
 

 

 

 

Response to Reviewer Comments: Revisiting large-scale 

interception patterns constrained by a synthesis of global 

experimental data 

 

 

 

Reviewer #2 (Yongqiang Zhang, Referee)  



 

We appreciate the reviewer’s constructive comments. Below we address one by one 

each of the points in blue fonts. 

 

Major comments: 

Comment 1.1: The advantage to use fPAR to estimate the cc has not been demonstrated. 

In Figure 3, please also show the comparison between the observed and the simulated 

using traditional LAI dataset. This is particularly important for displaying the novelty of this 

study. 

Reply: Thank you for your suggestions. cc can be traditionally obtained from LAI based on 

Beer–Lambert's Law (Eq. (1)). In this equation, three parameters – i.e. extinction coefficient 

( 𝜅 ), clumping index (C) and the cosine of the Sun zenith angle ( 𝜇 ) – need to be 

parameterized at a global scale. For most rainfall interception applications, C and 𝜇 are 

normally set to unity, and 𝜅  varies across different plant functional types (Van Dijk and 

Bruijnzeel, 2001; Zhang et al., 2019). However, C has recently been shown to be an 

important biophysical parameter in characterizing the effective LAI, and therefore affects 

transpiration and photosynthesis (Braghiere et al., 2019; 2020; 2021). In this regard, we 

think the influence of C on estimating cc should not be ignored in rainfall interception 

simulations. In our study, an important novelty is using an alternative approach to estimate 

cc to shortcut that complicated parameterization, that is annual average cc is approximated 

by the MODIS Vegetation Continuous Fields (VCF) products, and then linearly interpolated 

by the intra-annual dynamics of fPAR, as fPAR has been found to exhibit strong linear 

correlation to cc (Mu et al., 2018) (L185–197). 

Action: To illustrate the performance of this new model, we will include a validation of the 

results of PML v2 (and GLEAM v3.5a) against in situ data, as the rainfall interception loss 

from PML v2 is actually estimated based on the same vD–B model forced by traditional LAI 

dataset (Zhang et al., 2016; 2019). A new figure (Fig. 8) will be included in the main paper, 

equivalent to the Fig. R1 shown below, which presents the field validation of I and I/P from 

the three different models. Compared to PML v2 and GLEAM v3.5a, the estimated I and I/P 

in this study have the highest correlation coefficients and lowest mean bias errors against 

field observations. This will be now included in the section “Comparison to existing global 

datasets”. 



 

Figure R1. Field validation of rainfall interception loss from three different models. (a) I in mm d-1, (b) I/P 

in %. Black, blue and red scatters represent the pixel-scale simulations from this study, GLEAM and PML 

model, respectively. Since the time series of PML v2 spans from 2003 to 2017, hence only 59 field 

observations can be used for validation. The solid lines in different colors are the regression lines, and the 

black dashed lines mark the 1-to-1 line.  

Comment 1.2: The variation in cc. The authors state that the time various parameter cc can 

be larger than unity. I would like to see the time variations of cc estimated from fPAR and 

estimated from LAI, respectively. There will be never an issue based on the exponential 

function of LAI using Beer–Lambert's Law. This should be shown for at least the 

representative sites, such as EBF and DBF.  

Reply: As mentioned above, in this study cc is derived from MOD44B product, which 

provides the percentage of each gridcell covered by tall vegetation (i.e. tree canopies) and 

short vegetation (i.e. non-tree vegetation). In theory, taking into account such subgrid 

heterogeneity enables the model to get more exact outcome. On the other hand, intra-

annual dynamic cc estimated from the temporal changes in fPAR could shortcut 

complicated parameterization using Beer–Lambert's Law equation. For these reasons, we 

did not use this traditional method to calculate cc.  

Action: To compare our cc with that estimated from LAI, cc is calculated at representative 

sites using Beer–Lambert's Law with C and 𝜇  being set to unity. Taking the extinction 

coefficient of PAR as reference, the values of 𝜅 come from PML v2 model (Zhang et al., 

2019). Figure R2 shows the time series of cc starting from 1 January 2003. The time 

variations of cc estimated from fPAR overall agree well with that estimated from LAI at EBF, 

ENF, DNF and MF sites where are dominated by tall vegetation, while values of the former 

are significantly larger than the later at DBF and SHL sites dominated by short vegetation. 

Besides, it should be noted that cc derived from LAI can be even smaller than the annual 

fraction of short vegetation from MOD44B at low vegetation dominated sites. This 

comparison will be presented in the supplementary. 



    

  

  

 

Figure R2. The time series of cc at representative sites. cc_LAI represents cc derived from LAI based on 

Beer–Lambert's Law. cc_fTC and cc_fH represent cc for tall and short vegetation, respectively, in this study 

estimated from fPAR. fTC and fH are the annual tree canopies and non-tree vegetation canopies from 

MOD44B product. 

