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Response to Reviewer Comments: Revisiting large-scale 5 

interception patterns constrained by a synthesis of global 

experimental data 
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We appreciate the reviewer’s constructive comments. Below we address one by one 

each of the points in blue fonts. When line numbers are mentioned, these refer to the 

revised version of our manuscript. 

 15 
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Reviewer #1 (Anonymous, Referee) 

Major comments: 20 

Comment 1.1: The vD-B model is central in this study, but how the model works is not 

explained in the manuscript. It would help the reader if the main model concepts are provided. 

Reply: Thanks for your suggestions. In “model formulation” section, we first emphasized the 

improvements of the vD-B model compared to other versions of Gash model (L173–185) to 

explain why we used it, and further introduced the modifications we implemented in our study 25 

(L191–201). As most formulations and parameters are the same as in the original vD-B model, 

we only presented our revised model in Table 2.  

Action: To help the readers better understand the main model concepts, we will explicitly 

provide two landmark references in which the conceptual framework and improvements of 

the vD-B model are introduced in detail. Besides, we will extend Table 2 to include one more 30 

column called “the original vD–B model” on the left, and add its equations and parameter 

values. The extended Table 2 including “the original vD–B model” is presented below as 

Table R1. Besides, this brief introduction will be added in L185–187: 

“The corresponding equations and parameters of the vD–B model are given in Table 2. For 

a detailed description of the conceptual framework and improvements please see Gash et al. 35 

(1995) and van Dijk and Bruijnzeel (2001b).” 

Table R1. Equations and parameters in the original vD–B model and this study. In the original vD–B model, 

𝜶 is the energy exchange coefficient between canopy and atmosphere, and 𝐸̅𝑎 is a constant evaporation rate 

when 𝜶 approaches infinity. The values of SL and SS in the original vD–B model come from van Dijk and 

Bruijnzeel (2001a), and the parameterisation in this study is based on the meta-analysis of past field campaigns. 40 

EBF, DBF, NF and others represent Evergreen Broadleaf Forests, Deciduous Broadleaf Forests, Needleleaf 

Forests, and other tall vegetation, separately. 

 
The original vD–B model 

This study 

tall vegetation short vegetation 

I calculation 

For storms insufficient to saturate vegetation, i.e. P ≤ 𝑃′ 

 

𝐼 = 𝑐 ∙ 𝑃 

 

 𝐼 = 𝑐 ∙ 𝑃 

For storms sufficient to saturate vegetation, i.e. P > 𝑃′ 𝐼 = 𝑐[𝑃′ + (𝐸𝐶/𝑅)(𝑃 − 𝑃′)]  𝐼 = 𝑐[𝑃′ + (𝐸𝐶/𝑅)(𝑃 − 𝑃′)] 

Parameters   

Rainfall necessary to saturate vegetation, 𝑃′ (mm) −[𝑅𝑆𝑉/(𝑐 ∙ 𝐸𝐶)]ln(1 − 𝐸𝐶/𝑅) −[𝑅𝑆𝑉/𝐸𝐶]ln(1 − 𝐸𝐶/𝑅) 

Vegetation cover fraction, c (-) 1 − 𝑒(−𝜅⋅𝐿𝐴𝐼) 𝑉𝐶𝐹[𝑓𝑃𝐴𝑅𝑑𝑎𝑖𝑙𝑦/𝑓𝑃𝐴𝑅𝑚𝑒𝑎𝑛 + 𝐾(𝑠)] 

