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Abstract 39 

The Mixed Finite Element (MFE) method is well adapted for the simulation of fluid flow in 40 

heterogeneous porous media. However, when employed for the transport equation, it can 41 

generate solutions with strong unphysical oscillations because of the hyperbolic nature of 42 

advection. In this work, a robust upwind MFE scheme is proposed to avoid such unphysical 43 

oscillations. The new scheme is a combination of the upwind edge/face centred Finite Volume 44 

(FV) method with the hybrid formulation of the MFE method. The scheme ensures continuity 45 

of both advective and dispersive fluxes between adjacent elements and allows to maintain the 46 

time derivative continuous, which permits employment of high order time integration 47 

methods via the Method of Lines (MOL).  48 

Numerical simulations are performed in both saturated and unsaturated porous media to 49 

investigate the robustness of the new upwind-MFE scheme. Results show that, contrarily to 50 

the standard scheme, the upwind-MFE method generates stable solutions without under and 51 

overshoots. The simulation of contaminant transport into a variably saturated porous medium 52 

highlights the robustness of the proposed upwind scheme when combined with the MOL for 53 

solving nonlinear problems. 54 

 55 

Keywords:  56 

Hybrid Mixed Finite Element, upwind scheme, advection-dispersion transport, numerical 57 

oscillations, Method of Lines. 58 
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1. Introduction 61 

The Mixed Finite Element (MFE) method (Raviart and Thomas, 1977; Brezzi et al., 1985; 62 

Chavent and Jaffré, 1986; Brezzi and Fortin, 1991, Younes et al., 2010) is known to be a 63 

robust numerical scheme for solving elliptic diffusion problems such as the fluid flow in 64 

heterogeneous porous media. Indeed, the method combines advantages of the finite volumes, 65 

by ensuring local mass conservation and continuity of fluxes between adjacent cells, and 66 

advantages of finite elements by easily handling heterogeneous domains with discontinuous 67 

parameter distributions and unstructured meshes. As a consequence, the MFE method has 68 

been largely used for flow in porous media (see, for instance, the review of Younes et al. 69 

(2010) and references therein). The hybridization technique has been largely used with the 70 

MFE method to improve its efficiency (Chavent and Roberts, 1991; Traverso et al. 2013). 71 

Indeed, this technique allows to reduce the total number of unknowns and produces a final 72 

system with a symmetric positive definite matrix. The unknowns with the hybrid-MFE 73 

method are the Lagrange multipliers which correspond to the traces of the scalar variable at 74 

edges/faces (Chavent and Jaffré, 1986). 75 

When applied to transient diffusion equations with small time steps, the hybrid-MFE method 76 

can produce solutions with small unphysical over and undershoots (Hoteit et al., 2002a, 77 

2002b; Mazzia, 2008). A lumped formulation of the hybrid-MFE method was developed by 78 

Younes et al. (2006) to improve its monotonicity and reduce nonphysical oscillations. The 79 

lumped formulation ensures that the maximum principle is respected for parabolic diffusion 80 

equations on acute triangulations (Younes et al., 2006). For more general 2D and 3D element 81 

shapes, the lumping procedure allows to significantly improve the monotonous character of 82 

the hybrid-MFE solution (Younes et al., 2006; Koohbor et al., 2020). As an illustration, the 83 

lumped formulation was shown to be more efficient and more robust than the standard hybrid 84 

formulation for the simulation of the challenging nonlinear problem of water infiltration into 85 
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an initially dry soil (Belfort et al., 2009). The lumped formulation has recently been used for 86 

flow discretization in the case of density driven flow in saturated-unsaturated porous media 87 

(Younes et al., 2022).  88 

However, the MFE method remains little used for the discretization of the full transport 89 

equation. Indeed, when employed to the advection-dispersion equation, the MFE method can 90 

generate solutions with strong numerical instabilities in the case of advection-dominated 91 

transport because of the hyperbolic nature of the advection operator. To avoid these 92 

instabilities, one of the most popular and easiest ways is to use an upwind scheme. Indeed, 93 

although upwind schemes introduce some numerical diffusion leading to an artificial 94 

smearing of the numerical solution, they avoid unphysical oscillations and remain useful, 95 

especially for large domains and regional field simulations. In the literature, some upwind 96 

mixed finite element schemes have been employed to improve the robustness of the MFE 97 

method for advection-dominated problems (Dawson, 1998; Dawson and Aizinger, 1999; 98 

