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 13 

Abstract. Climate models predict an intensification of precipitation extremes as a result of a warmer and 14 

moister atmosphere at the rate of 7%/K. However, observations in tropical regions show contrastingly 15 

negative precipitation-temperature scaling at temperatures above 23° - 25°C. We use observations from 16 

India and show that this negative scaling can be explained by the radiative effects of clouds on surface 17 

temperatures. Cloud radiative cooling during precipitation events make observed temperatures co-vary 18 

with precipitation, with wetter periods and heavier precipitation having a stronger cooling effect. We 19 

remove this confounding effect of clouds from temperatures using a surface energy balance approach 20 

constrained by thermodynamics. We then find a diametric change in precipitation scaling with rates 21 

becoming positive and coming closer to the Clausius – Clapeyron scaling rate (7%/K). Our findings imply 22 

that the intensification of precipitation extremes with warmer temperatures expected with global warming 23 

is consistent with observations from tropical regions when the radiative effect of clouds on surface 24 

temperatures and the resulting covariation with precipitation is accounted for. 25 

  26 
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1 Introduction 27 

Climate models and observed trends have shown precipitation extremes to increase at the global scale 28 

with anthropogenic global warming (Fischer et al., 2013; Westra et al., 2013; Donat et al., 2016). This 29 

increase is largely explained by the thermodynamic Clausius-Clapeyron (CC) equation, suggesting a 30 

≈7%/K increase in atmospheric moisture holding capacity per degree rise in temperature ("CC rate") 31 

(Allen & Ingram, 2002). Extreme precipitation is expected to increase at a similar rate (Trenberth et al., 32 

2003; Held & Soden., 2006; O’Gorman & Schneider, 2009), as also shown by convection-permitting 33 

climate model projections (Kendon et al., 2014; Ban et al., 2015). Precipitation – temperature scaling 34 

rates, estimated using statistical methods and observed records, are widely used as an indicator to 35 

constrain this response (Lenderink et al., 2008; Wasko et al, 2014).  36 

 37 

However, observed scaling rates show large heterogeneity globally, with significant deviations from the 38 

CC rate (Westra et al., 2014; Schroeer & Kirchengast, 2018). Deviations are larger in the tropical regions 39 

where scaling rates are mostly negative and precipitation extremes largely show a monotonic decrease or 40 

a sudden drop (hook) in scaling at high temperatures (Utsumi et al., 2011). These deviations have been 41 

studied and attributed to number of factors. Two primarily argued reasons include the moisture 42 

availability limitation at high temperatures (Hardwick et al., 2010) and dependence of scaling estimates 43 

on the wet event duration (Gao et al., 2018; Ghausi & Ghosh 2020; Visser et al., 2021). Cooling effects 44 

of rainfall events have also questioned the use of surface air temperature as scaling variable (Bao et al., 45 

2017). Other scaling variables like atmospheric air temperature (Golroudbary et al., 2019), sampling 46 

temperatures before the start of storm (Visser et al., 2020), using measures of atmospheric moisture like 47 

dew point temperature (Bui et al., 2019) and integrated water vapor (Roderick et al., 2019) have been 48 

suggested as an alternative to surface air temperatures. The use of atmospheric moisture as a scaling 49 

variable has been criticized because it provides less insight about precipitation sensitivity to temperature 50 

and is also not entirely immune to cooling effects of rainfall (Bao et al., 2018). Other factors that can 51 

cause deviations in scaling includes the change in rainfall type from stratiform to convective (Berg et al., 52 

2013; Molnar et al., 2015) and seasonality in precipitation (Sun et al., 2020).  Owing to these uncertainties, 53 
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the use of scaling relationships derived from observations to infer future changes in extreme precipitation 54 

in these regions remains debatable. 55 

 56 

In this study, we show that a large part of uncertainties in this response and negative scaling rates in the 57 

tropics are mainly caused by the radiative effect of clouds on surface temperatures.  Precipitation events 58 

are accompanied by strong cloud cover, which reduces the solar absorption at the surface and hence 59 

lowers surface temperatures. This radiative cooling associated with precipitation can be significant in the 60 

tropical regions where insolation and temperatures are high. As a result, regions and periods of more 61 

intense precipitation cool more, and this affects their position in the scaling curve. This implies that 62 

temperature observations are not independent of precipitation and this dependency obscures their scaling 63 

relationship. We used a thermodynamic systems approach to remove this cooling effect from surface 64 

temperatures. We then show that when this effect is being removed, no breakdown in the scaling 65 

relationship is seen in observations and extreme precipitation then scales positively with temperature 66 

close to CC rate.  67 

 68 

To remove the effects of clouds, we used a surface energy balance formulation in conjunction with the 69 

first and second law of thermodynamics (Kleidon & Renner, 2013). This approach provides us with 70 

additional thermodynamic constraints on the turbulent flux exchange between surface and atmosphere. 71 

We used this thermodynamically constrained model and force it with the “all-sky” and “clear-sky” 72 

radiative fluxes. These fluxes are a standard product in NASA-CERES radiation datasets such that “all-73 

sky” fluxes are representative of observed conditions including the cloud effects while “clear-sky” fluxes 74 

are diagnosed by removing the effect of clouds from the radiative transfer. Compounding the 75 

thermodynamic constraint on turbulent fluxes together with the radiative fluxes helps us to estimate “all-76 

sky” and “clear-sky” temperatures that includes and excludes the radiative effects of clouds respectively. 77 