Vegetation storage capacity, SV (mm) 𝐿𝐴𝐼 ∙ 𝑆𝐿 + 𝑆𝑆 𝐿𝐴𝐼 ∙ 𝑆𝐿 + 𝑆𝑆 

Mean wet canopy evaporation rate, EC (mm h-1) {[1 − 𝑒(−𝛼⋅𝐿𝐴𝐼)]𝐸̅𝑎}/𝑐 0.32 Ep 

Leaf storage capacity, 𝑆𝐿 (mm) 0.077 for maize 

0.042 for rice 

0.049 for cassava 

0.20 for EBF 

0.18 for DBF 

0.29 for NF 

0.23 for others 

0.10 

Trunk/Stem capacity, 𝑆𝑆 (mm) 0.001–0.012 0.09 0.03 

Note: LAI and SS are expressed per unit area of total land in the original vD–B model, while per unit area of canopy 

in this study. 
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Comment 1.2: To me the problem statement is not entirely clear. The vD-B model has already 45 

been successfully applied (L64-66), but is up for improvement. Maybe elaborate on the past 

performance and the need for improvement (/parameter constrainment). How was the 

parameterization done before? 

Reply: Thanks for your suggestions. In this study, we mainly focused on the parameterization 

of evaporation rates and storage capacity, and introduced the common methods in Section 4 50 

(L247–249; L267–280). For most local applications, the values of parameters are generally 

estimated from field measurements or come from public literature directly. Besides, the 

evaporation rates are often systematically underestimated when based on Penman–Monteith 

theory (Van Dijk et al., 2015). The extensive reports of evaporation rates and storage capacity 

from literature enable us to do a meta-analysis to constrain the interception modelling. On 55 

the contrary, little information can be found for the extinction coefficient and energy exchange 

coefficient, which explains our use of fPAR. The few regional and global studies normally 

have little details about parameterization; that is also the case for the PML model, which is 

based on the vD–B formulations. In these applications, the values of parameters are generally 

from more limited literature reviews.  60 

Action: We will add this introduction in L66–70 about past parameterizations.  

“Most of these studies do not provide details about parameterization, and when values for 

these parameters are reported, they are generally taken from limited literature review 

exercises and often lack formal evaluations. These parameters, pertaining to either canopy 

structure or climatological conditions, are frequently considered as a constant due to the 65 

scarcity of measurements, whereas their spatial and temporal variability can still be very large 

(Deguchi et al., 2006; Fathizadeh et al., 2018).” 

Comment 1.3: After constraining the vD-B model, has it been improved in comparison to non-

contrained vD-B model results? Now the authors only compare their results with GLEAM and 

PML, but not with the past vD-B model. So how can you conclude that your model has been 70 

improved? 

Reply: In addition to constraining EC, SL and SS by the meta-analysis of past field campaigns, 

like we did, other parameters (i.e., extinction coefficient 𝜅, energy exchange coefficient 𝛼) 

need to be parameterized for the global application of the original vD-B model. To avoid 

parameterization, we modified the formulations and introduced the use of fPAR. Then we did 75 

compare our results with another vD–B model that closely follows the original formulations 

from Van Dijk and Bruijnzeel (2001b) namely the PML model. The rainfall interception loss 

from PML is actual estimated based on the vD–B model parameterized globally with a 

constant EC/R between storms (Zhang et al., 2016a; 2019), which was not sufficiently clear 

in the original text. Our estimates show good agreement with PML estimates (r=0.91) but are 80 

higher, especially in tropical regions (L448–450). We agree, however, that such comparison 

did not illustrate our model improvements.  

Action: We will highlight that “PML v2 is based on the same vD–B model, but with different 

parameterizations (Zhang et al., 2016a; 2019)” in L447–448. Then we will validate the results 

of PML (and GLEAM) against in situ data, and compare the validation results to those of our 85 
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new model formulation in the main manuscript. A new figure (Fig. 9) will be included in the 

main paper, equivalent to the Fig. R1 shown below, which presents the field validation of I 

and I/P from these three different models. Compared to PML v2 and GLEAM v3.5a, the 

estimated I and I/P in this study have the highest correlation coefficients and lowest mean 

bias errors with field observations. This analysis will be now included in the section 90 

“Comparison to existing global datasets” (L456–462). 