Radu et al., 2011; Vohralik, 2007; Brunner et al., 2014).  99 

The main idea of an upwind scheme for an element E, is to calculate the mass flux exchanged 100 

with its adjacent element E’ using the concentration from E in the case of an outflow and the 101 

concentration from E’ in the case of an inflow. However, this idea cannot be applied as such 102 

with the hybrid-MFE method since the hybridization procedure requires to express the flux at 103 

the element interface as only a function of variables at the element E (and not E’). To 104 

overcome this difficulty, Radu et al. (2011), and Brunner et al. (2014) proposed an upwind 105 

MFE method where, in the case of an inflow, the concentration at the adjacent element E’ is 106 

replaced by an approximation using the concentration at E and the trace of concentration at 107 

the interface 
EE  by assuming that the edge concentration is the mean of the concentrations in 108 

E and E’. However, this assumption cannot be verified for a general configuration. 109 
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Furthermore, with such an assumption, each of the advective and dispersive fluxes is 110 

discontinuous at the element interfaces, and continuity is only fulfilled for the total flux. 111 

In this work, a new upwind-MFE method is proposed for solving the full transport equation 112 

without requiring any approximation of the upwind concentration. The new scheme is a 113 

combination of the upwind edge/face centered finite volume (FV) scheme with the lumped 114 

formulation of the MFE method. It guarantees continuity of both advective and dispersive 115 

fluxes at element interfaces. Further, the new upwind-MFE scheme maintains the time 116 

derivative continuous and thus, allows to employ high order time integration methods via the 117 

method of lines (MOL), which was shown to be very efficient for solving nonlinear problems 118 

(see, for instance, Fahs et al. (2009) and Younes et al. (2009)). 119 

This article is structured as follows. In section 2, we recall the hybrid-MFE method for the 120 

discretization of the transport equation. In section 3, we introduce the new upwind-MFE 121 

method based on the combination of the upwind edge/face FV scheme with the lumped 122 

formulation of the MFE method. In section 4, numerical experiments are performed for 123 

transport in saturated and unsaturated porous media to investigate the robustness of the new 124 

developed upwind-MFE scheme. Some conclusions are given in the last section of the article. 125 

2. The hybrid-MFE method for the advection-dispersion equation 126 

The water mass conservation in variably saturated porous media can be written as follows: 127 

 0.
t


 


q  (1) 128 

where   is the water content [L3L−3], t is the time [T], and q  is the Darcy velocity [LT-1]. 129 

The velocity q  is obtained by solving Richards’ equation using the hybrid-MFE method. For 130 

a two-dimensional domain with a triangular mesh, q  is approximated inside each triangle E  131 

using the lowest-order Raviart-Thomas (RT0) vectorial basis functions E

jw :  132 
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3

1

E E

j j

j

Q


q w  (2) 133 

where E

jQ  is the water flux across the edge jE  of E  (see Figure 1) and 
1

2

E

j
E

j
E

j

x x

E y y

 
 
  

w  134 

is the typical RT0 basis functions (Younes et al., 1999) with  E E

j jx , y  the coordinates of the 135 

node j  opposite to the edge jE  of E  and E , the area of E . 136 

 

E  

 E E

j jx ,y   E E

i ix ,y  

 E E

k kx ,y  

E

jTC  

E

kTC  

E

iTC  

E
iw  

E
jw  

E
k

w  
E

iQ  
E

jQ  

E

kQ  

 x,y  

 137 

Figure 1: Vectorial basis functions for the MFE method. 138 

 139 

The mass conservation of the contaminant in variably saturated porous media is:  140 

 
 

  0d

C
. C .

t

 


  q q  (3) 141 

where C  is the normalized concentration [-], Cq  is the advective flux and 
dq  is the 142 

dispersive flux given by: 143 

 
d C  q D  (4) 144 
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with D , the dispersion tensor, expressed by: 145 

  D I q q q q Im L T TD /        (5) 146 

in which 
L  and 

T  are the longitudinal and transverse dispersivities [L], 
mD  is the pore 147 

water diffusion coefficient [L2T-1] and I  is the unit tensor.  148 

Substituting Eq. (1) into Eq. (3) yields the following advection-dispersion equation: 149 

   0d

C
. C C .