 78 

We then evaluate this effect and its impact on precipitation-temperature scaling using observations from 79 

India. India is a tropical country where the extreme precipitation and the resulting floods have intensified 80 

over the past years (Goswami et al., 2006) and are expected to increase in the future (Katzenberger et al., 81 
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2021). However, extreme precipitation–temperature scaling is largely negative over most of India (Vittal 84 

et al., 2016; Sharma et al., 2019), which is in contrast to the observed trends (Roxy et al., 2017). In this 85 

study, we attempt to resolve this inconsistency in precipitation – temperature scaling by removing the 86 

cloud cooling effects from surface temperatures. To do this, we use gridded precipitation – temperature 87 

datasets that were used in previous studies (Vittal et al., 2016; Mukherjee et al., 2018; Sharma et al., 2019; 88 

Ghausi et al., 2020) and supplement it with the gridded radiative flux datasets to remove the cloud 89 

radiative effects. More details on our surface energy-balance model and estimation of surface 90 

temperatures “with” and “without” clouds are followed in the section 2.1 with the details of datasets being 91 

used in section 2.2. We used these reconstructed temperatures to study the effect of clouds on precipitation 92 

– temperature scaling over India. To estimate the precipitation – temperature scaling rates, we used the 93 

widely adopted statistical methods. Details of them are further provided in section 2.3. Results are then 94 

presented and discussed in section 3. 95 

2 Methods and Data 96 

2.1 Thermodynamically constrained energy balance model 97 

To infer surface temperatures from the radiative forcing and remove the effects of clouds, we start with a 98 

simple physical formulation of the surface energy balance. The surface of the Earth is heated by solar 99 

absorption and downwelling longwave radiation. This heat is released back to the atmosphere through 100 

surface emission of longwave radiation and exchange of turbulent fluxes of sensible and latent heat. This 101 

balance between the incoming and outgoing energy fluxes at the Earth’s surface is described by equation 102 

(1). 103 

𝑹𝒔 +	𝑹𝒍,𝒅𝒐𝒘𝒏 =	𝑹𝒍,𝒖𝒑 + 𝑱																		 (1) 104 

Here Rs is the surface net solar absorption, Rld is the downwelling longwave radiation, Rl,up is the 105 

upwelling longwave radiation emitted from the surface and J is turbulent flux exchange between surface 106 

and the atmosphere (comprising of sensible and latent heat).  We neglect the ground heat flux, as it is 107 

generally small when averaged over a few days or longer. While Rs and Rl,down can be obtained using 108 

radiation datasets for different sky conditions, the partitioning between Rl,up and J is poorly constrained 109 

by surface energy balance alone. To have these additional constraints on J, we used a thermodynamic 110 
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systems approach to view the earth system. Similar approach had also been used in (Kleidon & Renner, 114 

2013; Kleidon et al., 2014; Dhara et al., 2016) and were found to very well capture the observed surface 115 

temperatures, energy partitioning and climate sensitivities. 116 

To do this, we conceptualize the surface atmosphere system as a heat engine, with warm Earth surface as 117 

the heat source and cooler atmosphere being the sink (Figure 1). Heat and mass are transported within 118 

this engine by the exchange of turbulent fluxes (J) between the surface and the atmosphere. The 119 

differential radiative heating and cooling between the surface and the atmosphere maintains the 120 

temperature difference and drives the vertical convective motion. The power (G) associated with the work 121 

done by the heat engine required to sustain convective motion in form of vertical mixing and exchange 122 

of turbulent fluxes can be derived simply using the first and second law of thermodynamics and can be 123 

represented by the well-established Carnot limit as 124 

𝑮 = 𝑱	(	𝟏 −	𝑻𝒂
𝑻𝒔
	) .                            (2) 125 

Detailed derivation about this can be found in (Kleidon & Renner, 2013; Kleidon et al., 2014). Here Ta 126 

and Ts are the representative temperatures of cold atmosphere and the hot surface respectively. 127 

Both temperatures are inferred from their respective energy balances. The atmospheric temperature (Ta) 128 

is assumed to be equal to the radiative temperature of atmosphere (Tr) and is estimated using the outgoing 129 

longwave radiation at top of atmosphere (Rl,toa) 130 

𝑻𝒂 =	,
𝑹𝒍,𝒕𝒐𝒂
𝝈 -

𝟏/𝟒
   .                        (3) 131 

Here, σ is the Stefan Boltzmann constant (σ = 5.67 x 10-8 Wm-2K-4). A correction of 15K was applied to 132 

the radiative temperature to account for the assumption of black atmosphere and effective height of 133 

convection (Dhara et al., 2016). We consider the atmosphere as opaque to terrestrial radiation and hence 134 

it is assumed that all outgoing longwave radiation emitted into space originates from the atmosphere.  135 