 



Comment 1.3: EBF results. The intercepted evaporation from EBF using the modified 

approach is very high. It is noticeably larger than the PML-V2 estimate. So, it is necessary 

to extract EBF sites for validation analysis. I am keen to know how much the modified 

approach improves the estimate at EBF sites, compared to the original one using the 

exponential equation. 

Reply: Thanks for your advice. Although our estimates at EBF sites are generally larger 

than that from PML v2 (Fig. 8), they are overall comparable to field observations (Fig. S3) 

with a slight overestimation for small events and underestimation for large events (L309–

313). 

Action: In order to make a comparison, we validate the estimations from PML v2 and 

GLEAM v3.5a against in situ data at EBF sites, and results are shown in Fig. R3. Take note 

that the time series of PML v2 spans from 2003 to 2017, hence only 13 field observations 

can be used here. Although PML v2 shows the highest correlation coefficient for I/P, it 

significantly underestimates both I and I/P, especially for large events. GLEAM v3.5a shows 

a systematic underestimation as only forest interception is estimated. Compared to PML v2 

and GLEAM v3.5a, our estimations overall present the best agreement with field 

observations, and have the lowest mean bias errors.  

    

Fig R3. Field validation of rainfall interception loss for EBF sites. (a) I in mm d-1, (b) I/P in %. Black, blue and 

red scatters represent the pixel-scale simulations from this study, GLEAM and PML model, respectively. 

Since the time series of PML v2 spans from 2003 to 2017, hence only 13 field observations can be used for 

validation. The solid lines in different colors are the regression lines, and the black dashed lines mark the 1-

to-1 line. 

 

 

 

Minor comments: 

Comment 1.4: For the estimation of Ec. Line 286-292, the authors found that the Ec for 

short vegetation from 8 publications exhibits lager variability and is on average higher than 

that for tall vegetation, which is not consistent with previous expectations of lower Ec for 

short vegetation than that for tall vegetation. The aerodynamic resistance is one reason, as 



wind speed on the top of canopy for tall vegetation should be higher than for short 

vegetation. But, in my opinion, surface temperature and available energy for short 

vegetation could be higher, leading to a higher Ec than that for tall vegetation. Finally, the 

authors used potential evaporation (Ep) as a proxy of Ec for short vegetation in the vD-B 

model. My question is which equation is used to calculate the potential evaporation (Ep)? Is 

it FAO P-M method? as the FAO P-M was setup for short vegetation. How about the 

comparisons between Ep and Ec (from the 8 publications) for short vegetation? 

Reply: Thanks for your comments. In our study, the Priestley and Taylor-based potential 

evaporation (Ep) from GLEAM v3.5a is selected as a proxy of EC for short vegetation 

(L151–153). As Table R1 shown, Ep is substantially lower than that observed EC from 8 

publications (L328–329). We agree that EC derived from Ep might be lower than the actual 

evaporation rates from short vegetation. However, we do not agree that the available 

energy for short vegetation should be higher than that for forests, as the albedo is normally 

lower in forests. Besides, these short vegetation species from the 8 publications could not 

be representative for global short vegetation ecosystems, especially grasslands, as most of 

them are tall enough to fit funnels or gutters under them (L329–331). Notice that some 

values of these observed EC (1.18–2.96 mm/h) are even larger than that for tall vegetation 

(Fig. 2(d)). 

Action: Ep would be maintained in this study until a better method could be used to 

parameterize EC for short vegetation. 

Table R1. A detailed summary of short vegetation EC, R and EC/R from 8 publications, and their 

corresponding estimations in this study. “Lon.” and “Lat.” denote the longitude and latitude of experiment 

sites. The methods to obtain EC include Regression (Reg) method and Optimization (Opt) method. 

References Lon. Lat. Duration Vegetation 
Observations Estimates 

EC Method R EC/R EC R EC/R 

Návar et al. 

(1999) 

–99.53 24.78 1995.09–1997.04 Thornscrub 2.96 Reg 18.08 0.164 0.10 3.15 0.065 

Návar and 

Bryan (1994) 

–99.53 24.78 1987.05–08 Shrubs 2.95 Reg 13.52 0.218 0.16 6.54 0.028 

Zhang et   al., 

(2018) 

100.01 37.59 2012.06.01–

2012.09.11 

Potentilla 

fruticosa 

0.09  0.60 0.150 0.11 1.99 0.058 

Herbst et al. 

(2006) 

–1.70 51.60 2004.06.21–

2005.02.09 

Hedgerow        

  Full leaf 0.37  1.84 0.201 
0.03 2.02 0.017 

  Leafless 0.10  1.40 0.071 

Fernandes et 

al. (2017) 

–47.67 –2.61 2012.07–2013.05 Sugarcane        

  Tillering 0.10 Opt 3.10 0.032 

0.14 6.81 0.027 
  Stems 

elongation 

0.58 Opt 3.10 0.187 

  Ripening 0.69 Opt 3.10 0.223 

Finch and 

Riche (2010) 

–0.35 51.81 1997.06.26–

1998.01.19 

Miscanthus 0.15 Opt 1.20 0.125 0.03 1.91 0.021 

Nazari et al. 