t





    q q q  (6) 150 

To apply the hybrid-MFE method to the transport Eq. (6), we approximate the dispersive flux 151 

dq  with RT0 vectorial basis functions as: 152 

 
3

1

d ,E E

d j j

j

Q


q w  (7) 153 

where 

j

d ,E E

j d j

E

Q .  q η  is the dispersive flux across the edge jE  of the element E  and 
E

jη  is 154 

the outward unit normal vector to the edge jE . 155 

The variational formulation of Eq. (4) using the test function E

iw  yields: 156 

 1

j

E E E E

d i i i j

jE E E

C . C .     D q w w w η  (8) 157 

Substituting Eq. (7) into Eq. (8) and using properties of the basis functions E

jw  give  158 

 
 1 1 1

i

d ,E E E

j E j i

j iE E E

E

E i

Q . C C
E E

C TC

  

 

   D w w
 (9) 159 

in which, ED  is the local dispersion tensor at the element E , 
EC  is the mean concentration at 160 

E  and E

iTC  is the edge (trace) concentration (Lagrange multiplier) at the edge 
iE . 161 

Denoting the local matrix  1 1,E E E

i , j E j i

E

B .   D w w , the inversion of the system of Eq. (9) gives 162 

the expression for the dispersive flux 
d ,E

iQ :  163 
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  1d ,E ,E E

i i , j E j

j

Q B C TC   (10) 164 

Besides, the integration of the mass conservation Eq. (6) over the element E  writes 165 

   0d

E E E E

C
. C . C .

t





         q q q  (11) 166 

which becomes, using Green’s formula,  167 

 0

i i

E EE
E i d i

i iE E E

C
E C . . C .

t





       q η q η q  (12) 168 

where 
E  is the water content of the element E. 169 

Substituting Eq. (2) into Eq. (12) yields  170 

   0

t ,E
i

a,E d ,E EE
E i i E i

i i

Q

C
E Q Q C Q

t





      (13) 171 

in which t ,E a,E d ,E

i i iQ Q Q   is the total flux at the edge 
iE  with 

a ,E

iQ  the advective flux given 172 

by a,E E E

i i iQ Q TC  and 
d ,E

iQ  the dispersive flux given by Eq. (10). 173 

The hybridization of the MFE method is performed in the following three steps: 174 

1) The flux Eq. (10) is substituted into the mass conservation Eq. (13), which is then 175 

discretized in time using the first-order implicit Euler scheme 176 

  1 1 1 1 1 0n n E E ,n n E E n E E ,n

E E E i i E i E i i

i i i

E
C C Q TC C Q C TC

t
           


    (14) 177 

in which 1E ,E

i i , j

j

B   and E E

i

i

  . 178 

Hence, the mean concentration at the new time level 1n

EC   can be expressed as a function 179 

of 1E ,n

iTC  , the concentration at the edges of E , as follows: 180 

  1 11n E E E ,n nE
E i i i E

iE E

C Q TC C



 

     (15) 181 
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in which E E

E

t
 


 and E E

E E i

i

Q  
 

   
 

 . 182 

2) The mean concentration given by Eq. (15) is then substituted into the flux Eq. (10), which 183 

allows expressing the dispersive flux 
d ,E

iQ  as only a function of the traces of concentration 184 

at edges 1E ,n

iTC  :  185 

    1 1
E

d ,E E E ,E E ,n E ni E
i j j i , j j i E

j E E

Q Q B TC C
 

 
 

  
    

 
  (16) 186 

3) Finally, the system to be solved is obtained by imposing the continuity of the total flux 187 

 0t ,E t ,E

i iQ Q


   as well as the continuity of the trace of concentration  1 1E ,n E ,n

i iTC TC
   188 

at the edge i between the two elements E and E’ (Figure 2).  189 
 

E  

E

jTC  

E

kTC  

E E'

i iTC TC  t ,E E E d ,E

i i i iQ Q TC Q   

t ,E' E' E' d ,E'

i i i iQ Q TC Q   

E'

kTC  

E'TC  

E'  