The heat engine source temperature i.e. surface temperature (Ts) can be expressed from the emitted 136 

longwave radiation from the surface (Rl,up) as 137 

𝑻𝒔 =	,
𝑹𝒍,𝒖𝒑
𝝈 -

𝟏/𝟒
.                             (4) 138 
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Using the surface energy balance (Eq. 1), we can then express the surface temperature in terms of net 140 

solar absorption, downwelling longwave radiation and turbulent fluxes (J) as 141 

𝑻𝒔 =	,
𝑹𝒔1	𝑹𝒍,𝒅𝒐𝒘𝒏	3𝑱

𝝈 -
𝟏/𝟒

  .                        (5) 142 

The differential radiative heating and cooling between the surface and the atmosphere maintains the 143 

temperature difference and drives the vertical convective motion. Thermodynamics sets a limit to this 144 

conversion and thus constrains the amount of turbulent flux exchange. Less turbulent fluxes result in a 145 

hotter surface (Eq. 5), which will increase the temperature difference between the surface and atmosphere.  146 

This will subsequently increase the efficiency term in the generation rate, the second term on the right-147 

hand side of Eq. (2). On the other hand, an increase in turbulent fluxes (J) increases the first term in the 148 

generation rate of Eq. (2), but it will, in turn, reduce the surface temperature and temperature difference 149 

between surface and atmosphere (Eq. 5). Thus, there exists a trade-off that sets the limit for the power to 150 

maintain vertical energy and mass exchange between surface and the atmosphere. This limit is termed as 151 

the maximum power limit and provides an additional constraint to surface energy balance partitioning 152 

that we used here to infer surface temperatures. 153 

Using Equations. (2), (3) and (5), the rate of work done (power) produced by the heat engine can be 154 

expressed as a function of turbulent fluxes (J) as 155 

𝑮 = 𝑱/𝟏 − 𝑻𝒂 	,
𝑹𝒔1	𝑹𝒍,𝒅𝒐𝒘𝒏	3𝑱

𝝈 -
3𝟏/𝟒

	0 .                       (6) 156 

Note that power G = 0 when J = 0 or when J = Rs + Rl,down - Rl,toa. Hence, there is a maximum Gmax = G 157 

(Jmaxpower) for a value between 0 < Jmaxpower < Rs + Rl,down - Rl,toa . The optimum J that maximizes power 158 

was calculated numerically. This flux was then used to determine the surface temperatures. 159 

	𝑻𝒔,𝒎𝒂𝒙𝒑𝒐𝒘𝒆𝒓 = ,
𝑹𝒔1	𝑹𝒍,𝒅𝒐𝒘𝒏	3𝑱𝒎𝒂𝒙𝒑𝒐𝒘𝒆𝒓

𝝈 -
𝟏/𝟒
																				 (7) 160 

Surface temperatures were estimated using Eq. 7 for “all-sky” and “clear-sky” radiative conditions using 161 

radiative forcing from the NASA – CERES datasets. We then refer to these two temperatures derived 162 

using Eq. 7 as “all-sky” and “clear-sky” temperatures. 163 

 164 

 165 
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2.2 Datasets used 171 

Radiative fluxes of shortwave and longwave radiation at surface and top of atmosphere (TOA) were 172 

obtained from the NASA - CERES (EBAF 4.1) dataset (Loeb et al., 2018; Kato et al., 2018) and NASA 173 

CERES Syn1deg dataset (Doelling et al., 2013,2016). These datasets are available for both “all-sky” as 174 

well as “clear-sky” conditions at monthly and daily scale respectively with a 1° latitude x 1° longitude 175 

spatial grid resolution and were used as a forcing in our energy balance model. We evaluated our model 176 

using observations derived gridded temperature data from Indian Meteorological Department (IMD, 177 

Rajeevan et al., 2008). To estimate the precipitation – temperature scaling, we used daily gridded 178 

precipitation and temperature datasets with a spatial resolution of 1° latitude x 1° longitude from the 179 

Indian Meteorological Department (IMD, Rajeevan et al., 2008) and 3 hourly gridded rainfall data from 180 

NASA-TRMM_3B42 with a spatial resolution of 0.25° x 0.25°. We repeated the analysis using daily 181 

gridded precipitation and temperature data from the APHRODITE (Asian Precipitation Highly Resolved 182 

Observational Data Integration towards Evaluation) dataset, available at a spatial resolution of 0.25° x 183 

0.25° (Yatagai et al., 2012). To further ensure robustness of our results, we also used 3 station-based daily 184 

precipitation – temperature observations in India (Mumbai Airport, Bangalore Airport and Chennai 185 

Airport) from global surface summary of the day (GSOD) data provided by National Oceanic and 186 

Atmospheric Administration (NOAA). Daily dew point temperatures were obtained from the ERA-5 187 

reanalysis. Based on the availability of all datasets, the period of analysis was chosen from the years 2003 188 

to 2015. 189 

 190 

2.3 Estimation of precipitation – temperature scaling rates 191 

Extreme precipitation events were scaled with observed, “all-sky” and “clear-sky” temperatures using 192 

two widely adopted scaling approaches: The Binning Method (Lenderink et al., 2008) and Quantile 193 

Regression (Wasko et al., 2014). For the binning method, we defined extreme precipitation events using 194 

a threshold of 99th percentile precipitation contained at each grid cell. Precipitation – temperature pairs 195 

were then divided into the increasing order of non-overlapping bins of 2 K width. Only those bins which 196 

have at least 150 data points have been considered for the analysis (Utsumi et al., 2011). The median 197 

value of each bin was then used to examine the variation of precipitation extremes with temperature. Bins 198 
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with temperature less than 3°C were discarded to remove the effects of freezing, thawing and snowfall. 199 