“In addition, we validate the results of PML v2 and GLEAM v3.5a against in situ data, and 

compare the validation results to those of our new model formulation – see Fig. 9. Compared 

to PML v2 and GLEAM v3.5a, both estimated I and I/P in this study have the highest 

correlation coefficients and lowest mean bias errors with field observations. In evergreen 95 

broadleaf forests, similar validation results are found for estimated I, while PML v2 shows the 

highest correlation coefficient for I/P (Fig. S8). However, PML v2 significantly underestimates 

both I and I/P in evergreen broadleaf forests, especially for large events.” 

 

Figure R1. Field validation of rainfall interception loss from three different models. (a) I in mm d-1, (b) I/P 100 

in %. Black, blue and red scatters represent the pixel-scale simulations from this study, GLEAM and PML 

model, respectively. Since the time series of PML v2 spans from 2003 to 2017, hence only 70 field observations 

can be used for validation. The solid lines in different colors are the regression lines, and the black dashed lines 

mark the 1-to-1 line. 

Comment 1.4: In the manuscript many abbreviations are used, which sometimes makes the 105 

paper difficult to read. It would help the reader if the number of abbreviations is reduced 

(especially the land-use types names). 

Reply: Thanks for your advice.  

Action: We will use the full names of land-use types in the text, and keep abbreviations only 

in tables and figures with definitions in the captions. Besides, in order to help readers follow 110 

this research more easily, a table, equivalent to Table R2, will be presented as appendices 

(L496) to show all abbreviations used in this study. 
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Table R2. Acronyms and variable names used throughout the manuscript. 

Acronym/ Symbol Variable/Full name Unit 

I Rainfall interception loss mm 

P Gross rainfall mm 

R  Rainfall rate mm h-1 

Ep potential evaporation mm 

E mean evaporation rate per unit area of total land mm h-1 

EC mean evaporation rate per unit area of canopy mm h-1 

S canopy storage capacity per unit area of total land mm 

SV Vegetation/canopy storage capacity per unit area of canopy mm 

SL leaf storage capacity mm 

SS stem/trunk storage capacity mm 

c canopy/vegetation cover fraction – 

FF Forest Fraction – 

LAI Leaf Area Index – 

fPAR Fraction of absorbed Photosynthetically Active Radiation – 

fPARdaily daily fPAR – 

fPARmean annual mean fPAR – 

NDVI Normalized Difference Vegetation Index – 

fIPAR Fraction of Intercepted Photosynthetically Active Radiation – 

VCF Vegetation Continuous Fields – 

IGBP International Geosphere–Biosphere Programme  – 

MSWEP Multi-Source Weighted-Ensemble Precipitation mm 

SWE Snow-Water Equivalent kg m-2 

K(s) non-green vegetation coefficient – 

Pt stemflow partitioning coefficient – 

𝜅 extinction coefficient – 

C clumping index  – 

𝜇 Sun zenith angle  – 

r correlation coefficient – 

MBE mean bias error – 

RMSE root‐mean‐square error – 

 115 

 

Minor comments: 

Comment 1.5: Section 2.1 L104: define 'insufficient' in your criteria. 

Reply: We thank the reviewer for pointing this out.  

Action: We will clarify this criterion in the text (L106–107). 120 

“(e) they are based on insufficient measurements (less than 10 throughfall gauges and no 

assessment of stemflow) or fixed rain gauges.” 

Comment 1.6: L142: What means TSGF? 

Reply: Thanks for noticing that the acronym was undefined. TSGF stands for Temporal 

Smoothing and Gap Filling, which is a method proposed by Verger et al. (2011) to handle 125 

missing data to get high-quality and gap-free satellite time series. This method was 

successful applied to MODIS LAI products, and the reconstructed time series could exhibit a 

reduction of 90% of the missing LAI values with an improved monitoring of vegetation 
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dynamics, temporal smoothness, and better agreement with ground measurements (Verger 

et al., 2011; Kandasamy et al., 2013). 130 

Action: This sentence will be replaced by “The original 4-day resolution is temporally 

smoothed and gap filled based on the Temporal Smoothing and Gap Filling (TSGF) method 

proposed by Verger et al. (2011).” (L145–146) 

Comment 1.7: Eq 1: please use single character parameters in formulas. cc or LAI can be 

confused with c times c or L times A times I. This comment holds for other equations as well. 135 

Reply: We appreciate your suggestion. This expression might be confusing to a certain extent, 

but such parameter names (some being acronyms) are really common in research articles 

and websites providing satellite data (such as EarthData).  