 190 

Figure 2: Continuity of concentration and total flux between adjacent elements with the 191 

hybrid-MFE method. 192 

Note that the advective flux 
a ,E

iQ  is continuous between E and E’ because of the continuity of 193 

the water flux and the continuity of the trace of concentration at the interface. Thus, for the 194 

continuity of the total flux  0t ,E t ,E'

i iQ Q  , it is required that the dispersive flux is 195 

continuous: 196 
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    0t ,E t ,E' E E' E d ,E d ,E' d ,E d ,E'

i i i i i i i i iQ Q Q Q TC Q Q Q Q         (17) 197 

Using Eq. (16), we obtain: 198 

 

   
1 11 1

E E
E , E E E ,n E , E E E ,ni i
i , j j j j i , j j j j

j jE E

E n E nE E
i E i E

E E

B Q TC B Q TC

C C

 
 

 

 
 

 

 


    








   
       

   

 

 
 (18) 199 

This equation is written for all mesh edges, and the resulting equations form the final system 200 

to be solved for the traces of concentration at edges 1E ,n

iTC   as unknowns. 201 

Note that the hybrid-MFE Eqs (18), obtained by approximating the dispersive flux with RT0 202 

basis functions, is equivalent to the new MFE method proposed in Radu et al. (2011).  203 

 204 

3. The upwind-MFE method for the transport equation 205 

In the case of advection-dominated transport, solving the hybrid-MFE Eq. (18) can yield 206 

solutions with strong instabilities. A common way to avoid such instabilities is to use an 207 

upwind scheme for the advective flux. Thus, for an element E, the advective flux 208 

a,E E E

i i iQ Q TC  at the edge i (common with the element E’), has to be calculated using either 209 

the concentration from E (if 0E

iQ  ) or the concentration from E’ (if 0E

iQ  ). To this aim, 210 

Radu et al. (2011) suggested replacing the advective flux a,E E E

i i iQ Q TC  at the interface by: 211 

 
0

0

E E E

i ia ,E

i
E E' E

i i

Q C if Q
Q

Q C if Q

 
 



 (19) 212 

Thus, the advective term is now calculated using the upwind mean concentration, which can 213 

be that of the element E or of its adjacent element E’.  214 

The advective flux of Eq. (19) is rewritten in the following condensed form 215 

   1a,E E E E E E'

i i i iQ Q C C     (20) 216 
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with 1E

i   for an outflow  0E

iQ   and 0E

i   for an inflow  0E

iQ  . 217 

However, this expression is incompatible with the hybridization procedure. Indeed, if we 218 

replace, in the Eq. (14), the advective term E E

i iQ TC  by Eq. (20), the latter will contain both 219 

EC  and E'C . Thus, the first step of the hybridization procedure cannot allow expressing 220 

1n

EC   as only a function of 1E ,n

iTC   as in the Eq. (15). 221 

To avoid this difficulty, Radu et al. (2011) suggested replacing, E'C  by the following 222 

expression: 223 

 2E' E E

iC TC C  (21) 224 

This approximation is based on the assumption that   2E E E'

iTC C C .  225 

Plugging Eq. (21) into Eq. (20), the advective flux 
a ,E

iQ  depends only on the variables of the 226 

element E (mean concentration EC  and edge concentration E

iTC ): 227 

     1 2 1a,E E E E E E E E

i i i i i iQ Q C C TC        (22) 228 

Eq. (22) can then be used to replace the advective term E E

i iQ TC  in Eq. (14), and thus the 229 

hybridization procedure allows to express 1n

EC   as a function of 1E ,n

iTC   as in the Eq. (15). 230 

Then, the obtained expression of 1n

EC   is substituted into the dispersive flux Eq. (10), and the 231 

final system is then obtained by prescribing continuity of the total flux  0t ,E t ,E'

i iQ Q   at the 232 

interface between E and E’.  233 

Note that Eq. (21) can be a rough approximation, especially in the case of heterogeneous 234 

domains where dispersion can vary with several orders of magnitudes between the elements E 235 

and E’. Furthermore, the advective flux is not uniquely defined at the interface and can be 236 

different for the adjacent elements E and E’. For instance, in the case of 0E

iQ Q  , the 237 

advective flux leaving the element E is a,E E

iQ QC , whereas the flux entering the element E’ 238 
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is  2a ,E' E E'

i iQ Q TC C   which could be different as E

iTC  is not necessarily the mean of EC  239 

and E'C . In this situation, because of the discontinuity of the advective flux, the dispersive 240 

flux will not be continuous at the interface since the continuity is prescribed only for the total 241 

flux. 242 

To avoid the rough approximation (21), we develop hereafter a new upwind-MFE scheme 243 

where the advection term is calculated using upwind edge concentration in the element E. The 244 

idea of the scheme is to combine the upwind edge finite volume method with the lumped 245 

formulation of the MFE method. The scheme is elaborated in the following four steps:  246 