To ensure that our results are not biased with the number of data points in each bin and bin sizes (which 200 

may affect the nature of the scaling relationship), we further used the Quantile Regression method to 201 

estimate the scaling rates. 202 

Quantile regression estimates the conditional quantile of the dependent variable (in our case, 203 

precipitation) over the given values of the independent variable (temperature). We first fitted a quantile 204 

regression model between the logarithmic precipitation and temperature values at the target quantile of 205 

99% 206 

𝑳𝒐𝒈(𝑷𝒊) = 	𝜷𝒐	𝟗𝟗 +	𝜷𝟏	𝟗𝟗(𝑻𝒊)			.																													(𝟖) 207 

Here Pi denotes the mean daily precipitation intensity and Ti is the daily mean temperature, and 𝛽;	<< and 208 

𝛽=	<<	are the regression coefficients for the 99th quantile of precipitation. The slope coefficient 𝛽=	<< is then 209 

exponentially transformed to estimate the scaling rate (𝛼=). 210 

𝜶𝟏 = 𝟏𝟎𝟎	. ,𝒆
𝜷𝟏
	𝟗𝟗
− 𝟏-																																										(𝟗) 211 

The forementioned methodology had been widely adopted to estimate the extreme precipitation – 212 

temperature scaling in previous studies (Lenderink et al., 2008, 2010; Utsumi et al., 2011; Wasko et al., 213 

2014; Schroeer et al., 2018). 214 

3 Results and Discussion 215 

In this section, we first start by a quick evaluation of our thermodynamic approach by comparing the 216 

estimated “all-sky” temperatures against observations. We then quantify the cloud radiative effects on 217 

surface temperatures and check for its spatial consistency across regions. We then estimated precipitation 218 

– temperature scaling rates by including and excluding the effect of clouds on surface temperatures. We 219 

also used dew point temperature (a proxy measure for atmospheric moisture) as a scaling variable. Later, 220 

we discuss our interpretation of scaling by excluding cloud effects from temperatures, its comparison with 221 

the dew point scaling and its implications across regions. 222 

 223 

 224 
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3.1: Evaluating the modelled temperatures 226 

“All-sky” temperatures were estimated using the daily observed radiative fluxes from CERES in 227 

conjunction with surface energy partitioning constrained by maximum power (see Equation 7). We found 228 

an extremely good agreement of these estimated temperatures when compared to surface temperature 229 

observations over India with R2 > 0.9 and RMSE < 1.5 K over most regions (Figure 2). This signifies that 230 

our formulation strongly captures the surface temperature variation over India and thus validates our 231 

approach. We then extend this for clear-sky conditions by forcing our model with “clear-sky” radiative 232 

fluxes from CERES and estimating “clear-sky” temperatures. It is to note that “clear-sky” temperatures 233 

are reconstructed temperatures estimated by removing the effect of clouds from radiative transfer.  234 

3.2: Estimating the cloud radiative cooling 235 

We used the difference between the “all-sky” and “clear-sky” temperatures as a measure to quantify the 236 

effect of cloud-driven cooling during rainfall events. This cooling increases strongly with precipitation 237 

across regions, resulting in a stronger reduction in surface temperature with greater precipitation (Figure 238 

3a). This cooling is predominantly caused by the substantial reduction in absorbed solar radiation at the 239 

surface for "all-sky" conditions compared to "clear-sky" conditions (Figure 3b). On the other hand, 240 

changes in longwave radiation are comparatively small and largely remain insensitive to precipitation. 241 

To examine the spatial consistency in precipitation variability and associated cooling, we isolated extreme 242 

daily precipitation days over each grid. Figure 4a shows the mean magnitude of daily extreme 243 

precipitation events over India. The pattern was consistent with the cloud cover map from NASA-CERES 244 

(shown in Appendix C). Figure 4b shows the cloud-cooling associated with these days. This cooling effect 245 

of clouds and precipitation shows a clear, systematic variation across India. The cooling effect is greater 246 

where precipitation rates are high. In contrast, in the more arid regions in the northwest of India, the 247 

cooling effect almost disappears with low precipitation rates. In the Northernmost Himalayan region, the 248 

difference in “clear-sky” and “all-sky” temperatures is negative.  These high-altitude regions are more 249 

sensitive to changes in longwave radiations. As a result, there is a significant increase in longwave 250 

radiation with increase in cloud cover which compensates for the cooling due to reduction in shortwave 251 

over those grids. Figure 4c further shows the mean “all-sky” temperature during these days. We find that 252 

the heaviest events occur at a relatively lower temperature as a result of stronger cooling. Figure 4d shows 253 
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the mean number of rainfall days per year. More rainy days implies more cloudy conditions and thus a 254 

stronger cloud radiative cooling over that region. Having quantified this effect of cloud radiative cooling 255 

and its systematic variation across regions, we then estimate its impact on the precipitation – temperature 256 

scaling. 257 

 258 

3.3 Impact on precipitation-temperature scaling 259 

We performed a binning analysis (Lenderink et al., 2008) to understand the scaling of precipitation 260 

extremes with temperature using observed temperatures as well as our estimated "clear-sky" and "all-sky" 261 

temperatures. Precipitation events were isolated and binned into P-T pairs and the resulting scaling 262 

relationships are shown in Figure 5. The scaling relationship using observed and "all-sky" temperatures 263 

showed similar scaling behaviour (yellow and red lines in Figure 5a).  Extreme precipitation increases 264 

close to the CC rate up to a threshold of around 23° - 24°C, above which the scaling becomes negative. 265 

