–1, accounting for 10.53% 360 

of continental P and representing 14.06% of continental evaporation (taking GLEAM v3.5a evaporation as reference). As 

expected, most (68.70%) of I comes from tall vegetation, with a global average of 50.69 mm yr–1 or 7.52 × 103 km3 yr–1; this 

amounts to 6.12% of the continental precipitation, in agreement with the values reported by Miralles et al. (2011a). Although 

short vegetation I is estimated to be substantially lower (bearing in mind the underestimation reported in Sect. 5.1 against 

past field campaigns), it still accounts for 4.20% of the continental P, and has a widespread influence across most of the land 365 

surface, deserving full consideration as a separate flux. 

 

Figure 4. Global distribution of annual rainfall interception loss. Average I in mm yr–1 (a), and the contributions from tall (c) and 

short (e) vegetation. Average I/P (%) (b), and the contributions from tall (d) and short (f) vegetation. 

In general, the spatial patterns of I agree well with the distribution of vegetation and precipitation. The high I volumes shown 370 

in tropical rainforests occur due to the combination of high P, dense evergreen vegetation, and high evaporation rates. High 
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values of I expressed in percentage of P, are estimated in both tropical and boreal regions, where c can approach 100%. 

Moreover, the lower rainfall rates in high latitude regions (Fig. S6) contribute to increasing I as a percentage of P by 

delaying canopy saturation. Tall vegetation dominates I in tropical and boreal latitudes, while the magnitude of short 

vegetation I can be comparable or even exceed that of tall vegetation in midlatitudes (15° N–40° N and 20° S–35° S) (Fig. 5a, 375 

b). This relates to low forest cover coverage of croplands, grasslands and shrublands over the south of Europe and North 

America, southeastern Asia, southern Africa and Australia. The highest annual I/P of short vegetation is shown in African 

drylands and the Tibetan Plateau (Fig. 4f). Note that the fluctuations around 40° S–60° S (Fig. 5) relate to the low fraction of 

land in those latitudes. 

 380 

Figure 5. Variation of average I along different latitudinal bands. (a) I (mm yr–1) for tall vegetation, short vegetation and their sum. 

(b) Same but for I/P (%). Seasonal patterns of I in mm yr–1 (c), and of I/P in % (d). DJF, MAM, JJA and SON represent 

December–February, March–May, June–August and September–November, respectively. 

5.3 Seasonal patterns 

The mean seasonal patterns of I are represented in a latitudinal profile (Fig. 5) and globally (Fig. 6). Overall, the seasonal 385 

variability of I follows the annual cycle of canopy cover, and rainfall volumes and intensity. The global averaged I and I/P 

are higher during boreal summer (June–August) and lower during austral summer (December–February) (Fig.6). The largest 

seasonal variations in I are found in mid-high latitude regions (15° N–60° N and 10° S–30° S), with the highest values in 

summer and lowest in winter (Fig. 5c), following the seasonal green wave (Fig. S7).  In tropical areas, the seasonal I is the 

highest in March–May, but it is rather stable throughout the seasons (Fig. 5c). However, when expressed in I/P, the 390 

latitudinal average shows higher values in June–August in mid-high northern latitude due to the increased c, and in the 

tropics south of the equator, i.e., Amazon and Congo forests, as a consequence of the reduced P in this time of the year (Fig. 

5d, Fig. 6f). Similarly, higher I/P occurs in December–February over midlatitude regions in the Southern Hemisphere and in 

the tropics north of the equator. In mid-high latitude regions, characterised with high seasonal variations in vegetation cover 

(Fig. S7), the lower c results in both lower I and lower I/P during the dormant season (Fig. 5d).  395 
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Figure 6. Global I seasonal distribution. (a, b), December–February (DJF); (c, d), March–May (MAM); (e, f), June–August (JJA) 

and (g, h), September–November (SON). 