1) In a first step, the steady-state dispersive transport (i.e. the first, second and fourth terms 247 

are removed from Eq. (12)) yields: 248 

 0
d ,E

i
i

Q   (23) 249 

where 
d ,E

i
Q  corresponds to the steady-state dispersive flux across the edge 

iE . 250 

Therefore, the mean concentration in Eq. (15) becomes  251 

 
E

Ei
E iE

i

C TC



  (24) 252 

and the steady-state dispersive flux, given by Eq. (16), becomes 253 

 1

E E
d ,E i j ,E E

i , j jEi
j

Q B TC
 




 

   
 

  (25) 254 

2) In a second step, a simplex region E

iS  is constructed around each edge i by joining the two 255 

nodes of edge i to the element center 
Ex  (Figure 3). 256 
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j  

 k k
x ,y  

 j jx ,y  

 i ix ,y  

k  

i  

E  

E

kQ  E

jQ  

E

ijQ  
E

ikQ  

E

ikTC  
E

ijTC  

E  

E

iTC  

E

jTC  
E

kTC  

E

iQ  

d ,E

ik
Q  

d ,E

i
Q  

d ,E

ij
Q  

  interface
E

ij  

 257 

Figure 3: The lumping region 
iR  associated with the edge i , sharing the elements E  and 258 

E  and formed by the two simplex regions E

iS  and E

iS

. 259 

The domain is now partitioned into lumping regions 
iR  (hatched area in Figure 3) assigned 260 

to the edge i, formed by the two simplex regions E

iS  and E

iS

 for an inner edge i and by the 261 

sole simplex region E

iS  for a boundary edge. The simplex region E

iS  is defined by joining 262 

the centre of E with the nodes j and k forming the edge i. 263 

3) In a third step, the integration of the mass conservation Eq. (6) over the lumping region 
iR  264 

yields: 265 
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   0

i i i i

d

R R R R

C
. C . C .

t





         q q q  (26) 266 

Associating the concentration E

iTC  to 
iR  yields (see Figure 3 for notations) 267 

     0
3

E
d ,E d ,EE E E E E E Ei

E ij ij ik ik i ij ikij ik

E TC
Q TC Q TC Q Q TC Q Q

t


          
 

 (27) 268 

in which E

ijQ , 
d ,E

ij
Q  and 

E

ijTC  are respectively the water flux, the dispersive flux and the 269 

concentration at the interior interface  
E

ij  between the simplex regions E

iS  and 
E

jS . 270 

The interior flux E

ijQ  is evaluated using the RT0 approximation of the velocity given by 271 

Eq. (2), which yields  272 

  
1

3

E E E

ij j iQ Q Q   (28) 273 

Besides, applying the steady-state dispersive transport Eq. (23) on the simplex region E

iS  274 

yields:  275 

 0
d ,E d ,E d ,E

ij ik i
Q Q Q    (29) 276 

Hence, Eq. (27) becomes 277 

     0
3

E
d ,E E E E E E E Ei

E ij ij ik ik ij ik ii

E TC
Q Q TC Q TC Q Q TC

t


         
 

 (30) 278 

Using Eq. (25) and denoting 
3

E E

E
  , we obtain 279 

    1 0

E EE
i j,E E E E E E E E Ei

E i , j j ij ij ik ik ij ik iE
j

TC
B TC Q TC Q TC Q Q TC

t

 





                 

  (31) 280 

4) In a fourth step, the interior concentration 
E

ijTC  at the interface between the simplex 281 

regions E

iS  and 
E

jS  is calculated using an upwind scheme (See Figure 3) defined by: 282 

  1E E E E E

ij ij i ij jTC TC TC     (32) 283 
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with 1E

ij   if  0E

ijQ  , else 0E

ij   284 

Thus, the final system to solve becomes, 285 

     

 

1 1 1

0

E EE
i j,E E E E E E E E E Ei

E i , j j ij ij j i ik ik k iE
j

TC
B TC Q TC TC Q TC TC

t

 
  




   

             

 