Action: As the reviewer suggests, we will revise certain parameter names with single 

character, for example, ‘cc’ will be replaced with ‘c’. Besides, as mentioned above, we will 140 

add a supplementary table (Table R2) to show all acronyms and variable names used in this 

study.  

Comment 1.8: Table 2: It's a bit confusing that you present here the formulas and parameter 

values, while you explain later in Section 4 how you determined them. 

Reply: In order to present a complete model and show how this model works, we provided 145 

the formulas and parameter values here together. We agree with the reviewer that we could 

explain the model parameterization in Section 3, which might yield a tighter research 

framework. However, the model parameterization based on meta-analysis is a central part of 

our work. To present this part in more detail and avoid Section 3 to become too long and 

complicated, we made the ‘Meta-analysis and model parameterization’ a separate part in 150 

Section 4. Besides, we introduced all parameters briefly in Section 3, and announced earlier 

on that the parameterization would be presented in Section 4 (L216–218). 

Action: We would prefer to maintain the current structure. 

Comment 1.9: Table 2-second equation: I think some parathesis would help. Now it's not 

clear whether it is Ec/ [R(p-p-')] or (Ec/R)*(p-p'). 155 

Reply: Thank you for your suggestion; the second formula is the correct interpretation.  

Action: We will make it clear with an expression in parentheses (see Table R1).  

Comment 1.10: Table 2 -third equation: LN not italic. 

Reply: Thank you for pointing this out. “ln” should be in roman upright font.  

Action: We will correct it as shown in Table R1. 160 

Comment 1.11: Table 2: please only use single character parameters names. 

Reply: As mentioned in the previous response, some acronyms and variable names are 

commonly used in literature and known this way (e.g., LAI).  

Action: We will add a supplementary table (Table R2) to show all acronyms used in this study.  

https://www.earthdata.nasa.gov/
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Comment 1.12: Table 2: explain abbrevations EBF, DBF, NF (e.g., in caption). 165 

Reply: Thanks for the advice. 

Action: We will add this to the caption in Table 2 (see Table R1). 

Comment 1.13: Fig 4: What is the color scale of (a) and (b)? 

Reply: Figure 4 (a) and (b) used the same color scale as (c) and (d). 

Action: To avoid misunderstanding, we will add the color scale of (a) and (b) (see Fig. R2). 170 

 

Figure R2. Global distribution of annual rainfall interception loss. Average I in mm yr–1 (a), and the 

contributions from tall (c) and short (e) vegetation. Average I/P (%) (b), and the contributions from tall (d) 

and short (f) vegetation. 

Comment 1.14: Fig 8: What is the color bar on the right hand side? 175 

Reply: Thank you for pointing this out. This color bar represents data density. 

Action: We will explain it in the caption as following (L444–446). 

“The right column is the pixel-by-pixel scatter plot of this study versus (d) PML I (mm yr–1); 

(e) GLEAM I (mm yr–1); (f) GLEAM I/P (%), in which the red solid line represents the fitting 

curve, the black dashed line marks the 1-to-1 line, and colorbar represents data density.” 180 

Comment 1.15: L463: the new model results (dataset) will be published on the GLEAM 

website, but is this not confusing as GLEAM is a different model? 
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Reply: The Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al. 2011) 

estimates the different components of terrestrial evaporation, including forest rainfall 

interception loss which is calculated separately based on the Gash analytical model (Valente 185 

et al., 1997). While GLEAM has been progressively improved over the past few years 

(Martens et al. 2017), the model estimation of interception loss has not been updated since 

its release 12 years ago (Miralles et al. 2010). Therefore, the interception module of the 

newest GLEAM version (version 4) will be updated based on this study, and this global 

interception datasets will be released on the GLEAM website. 190 

Action: We will explicitly mention that “This model will be employed as interception module in 

the next version (v4) of GLEAM, which is currently in development.” in L491–492. 