(2020) 

51.63 35.28 2015&2016.05–

09 

Maize        

  Seedling    1.500    

   Jointing    0.298    

    Tasseling    0.208    

    Maturity    0.256    

    Average 1.59 Reg 3.65 0.436 0.09 0.51 0.176 

Van Dijk and 

Bruijnzeel 

(2001) 

108.07 –7.05 1995.01.08–

1995.05.11 

Mixed crops 1.18 Opt 4.70 0.251 0.13 7.48 0.018 

  1999.01.02–

1999.07.17 

Mixed crops 0.55 Opt 4.30 0.127 0.13 5.87 0.029 



Comment 1.5: For short vegetation interception. Line 325-329, result shows both the 

modeled I and I/P for short vegetation are smaller than observations, and authors think 

lower estimates of Ec from Ep for short vegetation caused this underestimation. Therefore, I 

may not agree that Ec for short vegetation should be lower than that for tall vegetation. On 

the other hand, Zhang et al (2016a, 2017) (in lines 340-342) reports about two times I/P 

values than this study’s modeled values. I guess that differences in vegetation index, eg, 

LAI between grassland, crop, and shrub can also largely affect the lower modeled I/P 

values. Can you compare how modeled or observed I/P change over LAI for short 

vegetation? 

Reply: As mentioned above, we think the most likely reason for this lower performance is 

that these short vegetation species from the 8 publications could not be representative for 

global short vegetation ecosystems, especially grasslands, as most of them are tall enough 

to fit funnels or gutters under them (L329–331). The lower estimates of EC might be 

the secondary cause. In theory, LAI should have a significant impact on I/P, as a larger LAI 

indicates a larger canopy cover and storage capacity. However, we only have 16 observed 

I/P (see Fig. 3) for short vegetation, half of which are obtained after 2003. That means 

a few data can support such comparison due to lack of LAI data.  

Action: No corresponding analysis due to lack of data. 

Comment 1.6: Figure 5, “a”, “b”, “c”, “d” are not shown in each plot.  

Reply: We thank the reviewer for pointing this out. 

Action: We will add labels of panels in Fig. 5 (see Fig. R4). 

 
Figure R4. Variation of average I along different latitudinal bands. (a) I (mm yr–1) for tall vegetation, short 

vegetation and their sum. (b) Same but for I/P (%). Seasonal patterns of I in mm yr–1 (c), and of I/P in % (d). 

Comment 1.7: Lines 405-409, “that the measured I is overall higher than the global 

estimates, except in EBF.” I think this may also partly because that the precipitation input 

for the vD-B model is systematically lower than the observed precipitation from filed 

experiments. 

Reply: We thank the reviewer for the comment. we certainly agree with the reviewer’s 

points that to a certain degree, the underestimation of I in tall vegetation ecosystems could 



be explained by the lower precipitation (L313–315). Figure R5, equivalent to Fig. S4, shows 

the linear regression between forcing and observed precipitation. Forcing precipitation is 

overall lower than the observed precipitation in forests, especially for larger events. Similar 

validation results are found for both I and I/P (see Fig. 3), and the discrepancy between 

estimations and observations is attenuated when expressing the results as I/P (higher 

correlation coefficient).   

Action: We will state Fig. 7 more clearly in the main text. 

“Notice that the measured I is overall higher than the global estimates, except in EBF. While 

in terms of I/P, the estimates agree well with the field data in forests. This might be caused 

by the lower forcing precipitation in forests (Fig. S4).” 

 

Figure R5. Linear regression between forcing and observed precipitation over field campaigns. TV, EBF, 

DBF, NF, MF and SV represent Tall Vegetation, Evergreen Broadleaf Forests, Deciduous Broadleaf Forests, 

Needleleaf Forests, Mixed Forests and Short Vegetation, separately. 

Comment 1.8: PML-V2. A wrong reference is used for PML-V2. Please cite Zhang et al. 

(2019) as well (See line 425). Zhang, Y., Kong, D., Gan, R., Chiew, F.H.S., McVicar, T.R., 

Zhang, Q., and Yang, Y., 2019. Coupled estimation of 500m and 8-day resolution global 

evapotranspiration and gross primary production in 2002-2017. Remote Sens. Environ. 222, 

165-182, doi:10.1016/j.rse.2018.12.031 

Reply: Thank you for pointing this out. 

Action: We will add this citation in text as following. 

“PML is based on the same vD–B model, but with different parameterizations (Zhang et al., 

2016; 2019).” 
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