This break in scaling behaviour with observed temperatures is consistent with the findings of previous 266 

studies (Hardwick et al., 2010; Ghausi & Ghosh, 2020) and is commonly referred in literature as “hook" 267 

or “peak structure" (Wang et al., 2017; Gao et al., 2018). However, when precipitation extremes are scaled 268 

with "clear-sky" temperatures that excludes the cloud-cooling effect, the resulting scaling relationship 269 

does not show a breakdown and increases consistently, close to the CC rate over the whole temperature 270 

range (blue line in Fig. 5a). Similar results were obtained when the scaling curves were reproduced for 271 

station-based observations (See Appendix A).  272 

Previous studies (Hardwick et al., 2010; Chan et al., 2015; Wang et al., 2017) have attributed the break 273 

in precipitation-temperature scaling to a lack of moisture availability as relative humidity tends to 274 

decrease at high temperatures. To account for this effect of moisture limitation, some studies used dew 275 

point temperature, a measure of atmospheric humidity, as an alternative scaling variable (Wasko et al., 276 

2018; Barbero et al., 2018). They showed that the breakdown and negative scaling disappear when scaled 277 

with dew point temperatures (Zhang et al., 2019; Ali et al., 2021). To evaluate this interpretation and 278 

compare it to ours, we used the dew point temperature from the ERA-5 reanalysis. We derived the extreme 279 

precipitation scaling using this temperature (Figure 5b) and compared it to our "all-sky" and "clear-sky" 280 

temperatures (Figure 5c).   281 
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At first sight, the scaling relationship using dew point temperatures looks very similar to our "clear-sky" 282 

relationship (compare Figures 5a and 5b, but note the difference in temperature scale).  Yet, its 283 

interpretation differs because using dew point temperatures merely implies that the intensity of extreme 284 

precipitation events scales with the moisture content of the air, with moister air resulting in higher 285 

intensity events. Dew point scaling thus carries less insight about the response of extreme precipitation to 286 

climate warming (Bao et al., 2018). To infer the precipitation sensitivity with temperature from dew point 287 

scaling, one then needs to see how dew point temperatures change with actual temperatures (dTdew/dT) 288 

(Figure 5c). This is further demonstrated using equation 10.  289 
𝒅𝑷
𝒅𝑻
=	 𝒅𝑷

𝒅𝑻𝒅𝒆𝒘
	× 	𝒅𝑻𝒅𝒆𝒘

𝒅𝑻
                    (10) 290 

If relative humidity remains unchanged, we would expect the dew point temperature to increase 291 

continuously with surface temperature, representing a moisture increase of 7%/K.  However, when dew 292 

point temperatures are compared to "all-sky" temperatures (red line, Figure 5c), we note that a break 293 

occurs in this scaling as well.  Dew point temperatures increase with "all-sky" temperatures for colder 294 

temperatures more strongly than what would be expected from an unchanged relative humidity when air 295 

gets warmer.  However, at temperatures of above 23° - 25°C, dew point temperatures fall, reflecting a 296 

decrease in relative humidity that is typical for warm, arid regions. Thus, one does not see a breakdown 297 

in precipitation - dew point scaling because the information on the breakdown is contained in how dew 298 

point temperatures change with surface air temperatures (second term in equation 10). Similar findings 299 

were also reported in Roderick et al (2019). 300 

The scaling of dew point temperatures with "clear-sky" temperatures is much more uniform and consistent 301 

across the whole temperature range and does not show a breakdown or a super CC scaling in the 302 

relationship.  This is because the "clear-sky" temperatures reflect the radiative conditions, and not the 303 

effects of atmospheric humidity or clouds.  In contrast, observed temperatures and "all-sky" temperatures 304 

co-vary with cloud effects, which in turn are linked to precipitation and humidity, thus resulting in less 305 

clear scaling relationships that are less straightforward to interpret. This further implies that moisture 306 

loading of the atmosphere primarily occurs during the non-precipitating periods that are more 307 

representative of clear-sky radiative conditions. 308 
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The breakdown in scaling effect can thus be explained by the cooler temperatures associated with 309 

precipitation events. This cooling shifts the precipitation extremes to lower temperature bins while the 310 

high-temperature bins then correspond to more arid regions or to the drier pre-monsoon season 311 

temperatures with lower values of precipitation extremes. We refer to this as a “bin-shifting” effect. The 312 

cooling effect is proportional to the amount of precipitation (Fig. 3A) and hence, the heavier the 313 

precipitation, the stronger the cooling and bin shifting becomes. When the cloud cooling effect is 314 

removed, as in the case of "clear-sky" temperatures, extreme precipitation then shows a scaling that is 315 

consistent with the CC rate. This bin shifting effect arising due to the presence of clouds also causes a 316 

decrease in relative humidity at higher temperatures.  This effect can be seen by the stronger increase in 317 

dewpoint temperatures below 25°C, and the decline above this temperature (Figure 5c). The breakdown 318 

in scaling is thus not directly related to changes in aridity or moisture availability, but rather to the 319 

radiative effect of clouds on surface temperature.  320 

To demonstrate the implications of our interpretation for precipitation scaling across regions, we 321 

estimated regression slopes of 99th percentile precipitation events for both sub-daily (TRMM) and daily 322 