Comment 1.16: L465: when will the data become available? It should be accessible before 

acceptance, right? 

Reply: Yes, the dataset is already available upon request (Feng.Zhong@ugent.be), and will 195 

be public via www.GLEAM.eu as soon as the manuscript is conditionally accepted. 

  

mailto:Feng.Zhong@ugent.be
http://www.gleam.eu/
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Reviewer #2 (Yongqiang Zhang, Referee) 

Major comments: 

Comment 1.1: The advantage to use fPAR to estimate the cc has not been demonstrated. In 200 

Figure 3, please also show the comparison between the observed and the simulated using 

traditional LAI dataset. This is particularly important for displaying the novelty of this study. 

Reply: Thank you for your suggestions. cc can be traditionally obtained from LAI based on 

Beer–Lambert's Law (Eq. (1)). In this equation, three parameters – i.e. extinction coefficient 

(𝜅), clumping index (C) and the cosine of the Sun zenith angle (𝜇) – need to be parameterized 205 

at a global scale. For most rainfall interception applications, C and 𝜇 are normally set to unity, 

and 𝜅 varies across different plant functional types (Van Dijk and Bruijnzeel, 2001b; Zhang 

et al., 2019). However, C has recently been shown to be an important biophysical parameter 

in characterizing the effective LAI, and therefore affects transpiration and photosynthesis 

(Braghiere et al., 2019; 2020; 2021). In this regard, we think the influence of C on estimating 210 

cc should not be ignored in rainfall interception simulations. In our study, an important novelty 

is using an alternative approach to estimate cc to shortcut that complicated parameterization, 

that is annual average cc is approximated by the MODIS Vegetation Continuous Fields (VCF) 

products, and then linearly interpolated by the intra-annual dynamics of fPAR, as fPAR has 

been found to exhibit strong linear correlation to cc (Mu et al., 2018) (L191–204). 215 

Action: To illustrate the performance of this new model, we will include a validation of the 

results of PML v2 (and GLEAM v3.5a) against in situ data, as the rainfall interception loss 

from PML v2 is actually estimated based on the same vD–B model forced by traditional LAI 

dataset (Zhang et al., 2016; 2019). A new figure (Fig. 9) will be included in the main paper, 

equivalent to the Fig. R1 shown above, which presents the field validation of I and I/P from 220 

the three different models. Compared to PML v2 and GLEAM v3.5a, both estimated I and I/P 

in this study have the highest correlation coefficients and lowest mean bias errors with field 

observations. This will be now included in the section “Comparison to existing global datasets” 

(L456–462). 

Comment 1.2: The variation in cc. The authors state that the time various parameter cc can 225 

be larger than unity. I would like to see the time variations of cc estimated from fPAR and 

estimated from LAI, respectively. There will be never an issue based on the exponential 

function of LAI using Beer–Lambert's Law. This should be shown for at least the 

representative sites, such as EBF and DBF.  

Reply: As mentioned above, in this study cc is derived from MOD44B product, which provides 230 

the percentage of each gridcell covered by tall vegetation (i.e. tree canopies) and short 

vegetation (i.e. non-tree vegetation). In theory, taking into account such subgrid 

heterogeneity enables the model to get more exact outcome. On the other hand, intra-annual 

dynamic cc estimated from the temporal changes in fPAR could shortcut complicated 
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parameterization using Beer–Lambert's Law equation. For these reasons, we did not use this 235 

traditional method to calculate cc.  