5.4 Interception across different vegetation types 

To investigate differences in I for different ecosystems, Figure 7 illustrates the quantile range and kernel density for different 400 

plant functional types. Model estimates are presented both per m2 of land surface as well as per m2 of canopy cover, and the 

field data from past campaigns is shown as well. The highest I is found in evergreen broadleaf forests, with mean pixel-based 

estimates of 362.96 mm yr–1 (per m2 of land surface), at least three times larger than that for other ecosystems. This large 

difference relates to the high I values in tropical rainforests (Fig. 4a). Evergreen broadleaf forests is followed by needleleaf 

forests, deciduous broadleaf forests and mixed forests, showing similar mean I values of approximately 101.74–111.18 mm 405 

yr–1. Lower I values are found in sparsely vegetated land-use types, as expected: savannas, grasslands and croplands, and 

shrublands. When expressed in percentage of P, differences between plant functional types are lower. No large contrasts are 
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found between needleleaf forests, mixed forests and evergreen broadleaf forests (all around 16.58–17.56%). On the other 

hand, values in deciduous broadleaf forests are lower (11.91%), approaching those in savannas ecosystems (11.27%). The 

lowest I/P is found in shrublands (4.86%), followed by grasslands and croplands (5.75%). These pixel-based I/P agree well 410 

with the estimates reported by Miralles et al. (2010) for needleleaf forests (16.1%) and deciduous broadleaf forests (12.7%), 

but are higher than that for evergreen broadleaf forests (10.4%). Wang-Erlandsson et al. (2014) also arrived at a comparable 

I/P estimate, with 18% in evergreen broadleaf forests, 17% in deciduous broadleaf forests, 18–20% in needleleaf forests, 9% 

in savannas, 9–13% in shrublands, grasslands and croplands, but their estimated I (in mm yr-1) was generally slightly higher.  

 415 

Figure 7. Violin plots of I over different land-use types across the globe. (a) I in mm yr–1, (b) I/P in %. Blue violin limbs show 

estimates per m2 of land surface, green per m2 of canopy cover. The red circle and cross represent the mean and median values 

from field campaigns. The label in each column represents the number of field observations. Land-use types are based on the 

IGBP classification of MCD12C1 corresponding to 2001, including Evergreen Needleleaf Forests and Deciduous Needleleaf Forests 

(NF), Evergreen Broadleaf Forests (EBF), Deciduous Broadleaf Forests (DBF), Mixed Forests (MF), Woody Savannas and 420 
Savannas (SAV), Closed Shrublands and Open Shrublands (SHL), Grasslands, Croplands and Cropland/Natural Vegetation 

Mosaics (GCM). 

Similar differences among the different land-use types are found when I is expressed per m2 of canopy cover, but magnitudes 

are larger (Fig. 7). This canopy-level interception is also overall comparable to previous studies. For instance, Miralles et al. 

(2010) found a higher canopy-level I/P in forests, however, their reported I/P per m2 of forest of 21.8% in needleleaf forests 425 

agrees well with our study. The estimated annual I and I/P per land cover type is further compared to the reported values in 

field campaigns. Notice that the global estimated I is lower than the in situ measurements, except in evergreen broadleaf 

forests. In terms of I/P, the estimates in forests overall agree well with the field data, which indicates the average forcing 

precipitation might be lower than the observed precipitation from forest experiments. Both measured I and I/P over short 

vegetated regions are much higher than the global estimates, which is consistent with the findings in field validations. In fact, 430 

the higher observed interception from short vegetation and deciduous broadleaf forests seems reasonable, as most of 

observations are taken in the growing season or the leafed period (Fathizadeh et al., 2018), while our estimates are the 

average of both the growing season and the dormant season.  
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5.5 Comparison to existing global datasets 

The global multiyear (1980–2019) mean annual I estimated by the global vD–B model is 73.81 mm yr-1, accounting for 435 

10.32% of P. This value is within the range of other global estimates – e.g., the 64.06 mm yr-1 and 7.91% of P reported in the 

Community Land Model (CML) version 5 (Lawrence et al., 2019), the 115 mm yr-1 and 13% of P found by Wang-

Erlandsson et al. (2014) based on a hydrological land-surface model. Besides, this I/P is comparable to that of 10.08% 

reported by Zheng and Jia (2020), whereas the magnitude of I is much higher than their finding (57.06 mm yr-1). This large 

difference suggests that forcing rainfall can bring large uncertainties, which has also been found in CML5 when driven by 440 

different precipitation datasets (Lawrence et al., 2019).  