(IMD & APHRODITE) precipitation with the different temperatures using the Quantile Regression 323 

method (Wasko et al., 2014). We found that extreme precipitation scaling was negative for both, observed 324 

and "all-sky" temperatures over most regions (Figure 6) except for the Himalayan foothills in the North 325 

of India. The scaling rates for sub-daily extremes were slightly higher than those estimated for daily 326 

extremes but yet remains negative over most grids. When the cooling effect of clouds is removed by using 327 

"clear-sky" temperatures, extreme precipitation scaling then shows a diametric change and scaling 328 

estimates come close to CC rates over most of the regions. A similar diametric change in the scaling was 329 

also obtained with the APHRODITE precipitation dataset (Appendix B). The highest positive sensitivities 330 

were found over the Central Indian region where a widespread increase in rainfall extremes is already 331 

reported (Roxy et al., 2017). There seems to be a minor difference between the clear sky scaling in IMD 332 

and TRMM in foothill of Himalayas north of India, which is likely because of the underestimation of 333 

rainfall by TRMM over this region (Sharma et al., 2020; Shukla et al., 2019). 334 

We also note that negative scaling was found over few regions of South-central and south-east India with 335 

“clear-sky” temperatures at both daily and sub-daily scales (Figure 6 c,f). To our understanding, this 336 
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negative scaling primarily arises due to two reasons. Firstly, these are the grids which receives 338 

contribution from rainfall during both summer and winter monsoon, However, a relatively higher 339 

proportion of the rain happens during winter monsoon (Figure C1). The reason being that this region lies 340 

over the leeward side of Western ghats for the incoming southwest monsoon winds during summer 341 

monsoon. Whereas during the winter monsoon, Northeast winds blow over Bay of Bengal leading to large 342 

moisture advection and more rain over this region. As a result of this seasonality effect more extreme 343 

precipitation are sampled during winter season over this region while during the summer season, moisture 344 

supply may limit these extremes to increase. This may lead to a negative scaling when a single quantile 345 

regression slope is fitted over the whole temperature range. Another reason could be the development of 346 

low-pressure system in Bay of Bengal during winter months which causes cyclones over the Eastern coast 347 

of India. These cyclonic systems cause very high rainfall at very low temperatures which can lead to 348 

negative scaling (Traxl et al., 2021). More work is needed to be done to resolve these systems in 349 

conventional scaling approach and remains an important area for future research.  350 

The effect of seasonality on precipitation scaling was also checked by producing the scaling curves for 351 

different seasonal subsets (summer and winter monsoon). We find a change in scaling during summer 352 

season after removing the cloud effects as the drop disappears (See Appendix C). Winter season on the 353 

other hand is associated with reduced rainfall amounts (less than 20%) and less clouds over most regions 354 

resulting in a similar scaling for both “all-sky” and “clear-sky” temperatures. 355 

While there exist some differences, cloud cooling effect largely explains the negative scaling over most 356 

of the grid points over India. Extreme precipitation increases monotonically with temperature when the 357 

cloud cooling effect is removed. This implies that the “peak-structures” obtained with observed scaling 358 

will not constrain the rise in extremes with anthropogenic warming. The confounding effect between 359 

precipitation and temperature on observed scaling relationships, also termed as “apparent scaling” had 360 

also been argued by some recent studies (Bao et al. 2017; Visser et al., 2020). Our results agree with these 361 

studies that the observed scaling relationships also reflect the impact of synoptic conditions and cooling 362 

associated with precipitation events on temperature. However, we suggest that this confounding effect is 363 

largely associated with cloud radiative effect, which is removed by our use of “clear-sky” temperatures 364 

as a scaling variable. We also address the arguments raised to resolve apparent scaling using dew point 365 
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temperature (Barbero et al., 2018). Our results confirm that precipitation extremes scale well with dew 377 

point temperatures as a measure for atmospheric moisture, but that the break in scaling actually originates 378 

from the scaling of dew point temperatures with observed temperatures. This response of dew point 379 

temperature to warming is further affected by the presence of clouds and associated radiative cooling. 380 

"Clear-sky" temperatures are independent of the co-variations arising from cloud effects and are thus a 381 

better, more independent measure and scaling variable to understand the precipitation response to climate 382 

warming.  383 

4 Summary and Conclusions 384 

We showed that the observed negative scaling of extreme precipitation in India arises mostly from the 385 

cloud radiative cooling of surface temperatures. When this effect is removed, we get a positive scaling 386 

consistent with the CC rate. Scaling rates estimated from observed temperatures are thus likely to 387 

misrepresent the response of extreme precipitation to global warming, because the cooling effects of 388 

clouds make precipitation and temperature covary with each other. When this effect is removed by 389 

estimating surface temperatures for "clear-sky" conditions, the scaling relationships with moisture content 390 

and precipitation become much clearer and confirm the CC scaling of extreme precipitation events with 391 

warmer temperatures. This explains the apparent discrepancy between the observed negative scaling rates 392 

over India and the projected increase in precipitation extremes by climate models.  393 