 286 

  (33) 287 

Note that contrarily to the standard hybrid-MFE scheme, where the discretization of the 288 

temporal derivative performed in Eq. (14) was necessary to obtain the final system given 289 

by Eq. (18), the new scheme given by Eq. (33) keeps the time derivative continuous which 290 

allows the use of efficient high order temporal discretization methods via the MOL. 291 

In the case of a first-order Euler implicit time discretization, Eq. (33) becomes  292 

 
  

  
 

1, , 1 , 1 , 1 , 1

,

, 1 , 1 ,

1
0

1

E E

i jE E n E n E E E n E n

i j j E i ij ij j iE
j

E E E n E n E n

ik ik k i E i

B TC TC Q TC TC

Q TC TC TC

 
 



 

    

 

  
             

 
     


 (34) 293 

where 
3

E E

E

t
 


. 294 

Eq. (34) expresses the total exchange between E and E’ and therefore reflects the continuity 295 

of the total (advection + dispersion) flux between them. With this formulation, both advective 296 

and dispersive fluxes are continuous between the adjacent elements E and E’. Indeed, the 297 

advective flux, calculated using the upwind edge concentration, is uniquely defined at the 298 

interface of the lumping region and is therefore continuous. As a consequence, the dispersive 299 

flux is also continuous between E and E’ since the total flux is continuous at the interface 300 

between them. 301 
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4. Numerical Experiments 302 

In this section, a first test case dealing with transport in saturated porous media is simulated 303 

with the standard hybrid-MFE and the new upwind-MFE schemes. The results are compared 304 

against an analytical solution in order to validate the new developed scheme and to show its 305 

robustness for solving advection-dominated transport problems compared to the standard one. 306 

The second test case deals with transport in the unsaturated zone and aims to investigate the 307 

robustness of the new scheme when combined with the MOL for solving highly nonlinear 308 

problems. 309 

4.1 Transport in saturated porous media: comparison against a 2D analytical solution 310 

The hybrid and upwind MFE formulations are compared against the analytical solution 311 

developed by Leij and Dane (1990) for a simplified 2D transport problem (Figure 4). The 312 

latter deals with the contamination from the left boundary of a 2D rectangular domain of 313 

dimension    0 100 0 40, , .  314 

 

40 m  

100m  

0 5m d

0

x

y

q .

q




 

16m  
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0 2m

0 05m

s

L

T

.

.

.













 

Saturated porous medium 

 315 

Figure 4: Description of the problem of the contamination of a 2D saturated porous medium. 316 

The boundary conditions for the transport are of Dirichlet type at the inflow (left vertical 317 

boundary), with  318 
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0 for 0 and 0 12

1 for 0 and 12 28

0 for 0 and 28 40

x y

C x y

x y

  


   
   

 (35) 319 

A zero diffusive flux is imposed at the right vertical outflow boundary. The top and bottom 320 

are no-flow boundaries. A uniform horizontal flow occurs from left to right with fluid velocity 321 

1 0xV .  m/day and 0yV  . The longitudinal and transverse dispersivities are 0 2L . m   and 322 

0 05T . m  , respectively. The domain is discretized with a fine unstructured triangular mesh 323 

formed by 33216 elements, and the simulation is performed for a final simulation time T = 30 324 

days using a fixed time step of 0.1 day. 325 

The analytical solution of this test case for an infinite domain is given by Leij and Dane 326 

(1990): 327 

  
     

 
2

3 2

1 2 1 2 1 2

0

12 28

416 4 4

T

LL T T

xx y y
C x, y,t erf erf exp d


 

     


        

        
            

  (36) 328 

with    2

0

2
x

erf x exp d 


  . 329 

 330 

The final distributions of the concentration with both hybrid-MFE and upwind-MFE schemes 331 

are depicted in Figure 5. The hybrid-MFE scheme (Figure 5a) yields a solution with 332 

unphysical oscillations. Indeed, around 1.2 % of the contaminated region (i.e. the region with 333 

510C  ) exhibits unphysical oscillations with 0.4 % of the contaminated region with 334 

310C    and 0.8 % of the contaminated region with 1 001C . . These unphysical 335 

oscillations, although they seem moderate, can be dramatic, for instance, when dealing with 336 

reactive transport where some reactions occur only if the concentration excesses a certain 337 

threshold. The solution obtained with the new upwind formulation (Figure 5b) is monotone 338 