 

Figure 8. Comparison of rainfall interception with other global products. The left column is the spatial distribution of their 

differences, i.e. this study minus (a) PML I (mm yr–1); (b) GLEAM I (mm yr–1); (c) GLEAM I/P (%). The right column is the 

pixel-by-pixel scatter plot of this study versus (d) PML I (mm yr–1); (e) GLEAM I (mm yr–1); (f) GLEAM I/P (%), in which the red 445 
solid line represents the fitting curve, the black dashed line marks the 1-to-1 line, and colorbar represents data density. 

The spatial patterns are also compared with two global interception products: PML v2 and GLEAM v3.5a (Figure 8). PML 

v2 is based on the same vD–B model, but with different parameterizations (Zhang et al., 2016a; 2019). Overall, annual I is in 
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good agreement with PML v2 estimates with a high correlation coefficient of 0.91, but higher globally with the mean 

difference of 21.84 mm yr-1, especially in tropical regions. GLEAM v3.5a used the version of the model proposed by Valente 450 

et al. (1997), and using the same precipitation forcing as in this study, hence both I and I/P are compared here bearing in 

mind this dependency. In general, our interception estimates are slightly higher than GLEAM v3.5a, with the mean 

difference of 7.89 mm yr-1 for I and 1.71% for I/P. In terms of spatial discrepancies, GLEAM v3.5a estimates are higher over 

Amazon forests and boreal forests, while lower in Africa, southeastern Asia and Australia. Differences in spatial patterns 

between both datasets (r=0.82 and 0.67 for I and I/P, respectively) largely come from the fact that only forest interception is 455 

estimated in GLEAM v3.5a; moreover, the phenological dynamics are not explicitly considered in GLEAM v3.5a. In 

addition, we validate the results of PML v2 and GLEAM v3.5a against in situ data, and compare the validation results to 

those of our new model formulation – see Fig. 9. Compared to PML v2 and GLEAM v3.5a, both estimated I and I/P in this 

study have the highest correlation coefficients and lowest mean bias errors with field observations. In evergreen broadleaf 

forests, similar validation results are found for estimated I, while PML v2 shows the highest correlation coefficient for I/P 460 

(Fig. S8). However, PML v2 significantly underestimates both I and I/P in evergreen broadleaf forests, especially for large 

events. Different from the constant of E/R in PML and the empirical relationship between R and lightning frequency in 

GLEAM v3.5a (Miralles et al., 2010), here use of 3-hr temporal resolution MSWEP precipitation enables a more realistic 

estimation of monthly averaged R (Fig. S9), which may be partly responsible for the higher model accuracy.  

  465 

Figure 9. Field validation of rainfall interception loss from three different models. (a) I in mm d-1, (b) I/P in %. Black, blue and red 

scatters represent the pixel-scale simulations from this study, GLEAM and PML model, respectively. Since the time series of PML 

v2 spans from 2003 to 2017, hence only 70 field observations can be used for validation. The solid lines in different colours are the 

regression lines, and the black dashed lines mark the 1-to-1 line. 
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6. Conclusion 470 

In this study, we present a new global I dataset based on a revisited vD-B model (Van Dijk and Bruijnzeel, 2001b) driven by 

satellite-observed vegetation dynamics, potential evaporation (for short vegetation) and precipitation. In order to constrain 

and validate the model performance efficiently, a global synthesis of previous I field campaigns is conducted. This synthesis 

results in an unprecedented meta-analysis of 183 sites, and a global collection of 268 past observations. Vegetation storage 

capacity and wet canopy evaporation rate are analysed using this synthesis dataset and used to parameterise the global model. 475 