Action: To compare our cc with that estimated from LAI, cc is calculated at representative 

sites using Beer–Lambert's Law with C and 𝜇  being set to unity. Taking the extinction 

coefficient of PAR as reference, the values of 𝜅 come from PML v2 model (Zhang et al., 

2019). Figure R3 shows the time series of cc starting from 1 January 2003. The time 240 

variations of cc estimated from fPAR overall agree well with that estimated from LAI at EBF, 

ENF, DNF and MF sites where are dominated by tall vegetation, while values of the former 

are significantly larger than the later at DBF and SHL sites dominated by short vegetation. 

Besides, it should be noted that cc derived from LAI can be even smaller than the annual 

fraction of short vegetation from MOD44B at low vegetation dominated sites. This comparison 245 

will be presented in the supplementary. 

Comment 1.3: EBF results. The intercepted evaporation from EBF using the modified 

approach is very high. It is noticeably larger than the PML-V2 estimate. So, it is necessary to 

extract EBF sites for validation analysis. I am keen to know how much the modified approach 

improves the estimate at EBF sites, compared to the original one using the exponential 250 

equation. 

Reply: Thanks for your advice. Although our estimates at EBF sites are generally larger than 

that from PML v2 (Fig. 8), they are overall comparable to field observations (Fig. S3) with a 

slight overestimation for small events and underestimation for large events (L321–325). 

Action: In order to make a comparison, we validate the estimations from PML v2 and GLEAM 255 

v3.5a against in situ data at EBF sites, and results will be added to the supplementary, 

equivalent to the Fig. R4. Take note that the time series of PML v2 spans from 2003 to 2017, 

hence only 13 field observations can be used here. Although PML v2 shows the highest 

correlation coefficient for I/P, it significantly underestimates both I and I/P, especially for large 

events. GLEAM v3.5a shows a systematic underestimation as only forest interception is 260 

estimated. Compared to PML v2 and GLEAM v3.5a, our estimations overall present the best 

agreement with field observations, and have the lowest mean bias errors. Corresponding 

analysis will be shown in main text (L456–462). 

“In addition, we validate the results of PML v2 and GLEAM v3.5a against in situ data, and 

compare the validation results to those of our new model formulation – see Fig. 9. Compared 265 

to PML v2 and GLEAM v3.5a, both estimated I and I/P in this study have the highest 

correlation coefficients and lowest mean bias errors with field observations. In evergreen 

broadleaf forests, similar validation results are found for estimated I, while PML v2 shows the 

highest correlation coefficient for I/P (Fig. S8). However, PML v2 significantly underestimates 

both I and I/P in evergreen broadleaf forests, especially for large events.” 270 
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 275 

Figure R3. The time series of cc at representative sites. cc_LAI represents cc derived from LAI based on Beer–

Lambert's Law. cc_fTC and cc_fH represent cc for tall and short vegetation, respectively, in this study 

estimated from fPAR. fTC and fH are the annual tree canopies and non-tree vegetation canopies from 

MOD44B product. 

 280 
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Fig R4. Field validation of rainfall interception loss for EBF sites. (a) I in mm d-1, (b) I/P in %. Black, blue and 

red scatters represent the pixel-scale simulations from this study, GLEAM and PML model, respectively. Since 

the time series of PML v2 spans from 2003 to 2017, hence only 13 field observations can be used for validation. 

The solid lines in different colors are the regression lines, and the black dashed lines mark the 1-to-1 line. 285 

 

 

Minor comments: 

Comment 1.4: For the estimation of Ec. Line 286-292, the authors found that the Ec for short 

vegetation from 8 publications exhibits lager variability and is on average higher than that for 290 

tall vegetation, which is not consistent with previous expectations of lower Ec for short 

vegetation than that for tall vegetation. The aerodynamic resistance is one reason, as wind 

speed on the top of canopy for tall vegetation should be higher than for short vegetation. But, 

in my opinion, surface temperature and available energy for short vegetation could be higher, 

leading to a higher Ec than that for tall vegetation. Finally, the authors used potential 295 

evaporation (Ep) as a proxy of Ec for short vegetation in the vD-B model. My question is 

which equation is used to calculate the potential evaporation (Ep)? Is it FAO P-M method? 

as the FAO P-M was setup for short vegetation. How about the comparisons between Ep and 

Ec (from the 8 publications) for short vegetation? 