(all concentrations are between 0 and 1) which is in agreement with the physics. However, 339 

these results come at the expense of some numerical diffusion added to the solution. To 340 
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appreciate the quality of both solutions and validate the upwind-MFE method, we compare 341 

the concentration profile of the two methods to the analytical solution of Leij and Dane (1990) 342 

for a horizontal section located at y = 20 m and a vertical section located at x = 20 m.  343 

 344 

 345 

 346 
Figure 5: Concentration distribution with the hybrid-MFE and the upwind-MFE methods for 347 

the 2D saturated transport problem (only the region 70x  m is depicted). 348 

 349 

The results of figure 6 show that the solution of both hybrid-MFE and upwind-MFE methods 350 

are in very good agreement with the analytical solution, which validates the new upwind-351 

MFE numerical model. Note, however, that a small numerical diffusion is observed with the 352 

upwind-MFE solution, which is especially visible in figure 6b. Indeed, for the simulated 353 

problem, the transverse dispersivity is much smaller than the longitudinal one, and, as a 354 
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consequence, the concentration front is sharper in the vertical section than in the horizontal 355 

one. This explains why the numerical diffusion generated by the upwind-MFE method is 356 

more pronounced in Figure 6b than in Figure 6a. 357 

 358 
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 360 

Figure 6: Concentration profiles at y = 20m (a) and x = 20 m (b) with the analytical, hybrid-361 

MFE and upwind-MFE solutions. 362 

 363 
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4.2 Transport in a variably-saturated porous medium. 364 

In this test case, the developed upwind-MFE method is combined with the MOL for solving 365 

contaminant transport in a variably-saturated porous medium. The advection-dispersion 366 

equation is transformed to an Ordinary Differential Equation (ODE) using the new upwind-367 

MFE formulation for the spatial discretization, whereas the time derivative is maintained 368 

continuous. Therefore, high-order time integration methods included in efficient ODE solvers 369 

can be employed. With these solvers, both the time step size and the order of the time 370 

integration can vary during the simulation to deliver accurate results in an acceptable 371 

computational time.  372 

To investigate the robustness and efficiency of the combination of the developed upwind-373 

MFE method with the MOL, we simulate in this section the problem of contaminant 374 

infiltration into a variably-saturated porous medium.  375 
 

2m  

3m  

6

0

10 m

x

y

q

q s




 

Variably-saturated porous medium 

0 65m.  

0 1m.  

 376 

Figure 7: Description of the problem of contaminant infiltration into a 2D variably-saturated 377 

porous medium. 378 

 379 
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The domain (Figure 7) is a rectangular box of 3m  2m, filled with sand, with an initial water 380 

table at 0.65m and hydrostatic pressure distribution. An infiltration of a tracer contaminant is 381 

applied over the left-most 0.1m of the surface with a constant flux of 610 m s . The right 382 

vertical side has a fixed head of 0.65m below the water table and a no-flow boundary above it. 383 

The left vertical side as well as the upper (except the infiltration zone) and bottom boundaries 384 

are no-flow boundaries.  385 

In this problem, the flow and transport are coupled by the velocity, which is obtained by 386 

solving the following pressure-head form of the nonlinear Richards’ equation: 387 

   0S

S

H
c h S

t





  
   

 
q  (31) 388 

 
rk H  q K  (32) 389 

with 
SS  the specific mass storativity related to head changes [L-1], H h y   the equivalent 390 

freshwater head [L], 
P

h
g

  the pressure head, P  the pressure [Pa],   the fluid density 391 

[ML-3], g  the gravity acceleration [LT-2], y the upward vertical coordinate [L],  c h  the 392 

specific moisture capacity [L−1], 
S  the saturated water content [L3L−3], q  the Darcy velocity 393 

[LT-1], 
g


K k  the hydraulic conductivity [LT-1], k  the permeability [L2],   the fluid 394 

dynamic viscosity [ML-1T-1] and 
rk  the relative conductivity [-]. 395 

We use the standard van Genuchten (1980) model for the relationship between water content 396 

and pressure head: 397 

 
   

1
      0

1

1                         0

m
nr

e

s r

h
h

hS

h

 


 


 

  
 