While the scaling with “clear-sky” temperatures shows a diametric change and significant improvement 394 

over observed scaling, there still exist regional variabilities in scaling rates and deviations from CC 395 

scaling (7%/K). We believe that these deviations could be due to the following reasons. Firstly, present 396 

scaling approach does not explicitly consider the contribution from the large-scale dynamics and regional 397 

circulation patterns which can cause local changes in the scaling estimates. The effect of change in rainfall 398 

types - Orographic, stratiform or convective is not accounted for and it can affect the estimates of scaling 399 

rates. Lastly, Inconsistencies between precipitation and radiation datasets can also cause uncertainties in 400 

estimating the cooling associated with rainfall event and can affect the estimates of scaling rates. 401 

It is also important to note that the goal of our study was not to compare the accuracy of scaling estimates 402 

from different gridded and station-based datasets, but rather to identify and remove the physical effects 403 
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that causes uncertainties in this response. Our methodology to remove the cooling effect of clouds from 404 

surface temperatures significantly improves the scaling estimate for daily precipitation scaling.  405 

While our study was confined over the Indian region, we would expect that cloud effects on surface 406 

temperatures can explain the deviations in precipitation scaling from CC rates in other tropical regions 407 

too. Furthermore, our methodology to remove the cloud cooling effects on surface temperatures could be 408 

extended to derive scaling relationships of other, observed variables to obtain their response to global 409 

warming as well. Our findings add a novel component to better interpret precipitation scaling rates derived 410 

from observations to support climate model projections. 411 

Data Availability 412 

The daily gridded precipitation and temperature datasets were obtained from the Indian Meteorological 413 

department (IMD, https://cdsp.imdpune.gov.in/home_gridded_data.php (doi: 10.1029/2008GL035143). 414 

The APHRODITE (Asian Precipitation Highly Resolved Observational Data Integration towards 415 

Evaluation) dataset is available at http://aphrodite.st.hirosaki-u.ac.jp/products.html. Sub-daily 416 

precipitation data at 3 hourly resolution was obtained from TRMM (Tropical Rainfall measuring mission) 417 

TMPA_3B42_V7 data (doi:  10.5067/TRMM/TMPA/3H/7) 418 

https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_7/summary. Station-based daily precipitation - 419 

temperature data was taken from NOAA – GSOD sites (Station id: 43295099999, 43003099999 and 420 

43279099999) at https://www.ncei.noaa.gov/access/search/data-search/global-summay-of-the-day. 421 

Surface and TOA gridded radiative flux datasets are obtained from NASA CERES EBAF data (doi: 422 

https://doi.org/10.5067/Terra-Aqua/CERES/EBAF_L3B.004.1) and NASA CERES Syn1deg data (doi: 423 
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Daily dew point temperature data is obtained from the ERA-5 reanalysis (doi: 10.24381/cds.e2161bac). 425 
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 591 

Figure 1.  Schematic diagram of the surface energy balance, the fluxes of solar (red) and terrestrial 592 

(blue) radiation, as well as the turbulent heat fluxes (black).  We consider turbulent heat exchange 593 

being driven primarily by an atmospheric heat engine that operates at the thermodynamic limit of 594 

maximum power. 595 
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 600 
Figure 2: Comparison of daily annual cycle of temperature for observed (IMD) and estimated “all-601 

sky” surface temperatures, averaged over all grid points. (B) Regression between the two 602 

temperatures at the grid-point scale. (C) Spatial variation of the root mean squared error (RMSE) 603 

in temperature estimates from maximum power compared to observed temperatures. 604 
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time series for observed (IMD) and estimated “all-sky” surface 608 
temperatures, averaged over all grid points. (B) Regression 609 
between the two temperatures at the grid-point scale. (C) Spatial 610 
variation of the root mean squared error (RMSE) in temperature 611 
estimates from maximum power compared to observed 612 
temperatures.…613 



24 
 

 614 

 615 

Figure 3: (a) Cooling effect of clouds on surface temperatures calculated from the difference of "all-616 

sky" to "clear-sky" surface temperatures as a function of precipitation over the Indian region. 617 

(b) Difference in net shortwave and downwelling longwave radiative fluxes ("Cloud Radiative 618 

Effect", CRE) between "all-sky" and "clear-sky" radiative conditions at the surface as a 619 

function of precipitation. This was inferred using NASA – CERES (EBAF ed4.1) dataset (Loeb 620 

et al., 2018). 621 
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 623 

Figure 4. Regional variation of (a) mean daily extreme precipitation (99th percentile) (b) the 624 

temperature difference between "clear-sky" and "all-sky" radiative conditions averaged during 625 

extreme precipitation events (c) “All-sky” surface temperature during the occurrence of the event 626 

(d) Mean number of rainfall days per year 627 
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 629 
 630 

Figure 5. (a) Extreme precipitation-temperature scaling using observed (yellow), "all-sky" (red) 631 

and "clear-sky" (blue) temperatures over India.  (b) Same as (a), but using dew point 632 

temperatures.  (c) Relationship between dew point temperatures and "all-sky" (red) and 633 

"clear-sky" (blue) temperatures. The shaded areas represent the variance in terms of the 634 

interquartile range for each bin. Grey dotted lines indicate the Clausius-Clapeyron scaling 635 

rate. Note: Logarithmic vertical axis for figure (a,b) 636 
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 638 

Figure 6. Regional variation of 99th percentile precipitation-temperature scaling rates using daily 639 

(a-c) and 3 hourly (d -f) rainfall data with observed temperatures (a, d), "all-sky" temperatures 640 