Reply: Thanks for your comments. In our study, the Priestley and Taylor-based potential 300 

evaporation (Ep) from GLEAM v3.5a is selected as a proxy of EC for short vegetation (L155–

157). As Table R3 shown, Ep is substantially lower than that observed EC from 8 publications. 

We agree that EC derived from Ep might be lower than the actual evaporation rates from short 

vegetation. However, we do not agree that the available energy for short vegetation should 

be higher than that for forests, as the albedo is normally lower in forests. Besides, these short 305 

vegetation species from the 8 publications could not be representative for global short 

vegetation ecosystems, especially grasslands, as most of them are tall enough to fit funnels 

or gutters under them (L341–343). Notice that some values of these observed EC (1.18–2.96 

mm/h) are even larger than that for tall vegetation (Fig. 2(d)). 
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Action: Ep would be maintained in this study until a better method could be used to 310 

parameterize EC for short vegetation. 

Table R3. A detailed summary of short vegetation EC, R and EC/R from 8 publications, and their corresponding 

estimations in this study. “Lon.” and “Lat.” denote the longitude and latitude of experiment sites. The methods 

to obtain EC include Regression (Reg) method and Optimization (Opt) method. 

References Lon. Lat. Duration Vegetation 
Observations Estimates 

EC Method R EC/R EC R EC/R 

Návar et al. 

(1999) 

–99.53 24.78 1995.09–1997.04 Thornscrub 2.96 Reg 18.08 0.164 0.10 3.15 0.065 

Návar and 

Bryan 

(1994) 

–99.53 24.78 1987.05–08 Shrubs 2.95 Reg 13.52 0.218 0.16 6.54 0.028 

Zhang et   

al., (2018) 

100.01 37.59 2012.06.01–

2012.09.11 

Potentilla 

fruticosa 

0.09  0.60 0.150 0.11 1.99 0.058 

Herbst et al. 

(2006) 

–1.70 51.60 2004.06.21–

2005.02.09 

Hedgerow        

  Full leaf 0.37  1.84 0.201 
0.03 2.02 0.017 

  Leafless 0.10  1.40 0.071 

Fernandes et 

al. (2017) 

–47.67 –2.61 2012.07–2013.05 Sugarcane        

  Tillering 0.10 Opt 3.10 0.032 

0.14 6.81 0.027 
  Stems 

elongation 

0.58 Opt 3.10 0.187 

  Ripening 0.69 Opt 3.10 0.223 

Finch and 

Riche (2010) 

–0.35 51.81 1997.06.26–

1998.01.19 

Miscanthus 0.15 Opt 1.20 0.125 0.03 1.91 0.021 

Nazari et al. 

(2020) 

51.63 35.28 2015&2016.05–

09 

Maize        

  Seedling    1.500    

   Jointing    0.298    

    Tasseling    0.208    

    Maturity    0.256    

    Average 1.59 Reg 3.65 0.436 0.09 0.51 0.176 

Van Dijk 

and 

Bruijnzeel 

(2001) 

108.07 –7.05 1995.01.08–

1995.05.11 

Mixed crops 1.18 Opt 4.70 0.251 0.13 7.48 0.018 

  1999.01.02–

1999.07.17 

Mixed crops 0.55 Opt 4.30 0.127 0.13 5.87 0.029 

Comment 1.5: For short vegetation interception. Line 325-329, result shows both the modeled 315 

I and I/P for short vegetation are smaller than observations, and authors think lower estimates 

of Ec from Ep for short vegetation caused this underestimation. Therefore, I may not agree 

that Ec for short vegetation should be lower than that for tall vegetation. On the other hand, 

Zhang et al (2016a, 2017) (in lines 340-342) reports about two times I/P values than this 

study’s modeled values. I guess that differences in vegetation index, eg, LAI between 320 

grassland, crop, and shrub can also largely affect the lower modeled I/P values. Can you 

compare how modeled or observed I/P change over LAI for short vegetation? 