 (33) 398 
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where   [L-1] and n  [-] are the van Genuchten parameters, 1 1m n  , 
eS  [-] is the effective 399 

saturation and 
r  [-] is the residual water content. The conductivity-saturation relationship is 400 

derived from the Mualem (1976) model:  401 

  
2

1/2 1/1 1
m

m

r e ek S S   
  

 (34) 402 

The material properties of the test problem are given in Table 1. 403 

Parameters  

r  0.01 

s  0.3 
1( )cm   0.033 

n  4.1 

 1K cm s  210   

 1

sS cm  1010   

 2 1

mD m s  910  

 3kg m   1000 

 1 1kg m s    0.001 

 404 

Table 1: Parameters for the problem of infiltration into a 2D variably-saturated porous 405 

medium.  406 

 407 

The simulation is performed for 80 hours using a triangular mesh formed by 4273 triangular 408 

elements. Two test cases are investigated. In the first test case, the longitudinal and transverse 409 

dispersivities are 0 03L . m   and 0 003T . m  , respectively. The second test case is less 410 

diffusive with 0 01L . m   and 0 001T . m  . 411 

The coupled nonlinear flow-transport system is solved using the MOL, which allows the use 412 

of efficient high-order time integration methods, for both the hybrid-MFE and the upwind-413 

MFE schemes. To this aim, a hybrid-MFE formulation with continuous time derivative was 414 
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developed by extending the lumping procedure, developed in Younes et al. (2006) for the 415 

flow equation, to the advection-dispersion transport Eq. (6).  416 

The results of the hybrid-MFE and the upwind-MFE methods are depicted in Figure 8 for the 417 

first test case involving high dispersion. Good agreement can be observed between the results 418 

of the hybrid-MFE (Figure 8a) and upwind-MFE (Figure 8b) schemes when combined with 419 

the MOL. In these figures, the contaminant progresses essentially vertically through the 420 

unsaturated zone of the soil. When the saturated zone is reached, the contaminant progresses 421 

horizontally and remains close to the water table. Note that the results of both schemes are 422 

stable and free from unphysical oscillations (Figures 8a and 8b).  423 

 424 
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 425 

Figure 8: Concentration distribution, with the hybrid-MFE (a) and the upwind-MFE (b) 426 

schemes for the transport problem with high dispersion in a variably-saturated porous 427 

medium. 428 

For the second test case with lower dispersion  0 01 0 001L T. m, . m   , the hybrid-MFE 429 

method yields unstable results containing unphysical oscillations (red color in Figure 9a). 430 

These oscillations hamper the convergence of the numerical model, and severe convergence 431 

issues can be encountered if we further decrease the dispersivity values. The results of the 432 

upwind-MFE scheme are monotone and do not contain any unphysical oscillation (Figure 9b). 433 

These results point out the robustness of the new developed upwind-MFE method for solving 434 

nonlinear multi-physics problems. 435 
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 436 

 437 

Figure 9: Concentration distribution with the hybrid-MFE (a) and upwind-MFE (b) methods 438 

for the transport problem with low dispersion in variably-saturated porous medium. 439 

440 
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 441 

5. Conclusion 442 

 443 

MFE is a robust numerical method well adapted for diffusion problems on heterogeneous 444 

domains and unstructured meshes. When applied to transport equations, the MFE solution can 445 

exhibit strong unphysical oscillations due to the hyperbolic nature of advection. Upwind 446 

schemes can be used to avoid such oscillations, although they introduce some numerical 447 

diffusion. In this work, we developed an upwind scheme that does not require any 448 

approximation for the upwind concentration. The method can be seen as a combination of an 449 

upwind edge/face centred FV method with the MFE method. It ensures continuity of both 450 

advective and dispersive fluxes between adjacent elements and allows to maintain the time 451 

derivative continuous, which facilitates employment of high order time integration methods 452 

via the method of lines (MOL) for nonlinear problems. 453 

Numerical simulations for the transport in a saturated porous medium show that the standard 454 

hybrid-MFE method can generate unphysical oscillations due to the hyperbolic nature of 455 

advection. These unphysical oscillations are completely avoided with the new upwind-MFE 456 

scheme. The simulation of the problem of contaminant transport in a variably-saturated 457 

porous medium shows that only the upwind-MFE scheme provides a stable solution. The 458 

results point out the robustness of the developed upwind-MFE scheme when combined with 459 

the MOL for solving nonlinear transport problems.  460 

 461 

 462 

 463 

464 
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