The validation indicates the daily I estimates agree well with field observations in tall vegetation ecosystems, even compared 

at the precipitation event scale. The global multiyear (1980–2019) averaged annual I is 73.81 mm yr–1 or 10.96 × 103 km3 yr–

1, accounting for 10.53% of continental P and representing 14.06% of continental E. Short vegetation I is also considered 

separately, unlike in previous global studies in which short vegetation interception was not validated (Zheng and Jia, 2020) 

or even simulated (Miralles et al. 2010). The partitioning between tall and short vegetation benefits from the high-resolution 480 

MODIS VCF and fPAR products, and the method employed here to derive cc dynamically, given the short growing season of 

most short vegetation ecosystems. Results indicate that short vegetation I accounts for 4.20% of continental P and contribute 

to nearly one third of total I, a considerable amount of net water loss back to the atmosphere. However, this represents an 

underestimation in comparisons with field campaign results. We argue that this is likely affected by the low number of field 

campaigns, which are often narrowed to heavily vegetated plots within the ecosystems they sample, and the inability to 485 

validate the results over shorter vegetation types, like grasses. Meanwhile, tall vegetation accounts for 6.12% of continental 

P. The global I estimates in this study appear plausible according to the results of validation and spatial and seasonal analysis. 

The global value of 10.96 × 103 km3 yr–1 (i.e., 10.53% of continental P) falls within the range of previous global estimates; it 

is higher than that from PML v2 but overall comparable to GLEAM v3.5a estimates. As expected, a strong variance is found 

among vegetation types and biomes, with tropical evergreen forests experiencing the largest fluxes. The seasonal variability 490 

of I is shown following the annual cycle of canopy cover, and rainfall volumes and intensity. This model will be employed 

as interception module in the next version (v4) of GLEAM, which is currently in development. The new global I dataset will 

become freely available from www.GLEAM.eu, and may serve as a benchmark for future investigations and facilitate large-

scale hydrological and climate research. 

  495 

http://www.gleam.eu/
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Appendix A: Acronyms 

Table A1. Acronyms and variable names used throughout the manuscript. 

Acronym/ Symbol Variable/Full name Unit 

I Rainfall interception loss mm 

P Gross rainfall mm 

R  Rainfall rate mm h-1 

Ep potential evaporation mm 

E mean evaporation rate per unit area of total land mm h-1 

EC mean evaporation rate per unit area of canopy mm h-1 

S canopy storage capacity per unit area of total land mm 

SV Vegetation/canopy storage capacity per unit area of canopy mm 

SL leaf storage capacity mm 

SS stem/trunk storage capacity mm 

c canopy/vegetation cover fraction – 

FF Forest Fraction – 

LAI Leaf Area Index – 

fPAR Fraction of absorbed Photosynthetically Active Radiation – 

fPARdaily daily fPAR – 

fPARmean annual mean fPAR – 

NDVI Normalized Difference Vegetation Index – 

fIPAR Fraction of Intercepted Photosynthetically Active Radiation – 

VCF Vegetation Continuous Fields – 

IGBP International Geosphere–Biosphere Programme  – 

MSWEP Multi-Source Weighted-Ensemble Precipitation mm 

SWE Snow-Water Equivalent kg m-2 

K(s) non-green vegetation coefficient – 

Pt stemflow partitioning coefficient – 

𝜅 extinction coefficient – 

C clumping index  – 

𝜇 Sun zenith angle  – 

r correlation coefficient – 

MBE mean bias error – 

RMSE root‐mean‐square error – 

 

Data availability 

The global datasets generated in this study are available upon request (Feng.Zhong@ugent.be) and will become freely 500 

available in due time via www.GLEAM.eu. 

http://www.gleam.eu/
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