Reply: As mentioned above, we think the most likely reason for this lower performance is that 

these short vegetation species from the 8 publications could not be representative for global 

short vegetation ecosystems, especially grasslands, as most of them are tall enough to fit 325 

funnels or gutters under them (L341–343). The lower estimates of EC might be 

the secondary cause. In theory, LAI should have a significant impact on I/P, as a larger LAI 

indicates a larger canopy cover and storage capacity. However, we only have 16 observed 

I/P (see Fig. 3) for short vegetation, half of which are obtained after 2003. That means 

a few data can support such comparison due to lack of LAI data.  330 

Action: No corresponding analysis due to lack of data. 
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Comment 1.6: Figure 5, “a”, “b”, “c”, “d” are not shown in each plot.  

Reply: We thank the reviewer for pointing this out. 

Action: We will add labels of panels in Fig. 5 (see Fig. R5). 

 335 

Figure R5. Variation of average I along different latitudinal bands. (a) I (mm yr–1) for tall vegetation, short 

vegetation and their sum. (b) Same but for I/P (%). Seasonal patterns of I in mm yr–1 (c), and of I/P in % (d). 

DJF, MAM, JJA and SON represent December–February, March–May, June–August and September–

November, respectively. 

Comment 1.7: Lines 405-409, “that the measured I is overall higher than the global estimates, 340 

except in EBF.” I think this may also partly because that the precipitation input for the vD-B 

model is systematically lower than the observed precipitation from field experiments. 

Reply: We thank the reviewer for the comment. We certainly agree with the reviewer’s points 

that to a certain degree, the underestimation of I in tall vegetation ecosystems could be 

explained by the lower precipitation (L325–327). Figure R6, equivalent to Fig. S4, shows the 345 

linear regression between forcing and observed precipitation. Forcing precipitation is overall 

lower than the observed precipitation in forests, especially for larger events. Similar validation 

results are found for both I and I/P (see Fig. 3), and the discrepancy between estimations and 

observations is attenuated when expressing the results as I/P (higher correlation coefficient).   

Action: We will state Fig. 7 more clearly in the main text (L427–433). 350 

“Notice that the global estimated I is lower than the measurements, except in evergreen 

broadleaf forests. In terms of I/P, the estimates in forests overall agree well with the field data, 

which indicates the average forcing precipitation might be lower than the observed 

precipitation from forest experiments. Both measured I and I/P over short vegetated regions 

are much higher than the global estimates, which is consistent with the findings in field 355 

validations. In fact, the higher observed interception from short vegetation and deciduous 

broadleaf forests seems reasonable, as most of observations are taken in the growing season 

or the leafed period (Fathizadeh et al., 2018), while our estimates are the average of both the 

growing season and the dormant season.” 
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 360 

Figure R6. Linear regression between forcing and observed precipitation over field campaigns. TV, EBF, DBF, 

NF, MF and SV represent Tall Vegetation, Evergreen Broadleaf Forests, Deciduous Broadleaf Forests, 

Needleleaf Forests, Mixed Forests and Short Vegetation, separately. 

Comment 1.8: PML-V2. A wrong reference is used for PML-V2. Please cite Zhang et al. (2019) 

as well (See line 425). Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., McVicar, T.R., Zhang, 365 

Q., and Yang, Y., 2019. Coupled estimation of 500m and 8-day resolution global 

evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ. 222, 

165-182, doi:10.1016/j.rse.2018.12.031 

Reply: Thank you for pointing this out. 

Action: We will add this citation in text as following (L447–448). 370 

“PML v2 is based on the same vD–B model, but with different parameterizations (Zhang et 

al., 2016; 2019).” 
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