(b, e) and "clear-sky" temperatures (c, f).  641 
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Appendix A: Validation of scaling results using station-based GSOD data 643 

We used three station-based daily observations from global surface summary of the day (GSOD) data 644 

provided by National Oceanic and Atmospheric Administration (NOAA). We used the data at Mumbai, 645 

Chennai and Bangalore Airport to produce the scaling curves (Appendix A). The choice of the station 646 

was based to ensure the robustness of results using gauge data as well as to check the effect of seasonality 647 

as the three sites receive rainfall during different period of the years. In Mumbai, rainfall occurs mainly 648 

during the summer monsoon season while in Chennai heavy rainfall occurs during the winter months 649 

(November and December). On other hand, Bangalore receives rainfall during both summer and winter 650 

monsoon season (Fig. A1 – row 1). Negative scaling was found over these three stations using observed 651 

(yellow) and “all-sky” (red) temperatures while with “clear-sky” temperatures (blue), we find positive 652 

rates largely consistent with the CC rate. 653 

Deleted:  a – c654 

Deleted:  (Fig A1 d - i)655 



29 
 

 656 

Figure A1. (Row 1) shows the annual cycle of mean daily precipitation over GSOD sites in Mumbai airport, 657 
Bangalore airport and Chennai airport respectively. Extreme precipitation – temperature scaling curves for 658 
observed temperatures (yellow), “all-sky” temperatures (red) and “Clear-sky” temperatures (in blue) are 659 
presented for all the three sites. Yellow/Red/Blue solid lines indicate the LOESS regression lines.  Grey 660 
dotted lines indicate the Clausius-Clapeyron scaling rate. Note Logarithmic vertical axis. 661 
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Deleted: Figure A1. (a-c) shows the annual cycle of mean daily 664 
precipitation over GSOD sites in Mumbai airport, Bangalore 665 
airport and Chennai airport respectively. Extreme precipitation 666 
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red and (g-i) “Clear-sky” temperatures in blue are presented for 668 
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regression lines.  Grey dotted lines indicate the Clausius-670 
Clapeyron scaling rate. Note Logarithmic vertical axis.671 
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Appendix B: Validation of scaling results using APHRODITE dataset 672 

Figure B1 shows the spatial variation of daily precipitation – temperature scaling rates estimated from 673 

quantile regression (similar to Fig. 6 in the main text) using the APHRODITE (Asian Precipitation – 674 

Highly Resolved Observational Data Integration towards Evaluation of water resources) dataset (Yatagai 675 

et al., 2012). The results show a diametric change in scaling from being negative for observed and “all-676 

sky” temperatures to coming close to CC rate (7%/K) for “clear-sky” temperatures. The findings were 677 

consistent with that obtained using the IMD and TRMM dataset (Figure 6). 678 

 679 

Figure B1. Regional variation of 99th percentile daily precipitation-temperature scaling rates using (a)  680 
Observed (b) “all-sky” and (c) “clear-sky” temperatures. Note: Precipitation data is from APHRODITE 681 
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 683 

Appendix C: Effect of seasonality on scaling rates 684 

To understand the role of seasonality on precipitation – temperature scaling. We divided the precipitation 685 

period into two seasonal subsets i.e., summer monsoon season (April to September) and winter monsoon 686 

(October to March). Season wise scaling curves (estimated using LOESS regression) are presented in 687 

figure C3. We find that observed scaling is uniformly negative in summer over Indian region while during 688 

winter the scaling is positive (Fig C3-a, d). This is not surprising because the “hook” or breakdown in 689 

scaling happens at high temperature which leads to negative scaling in summer (Figure 5a). Reconstructed 690 

“All-sky” temperature showed scaling pattern consistent with observations (Fig. C3- b,e).  When scaled 691 

with “clear-sky” temperatures, we observed a change in scaling for summer as it turns positive and come 692 

close to CC rate. While for winter the scaling does not change for “clear-sky” temperatures. It is also 693 

important to note that almost 80% of total rainfall over India occurs during the summer monsoon season 694 

(Fig C1). As a result, the cooling effect of clouds is mainly experienced during the summer monsoon 695 

(where we observed a change in scaling) while the cooling effect remains less than 1K during the winter 696 

season (Fig C2). Thus, one does not see a change in scaling between “all-sky” and “clear-sky” conditions 697 

for winter season. 698 
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 700 

Figure C1.  shows the map of mean daily precipitation (from IMD) and cloud area fraction (from NASA-701 
CERES) during (a,c) summer monsoon (April – September) and during (b,d) winter monsoon (October – 702 
March). 703 
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 705 
Figure C2. Shows the map of cooling of surface due to clouds (defined as the difference between “clear-sky” 706 
and “all-sky” temperatures) for (a) Summer monsoon (April – September) and (b) Winter monsoon 707 
(October – March) 708 

  709 
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 711 
 712 

Figure C3. Extreme precipitation - temperature scaling during summer monsoon (a - c) and winter monsoon 713 
(d-f). Scaling curves are shown in orange (a,d) for observed temperatures, in red (b,e) for “all-sky” 714 
temperatures and in blue (c,f) for “clear-sky” temperatures. Orange/red/blue solid lines indicate the LOESS 715 
regression lines.  Grey dotted lines indicate Clausius – Clapeyron scaling rate. Note: Logarithmic vertical 716 
axis. Dataset used is IMD. 717 


